Вакуумная труба солнечного коллектора


 


Владельцы патента RU 2527220:

Гефтлер Станислав Леонидович (RU)

Изобретение относится к теплоэнергетике, в частности может использоваться как элемент солнечной энергетической установки, преобразующий энергию излучения солнца в тепловую энергию для горячего водоснабжения, отопления и кондиционирования воздуха в зданиях и сооружениях. Конструктивные особенности солнечного коллектора с вакуумными трубами заключаются в том, что вакуумная труба выполнена из двух трубок, одна из них, внутренняя, вставлена во внешнюю с большим диаметром, причем вакуумная труба снабжена отражающим элементом, регулирующим ее тепловую мощность и выполненным в виде пластины из непрозрачного теплостойкого и стойкого к ультрафиолету материала, установленной на наружной поверхности одной из сторон внешней трубки вакуумной трубы параллельно ее оси и с возможностью поворота вокруг нее, или отражающим элементом вакуумной трубы, выполненным в виде полосы, нанесенной на наружную поверхность внутренней трубки. Вакуумная труба солнечного коллектора может устанавливаться с возможностью поворота вокруг своей оси. Изобретение должно обеспечить уменьшение материалоемкости и себестоимости изготовления. 1 з. п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике и гелиотехнике. В частности, используется как элемент солнечной энергетической установки, преобразующей энергию излучения солнца в тепловую энергию для горячего водоснабжения, отопления и кондиционирования воздуха в зданиях и сооружениях.

Известен солнечный коллектор, содержащий тепловую вакуумную трубу с тепловьм стержнем «Heat Pipe». Внутри прозрачной вакуумной трубы установлена плоская поглощающая пластина с алюминиевыми ребрами, соединенная с тепловым стержнем. Форма ребер такова, что площадь их контакта с тепловым стержнем максимальна. Такая конструкция обеспечивает максимальную передачу тепла к медному тепловому стержню, а потом - воде теплопровода. При нагревании жидкости образовавшийся пар поднимается к наконечнику (конденсатору) теплового стержня, где тепло отдается воде (или антифризу), которая течет по теплообменному каналу корпуса коллектора. Отдав тепло, пар конденсируется и стекает обратно вниз по тепловому стержню, где процесс повторяется сначала.

Недостаток конструкции приведенного солнечного коллектора заключается в том, что поглощающая пластина не поворачивается вокруг своей оси, т.е. поверхность пластины всегда направлена в одну сторону и не позволяет ориентировать ее под оптимальным углом к лучам солнца; вследствие неплотного прилегания пластины к поверхности теплового стержня возможны тепловые потери. Технология нанесения селективного слоя на поверхность тепловой трубы сложная и дорогостоящая.

Наиболее близким к предлагаемому техническому решению, принятым за прототип (htth://www/greensolar.ru/solarheater/2009-10-22-21-31-04/htmk), является солнечный коллектор с вакуумными трубами, которые состоят из двух трубок, одна трубка вставлена в другую с большим диаметром. Внешняя трубка выполнена из прозрачного сверхпрочного боросиликатного стекла. Внутренняя трубка также изготовлена из прозрачного боросиликатного стекла, покрыта специальным селективным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Во избежание теплопотерь из пространства между двумя трубами выкачен воздух и образован вакуум. Вакуумные трубы круглые, как следствие, количество солнечного излучения, которое попадает на трубки, остается постоянным с утра до вечера. Благодаря этому общее количество поглощенного солнечного излучения увеличивается. Более того, угол падения солнечных лучей всегда перпендикулярен поверхности трубы, и отражение, таким образом, уменьшается.

В связи с тем, что солнечный нагреватель, включающий солнечный коллектор с вакуумными трубами, невозможно выключить в периоды максимального солнечного облучения и малого водоразбора, температура (температура застоя) в нем может достигать 300°С.

В связи с этим в качестве трубной обвязки водонагревателей нельзя использовать пластиковые (полимерные трубы) и стальные трубы с цинковым покрытием. Следует применять трубопроводы из меди или нержавеющей стали, а это приводит к увеличению материалоемкости и веса конструкции, а также к значительному удорожанию конструкции.

Также необходимо предусмотреть теплоизоляцию первого (горячего) контура трубной обвязки водонагревателей для предупреждения ожогов и возгораний, причем материал теплоизоляции и крепежа должен соответствовать указанным температурным режимам.

Техническая задача, решаемая с помощью предлагаемого изобретения, заключается в регулировке тепловой мощности вакуумных труб солнечного коллектора.

Поставленная задача решается тем, что вакуумная труба солнечного коллектора, выполненная из двух трубок, одна из них, внутренняя, вставлена в другую, внешнюю, большего диаметра согласно изобретению снабжена отражающим элементом, регулирующим ее тепловую мощность, выполненным из непрозрачного теплостойкого и стойкого к ультрафиолету материала в виде пластины, установленной на наружной поверхности одной из сторон вакуумной трубы параллельно ее оси и с возможностью поворота вокруг нее.

Варианты исполнения

Отражающий элемент вакуумной трубы, регулирующий ее тепловую мощность, выполнен в виде полосы, нанесенной на внутреннюю поверхность внешней трубки. Отражающий элемент вакуумной трубы, регулирующий ее тепловую мощность, выполнен в виде полосы, нанесенной на внешнюю поверхность внутренней трубки. При этом вакуумная труба установлена с возможностью поворота вокруг своей оси.

Сущность предлагаемого технического решения поясняется фиг.1.

Основным компонентом солнечных коллекторов с вакуумными трубками являются стеклянные вакуумные трубы 1. Каждая вакуумная труба 1 состоит из двух стеклянных трубок 2 и 3. Внешняя трубка 2 изготовлена из прозрачного сверхпрочного боросиликатного стекла. Внутренняя трубка 3 тоже изготовлена из прозрачного боросиликатного стекла, покрытого специальным селективным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Во избежание кондуктивных и конвективных теплопотерь из пространства между двумя трубками 2 и 3 выкачан воздух и создан вакуум. Для поддержания вакуума между двумя трубками 2 и 3 используется бариевой газопоглотитель. Вакуумная труба 1 снабжена отражающим элементом 4, регулирующим ее тепловую мощность. Отражающий элемент 4 выполнен в виде пластины 5, которая установлена на наружной поверхности одной из сторон вакуумной трубы 1 параллельно ее оси и с возможностью поворота вокруг оси. Как варианты: отражающий элемент 4 может наноситься в виде полосы 6 на внутреннюю поверхность внешней трубки 2 и также в виде полосы 7 - на внешнюю поверхность внутренней трубки 3. Вакуумные трубы 1 устанавливаются с возможностью поворота.

Предлагаемая конструкция работает следующим образом. Поток солнечного излучения падает на поверхности вакуумных труб 1. Внутренняя трубка 3 покрыта специальным селективным слоем, который хорошо абсорбирует солнечную энергию и препятствует потерям тепла. Происходит прямая теплопередача солнечной энергии в воде без участия других устройств.

В периоды максимального солнечного облучения или малого водозабора температура в солнечном коллекторе может достигать 300°С°, в этих случаях используют отражающий элемент 4. Ориентируют поверхность отражающей пластины 5 путем ее поворота относительно оси вакуумной трубки 1 для уменьшения теплоотдачи. Если используются варианты, где отражающий элемент нанесен на внутреннюю поверхность внешней трубки или на внешнюю поверхность внутренней трубки, то в этих случаях ориентируют поверхности отражающих полос 6 и 7 путем поворота самой вакуумной трубки 1.

1. Вакуумная труба солнечного коллектора, выполненная из двух трубок, одна из них, внутренняя, вставлена во внешнюю с большим диаметром, отличающаяся тем, что вакуумная труба снабжена отражающим элементом, регулирующим ее тепловую мощность и выполненным в виде пластины из непрозрачного теплостойкого и стойкого к ультрафиолету материала, установленной на наружной поверхности одной из сторон внешней трубки вакуумной трубы параллельно ее оси и с возможностью поворота вокруг нее, или отражающим элементом вакуумной трубы, выполненным в виде полосы, нанесенной на наружную поверхность внутренней трубки.

2. Вакуумная труба солнечного коллектора по п.1, отличающаяся тем, что вакуумная труба установлена с возможностью поворота вокруг своей оси.



 

Похожие патенты:

Изобретение относится к области создания высокотемпературных солнечных энергетических установок с концентраторами солнечного излучения и может быть использовано во всех отраслях промышленности, где требуется тепловая энергия.

Фотоэлектрический модуль содержит параболоторический концентратор и цилиндрический фотоэлектрический приемник, установленный в фокальной области с устройством охлаждения и выполненный в виде цилиндра из скоммутированных высоковольтных ФЭП длиной ho и с внутренним радиусом ro.

Изобретение относится к области металлургии и гелиоэнергетики и может быть использовано на гелиоустановках при изготовлении и монтаже отражательных элементов. Способ изготовления отражательного устройства гелиоустановки включает прокатку полотна, установку его в корпус отражательного устройства и последующее его растяжение с усилием, которое определяется по эмпирической формуле: T I = ( δ h 1,33 ) ⋅ в Е ⋅ 10 − 3 где: TI - усилие растяжения полотна, тс; δh - поперечная разнотолщинность полотна; мм (h - толщина полотна); в - ширина полотна, мм; Е - модуль упругости первого рода в кгс/мм2 для материала полотна, используемого в отражательном элементе.

Изобретение может быть использовано в концентраторах солнечного излучения и радиоволн, устройствах по изменению светового потока. Зеркало содержит гибкое зеркальное полотно, размещенное на пневмосистеме, состоящей из газонаполняемых пневмокамер, пневматически связанных между собой.

Изобретение относится к солнечной энергетике и может найти применение как в солнечных электростанциях, так и в качестве энергетической установки индивидуального пользования.

Изобретение относится к области гелиотехники и конструкции создания солнечных модулей с фотоэлектрическими или тепловыми приемниками излучения и стационарными концентраторами, допускающими эксплуатировать модули в неподвижном режиме круглый год.

Изобретение относится к области гелиотехники, в частности касается создания солнечных установок с концентраторами солнечного излучения для выработки электричества и тепла.

Изобретение относится к солнечным теплоэлектростанциям. .

Изобретение относится к области солнечных теплоэлектростанций. .

Изобретение относится к энергетике, а именно к устройствам для горячего водоснабжения с использованием солнечной энергии с дублированием от источника электрической энергии (ветроэлектрической станции, электрического ввода и т.п.).

Изобретение относится к вакуумированной солнечной панели с геттерным насосом, в частности согласно изобретению геттерный насос представляет собой насос с неиспаряющимся геттером (NEG).

Изобретение относится к автономным источникам электропитания, использующим энергию Солнца. .

Изобретение относится к области теплообмена. .

Изобретение относится к области солнечных теплоэлектростанций. .

Изобретение относится к области использования солнечной энергии, в частности к устройствам преобразования энергии светового излучения в тепло, и предназначено для получения горячей воды для бытовых нужд с помощью солнечного излучения. Солнечный водонагреватель включает коллектор солнечного нагревателя, бак-аккумулятор с теплоизоляцией и патрубками подвода холодной и отвода горячей воды. В корпусе бака-аккумулятора размещены резервуар-теплообменник с теплообменными трубками и резервуары высокого давления, установленные в его торцах. Нижняя поверхность резервуара-теплообменника является теплоприемной поверхностью прямого нагрева. Бак-аккумулятор снабжен системой долива испаряющейся воды. Техническим результатом изобретения является исключение присутствия насосной станции с циркуляционными насосами для нормального функционирования солнечного водонагревателя, что приводит к повышению КПД. 1 ил.

Группа изобретений относится к способу и устройству для нанесения электропроводного покрытия поверх первой поверхности светоотражающего покрытия солнечного зеркала. При этом солнечное зеркало содержит подложку, имеющую первую главную поверхность и противоположную ей вторую главную поверхность. Светоотражающее покрытие имеет вторую поверхность, противоположную первой поверхности, причем вторая поверхность светоотражающего покрытия нанесена поверх главной поверхности подложки солнечного зеркала. Способ включает размещение первого электропроводящего жидкого материала над первой зоной первой поверхности светоотражающего покрытия и размещение второго электропроводящего жидкого материала над второй зоной первой поверхности светоотражающего покрытия, где один из этих жидких материалов содержит композицию электроосаждаемого покрытия. Первый и второй электропроводящие жидкие материалы поддерживают на расстоянии друг от друга и без контакта друг с другом для получения третьей зоны первой поверхности, расположенной между первой и второй зонами, а также для образования электрического контура, проходящего через первый жидкий материал, третью зону электропроводящей поверхности и через второй жидкий материал. Затем осуществляют пропускание электрического тока через этот электрический контур с целью осаждения защитного покрытия поверх той зоны первой поверхности светоотражающего покрытии, которая содержит композицию электроосаждаемого покрытия. Устройство включает конструкцию для нанесения покрытия, содержащую первый канал для нанесения электропроводящего покрытия, предназначенный для получения первой завесы жидкости для нанесения покрытия, и второй канал для нанесения электропроводящего покрытия, предназначенный для получения второй завесы жидкости для нанесения покрытия, третий канал для получения первого воздушного ножа, расположенный между первым и вторым каналами, четвертый электропроводящий канал, предназначенный для получения третьей завесы жидкости для нанесения покрытия, и пятый канал, предназначенный для получения второго воздушного ножа, расположенный между вторым и четвертым каналами. Также устройство содержит моторизированную систему, предназначенную для перемещения конструкции для нанесения покрытия и солнечного зеркала относительно друг друга, и систему подачи, предназначенную для перемещения первой ионосодержащей жидкости к первому и четвертому каналам и через них для перемещения второй ионосодержащей жидкости к третьему каналу и через него, и для перемещения находящегося под давлением воздуха через второй и пятый каналы. Причем после того, как система подачи будет активирована, завеса первой ионосодержащей жидкости перемещается через первый и четвертый каналы, завеса второй ионосодержащей жидкости перемещается через второй канал, а находящийся под давлением воздух перемещается через третий и пятый каналы. После того как будет включена моторизированная система, части первой поверхности светоотражающего покрытия последовательно перемещаются через завесу жидкости из первого канала, находящийся под давлением воздух третьего канала, завесу жидкости из второго канала, воздушный экран пятого канала и завесу жидкости из четвертого канала. Причем находящийся под давлением воздух из третьего канала поддерживает первое заранее заданное расстояние на первой поверхности светоотражающего покрытия между завесами жидкости из первого и второго каналов, а находящийся под давлением воздух пятого канала поддерживает второе заранее заданное расстояние на первой поверхности светоотражающего покрытия между завесами жидкости из второго и четвертого каналов. Достигаемый при этом технический результат заключается в получении более равномерного электроосаждаемого покрытия. 3 н. и 29 з.п. ф-лы, 28 ил.
Наверх