Радиальный подшипниковый узел

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок, работающих как по замкнутому, так и по открытому циклам, при высоких давлениях наддува в подшипниках и градиентах температур. Радиальный подшипниковый узел включает полый корпус (1), в полости которого размещена втулка (2), выполненная из сегментов, и цапфу (3), размещенную с возможностью вращения в полости втулки (2). Сегменты втулки (2) выполнены из немагнитного материала в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями (4), выполненными в виде Т-образных планок. На поверхности желоба каждого сегмента, обращенной к цапфе (3), выполненной из немагнитного материала, зафиксированы полюса (5), выполненные в виде планок из материала с высокой магнитной проницаемостью, между которыми размещены магнитные планки (6), выполненные из постоянных магнитов с тангенциальным намагничиванием. Планкам (6) придана трапециевидная форма поперечного сечения, широкое основание которых обращено к поверхности желоба сегмента, а с узким основанием каждой магнитной планки (6) контактирует немагнитный клин (7), выполненный в виде полосы из немагнитного материала. Внешняя поверхность, образованная клиньями (7) и полюсами (5), обращенная к цапфе (3), выполнена цилиндрической с образованием рабочего зазора (8) с поверхностью цапфы (3). В объеме сегментов выполнена система сообщающихся каналов (11, 12), сообщенная с патрубками (13) для ввода сжатого воздуха. Выходные отверстия системы каналов (11, 12) сообщены с рабочим зазором (8) через радиальные питающие отверстия, проходящие через сегменты и полюса (5). Технический результат: обеспечение высокой несущей способности радиального подшипникового узла в рабочем режиме при уменьшении в нем потерь на трение, надежный запуск турбомашины, а также повышение устойчивости ротора к «полускоростному вихрю» и снижение деформации зазора в газостатическом подшипнике при высоких давлениях наддува. 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок, работающих как по замкнутому, так и по открытому циклам, при высоких давлениях наддува в подшипниках и градиентах температур.

Известен радиальный подшипниковый узел, содержащий корпус, самоустанавливающиеся сегментные вкладыши, установленные с радиальным зазором относительно вала (SU 1493811 A1, опубл. 15.07.1989, F16C 39/06, 27/02).

В данном подшипнике сегментные вкладыши связаны с корпусом с помощью сферических шарниров, выполненных в виде двух сопряженных звеньев, одно из которых выполнено из магнитотвердого материала, другое - из ферромагнитного электропроводного материала. Демпфирование угловых колебаний сегментных вкладышей в данном подшипнике происходит за счет трения в шарнире, а радиальных высокочастотных колебаний - за счет перемагничивания звена из ферромагнитного материала магнитным полем звена из магнитотвердого сплава, а также за счет вихревых токов, наводимых в ферромагнитном электропроводном материале.

Недостатком данного технического решения является уменьшение надежности и ресурса работы подшипника за счет наличия трения в сферических шарнирах. При длительной эксплуатации такого подшипника за счет коррозии и засорения продуктами износа происходит «залипание» сферических шарниров, что приводит к поломке подшипника. Другим недостатком является усложнение конструкции подшипника из-за наличия в нем дополнительных деталей, образующих сферические шарниры.

Известен также радиальный подшипниковый узел, включающий полый корпус, в полости которого размещена втулка, выполненная из сегментов, и цапфу, размещенную с возможностью вращения в полости втулки, при этом корпус снабжен патрубками для ввода сжатого воздуха с возможностью его подвода в рабочий зазор между поверхностью полости втулки и поверхностью цапфы (см. RU №2330197, МПК F16C 17/04, 2008 г.).

При использовании подшипникового узла в мощных турбомашинах необходимо увеличивать диаметр цапф радиального подшипникового узла для получения необходимой несущей способности, что приводит к высоким окружным скоростям цапф, что в свою очередь приводит к значительным потерям на трение в нем ввиду малости радиального зазора в газостатическом подшипниковом узле (мощность трения в подшипниковом узле пропорциональна третьей степени радиуса цапфы и обратно пропорциональна радиальному зазору).

Задачей, на решение которой направлено предлагаемое техническое решение, является обеспечение высокой несущей способности радиального подшипникового узла в рабочем режиме при уменьшении в нем потерь на трение.

Технический результат предлагаемого технического решения выражается в обеспечении высокой несущей способности радиального подшипникового узла в рабочем режиме при уменьшении в нем потерь на трение, надежном запуске турбомашины, а также повышении устойчивости ротора к «полускоростному вихрю» и снижении деформации зазора в газостатическом подшипнике при высоких давлениях наддува.

Поставленная задача решается тем, что радиальный подшипниковый узел, включающий полый корпус, в полости которого размещена втулка, выполненная из сегментов, и цапфу, размещенную с возможностью вращения в полости втулки, при этом корпус снабжен патрубками для ввода сжатого воздуха с возможностью его подвода в рабочий зазор между поверхностью полости втулки и поверхностью цапфы, отличается тем, что использован внешний источник сжатого воздуха, при этом сегменты втулки выполнены из немагнитного материала в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями, выполненными в виде Т-образных планок с возможностью скрепления с корпусом, при этом контактирующие боковые кромки клиньев и сегментов втулки выполнены с возможностью зацепления последних первыми, кроме того, на поверхности желоба каждого сегмента втулки, обращенной к цапфе, выполненной из немагнитного материала, зафиксированы полюса, выполненные в виде планок из материала с высокой магнитной проницаемостью, между которыми размещены магнитные планки, контактирующие с полюсами, выполненные из постоянных магнитов с тангенциальным намагничиванием, при этом магнитным планкам придана трапециевидная форма поперечного сечения, широкое основание которых обращено к поверхности желоба сегмента, кроме того, с узким основанием каждой магнитной планки контактирует немагнитный клин, выполненный в виде полосы из немагнитного материала, жестко скрепленный с контактирующими с ним сторонами полюсов, при этом внешняя поверхность, образованная клиньями и полюсами, обращенная к цапфе, выполнена цилиндрической с образованием рабочего зазора с поверхностью цапфы, кроме того, на поверхности полости корпуса размещена упругая прокладка, кроме того, в объеме сегментов втулки выполнена система сообщающихся каналов, сообщенная с патрубками для ввода сжатого воздуха, выполненными с возможностью подачи сжатого воздуха от внешнего источника, при этом выходные отверстия системы сообщающихся каналов сообщены с рабочим зазором через радиальные питающие отверстия, проходящие через сегменты втулки и полюса. При этом упругая прокладка выполнена в виде сегментов цилиндрической втулки, содержащей пластину с продольными гофрами, заполненными привулканизированным слоем резины или полиуретана. Кроме того, магнитные планки выполнены из сплава неодим-железо-бор. При этом магнитные планки и полюса скреплены клеем с сегментами втулки. Кроме того, цапфа выполнена полой и снабжена внутренним силовым каркасом. Кроме того, поверхность цапфы, обращенная к цилиндрической поверхности втулки, покрыта слоем высокоэлектропроводного материала, например меди, и выполнена с высокой чистотой поверхности.

Сопоставительный анализ существенных признаков предлагаемого технического решения и существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом существенные признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак, указывающий, что в радиальном подшипниковом узле «использован внешний источник сжатого воздуха», позволяет организовать газостатический подшипник и обеспечить надежный запуск турбомашины.

Признак, указывающий, что «сегменты втулки выполнены из немагнитного материала в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями», обеспечивает независимость упругих перемещений каждого сектора газостатического и магнитного подшипников в зависимости от распределения нагрузки по поверхности подшипника, что гарантирует необходимый радиальный зазор в радиальном подшипниковом узле при монтаже и в рабочем состоянии.

Признаки, указывающие, что клинья выполнены «в виде Т-образных планок с возможностью скрепления с корпусом, при этом контактирующие боковые кромки клиньев и сегментов втулки выполнены с возможностью зацепления последних первыми», обеспечивают монтажный радиальный зазор и удержание сегментов подшипника от тангенциального перемещения.

Признаки, указывающие, что «на поверхности желоба каждого сегмента втулки, обращенной к цапфе, выполненной из немагнитного материала, зафиксированы полюса, выполненные в виде планок из материала с высокой магнитной проницаемостью, между которыми размещены магнитные планки, контактирующие с полюсами, выполненные из постоянных магнитов с тангенциальным намагничиванием», обеспечивают возможность использования электродинамической силы для поддержания цапфы, т.е. позволяют дополнительно к газостатическим силам обеспечить электродинамические силы отталкивания при вращении цапфы без прилипания сегментов постоянных магнитов к цапфе. Это повышает несущую способность и жесткость радиального подшипникового узла.

Признаки, указывающие, что «магнитным планкам придана трапециевидная форма поперечного сечения, широкое основание которых обращено к поверхности желоба сегмента», обеспечивают направление основной части магнитного потока в зону рабочего зазора радиального подшипникового узла для получения значительных электродинамических сил.

Признаки, указывающие, что «с узким основанием каждой магнитной планки контактирует немагнитный клин, выполненный в виде полосы из немагнитного материала, жестко скрепленный с контактирующими с ним сторонами полюсов, при этом внешняя поверхность, образованная клиньями и полюсами, обращенная к цапфе, выполнена цилиндрической», обеспечивают формирование рабочего зазора с поверхностью цапфы, а также обеспечивают гладкую цилиндрическую поверхность газового подшипника.

Признак, указывающий, что «на поверхности полости корпуса размещена упругая прокладка», обеспечивает необходимую жесткость упругой подложки узла в рабочем состоянии и, соответственно, возможность упругого автоматического регулирования рабочего зазора газостатического подшипника, тем самым предотвращает заклинивание цапфы в подшипнике.

Признак, указывающий, что «в объеме сегментов втулки выполнена система сообщающихся каналов, сообщенная с патрубками для ввода сжатого воздуха, выполненными с возможностью подачи сжатого воздуха от внешнего источника, при этом выходные отверстия системы сообщающихся каналов через радиальные питающие отверстия, проходящие через сегменты втулки и сегменты постоянных магнитов сообщены с рабочим зазором», позволяет организовать подачу газа в смазочный зазор газостатического подшипника и минимальную деформацию зазора в нем при высоких давлениях наддува.

Признак, указывающий, что «упругая прокладка выполнена в виде сегментов цилиндрической втулки, содержащей пластину с продольными гофрами, заполненными привулканизированным слоем резины или полиуретана», обеспечивает повышение устойчивости роторов на таких узлах к «полускоростному вихрю» за счет демпфирования слоем резины или полиуретана.

Признак, указывающий, что «магнитные планки выполнены из сплава неодим-железо-бор», обеспечивает возникновение значительных электродинамических сил, обусловленных взаимодействием вихревых токов, наведенных в цапфе магнитным полем магнитных планок с полем этих планок, что повышает несущую способность и жесткость радиального подшипникового узла.

Признак, указывающий, что в радиальном подшипниковом узле «магнитные планки и полюса скреплены клеем с сегментами втулки», обеспечивает их монолитность с сегментами втулки и тем самым обеспечивает работоспособность конструкции.

Признак, указывающий, что «цапфа выполнена полой и снабжена внутренним силовым каркасом», способствует снижению массы и массовых моментов инерции ротора турбомашины, что ведет к уменьшению динамических нагрузок от гироскопического момента при вибрации корпуса турбомашины, а также улучшает динамические характеристики ротора при пуске и остановке турбомашины.

Признак, указывающий, что «поверхность цапфы, обращенная к цилиндрической поверхности втулки, покрыта слоем высокоэлектропроводного материала, например меди, и выполнена с высокой чистотой поверхности», обеспечивает увеличение вихревых токов и тем самым электродинамических сил.

На фиг.1 показан продольный разрез радиального подшипникового узла, а на фиг.2, фиг.3 - поперечные разрезы по его средней плоскости и по радиальным питающим отверстиям соответственно.

На чертежах показаны корпус 1, втулка 2, цапфа 3, клинья 4, полюса 5, магнитные планки 6, немагнитные клинья 7, рабочий зазор 8, упругая прокладка 9, продольные гофры 10, осевые 11 и тангенциальные 12 каналы, патрубки 13, радиальные отверстия 14, заглушка 15, крышка 16, штуцеры 17 и уплотнительные кольца 18, 19.

Радиальный подшипниковый узел включает полый корпус 1, в полости которого размещена втулка 2, выполненная из сегментов, и цапфу 3, размещенную с возможностью вращения в полости втулки 2. Сегменты втулки 2 выполнены из немагнитного материала, например нержавеющей немагнитной стали или титана, в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями 4, выполненными в виде Т-образных планок, скрепленных с корпусом 1. Контактирующие боковые кромки клиньев 4 и сегментов втулки 2 выполнены с возможностью зацепления последних первыми. На поверхности каждого сегмента втулки 2, обращенной к цапфе 3, выполненной из немагнитного материала, равномерно по окружности расположены полюса 5, выполненные в виде планок из материала с высокой магнитной проницаемостью (например, из сплава 48 КНФ), между которыми размещены магнитные планки 6, контактирующие с полюсами 5. Магнитные планки 6 выполнены, например, из материала неодим-железо-бор и по всей осевой длине намагничены в тангенциальном направлении (вдоль окружности). Магнитные планки 6 имеют трапециевидную форму поперечного сечения, их широкое основание обращено к поверхности желоба сегмента втулки 2, а с узким основанием каждой магнитной планки 6 контактирует немагнитный клин 7, выполненный в виде полосы из немагнитного материала, жестко и заподлицо скрепленный с двумя соседними полюсами 5. При этом поверхность, образованная немагнитными клиньями 7 и полюсами 5, обращенная к цапфе 3, выполнена цилиндрической с образованием рабочего зазора 8 с поверхностью цапфы 3.

На поверхности полости корпуса 1 размещена упругая прокладка, выполненная в виде сегментов цилиндрической втулки 2, содержащих упругую прокладку 9 с продольными гофрами 10, заполненными привулканизированным слоем резины или полиуретана.

В объеме сегментов втулки 2 выполнена система сообщающихся осевых 11 и тангенциальных 12 каналов, сообщенная с патрубками 13 для подвода сжатого воздуха, выполненными с возможностью подачи сжатого воздуха от внешнего источника (на чертеже не показан). Выходные отверстия системы сообщающихся каналов 11 и 12 сообщены с рабочим зазором 8 через радиальные питающие отверстия 14, проходящие через сегменты втулки 2 и полюса 5. Осевые каналы 11 снабжены заглушкой 15, а тангенциальные каналы 12 - крышкой 16. В патрубке 13 установлен штуцер 17 с уплотнительными кольцами 18, 19.

Наружную поверхность цапфы 3 покрывают слоем меди и обрабатывают с высокой чистотой.

Изготавливают и собирают радиальный подшипниковый узел следующим образом. В сегментах втулки 2 сверлят глухие осевые отверстия 11 и закрывают их заглушками 15 со стороны сверления. Фрезеруют тангенциальные каналы 12, сообщающиеся с осевыми каналами 11, и закрывают их крышками 16, скрепленными сваркой с сегментами втулки 2.

Диаметр осевых отверстий 11 сегмента втулки 2 должен быть минимальным, но суммарная площадь проходного сечения этих отверстий должна превышать суммарную площадь радиальных отверстий 14, проходящих через сегменты втулки 2 и полюса 5, в три-пять раз, а площадь проходного сечения тангенциального канала 12 сегмента втулки 2 должна быть больше или равна суммарной площади проходного сечения осевых отверстий 11 сегмента втулки 2, что позволит уменьшить деформации осевого рабочего зазора 8 от действия высокого давления газа в этих отверстиях и тангенциальных каналах 16.

На внутренней поверхности сегментов втулки 2 располагают по разметке равномерно по окружности полюса 5, имитаторы магнитных планок, устанавливают на соседние полюса 5 немагнитные клинья 7, приваривают их к полюсам и зачищают швы. Далее вместо имитаторов устанавливают на клей магнитные планки 6. Полученные комплекты полюсов 5, магнитных планок 6 и немагнитных клиньев 7 в сборе устанавливают на клей на внутренней поверхности сегментов втулки 2. Далее в полюсах 5 и в сегментах втулки 2 сверлят радиальные отверстия 14 до выхода в осевые каналы 11.

К корпусу 1 приклеивают пластины 9 упругих прокладок, которые деформируют с образованием кольцевых гофров 10, а на них приклеивают сегменты втулок 2, с торца вставляют клинья 4 между сегментами втулки 2 и фиксируют клинья 4, например, винтами. В каждый сегмент втулки 2 вкручивают штуцеры 17, имеющие канавки для установки уплотнительных колец 18, 19. Сегменты втулок 2 фиксируют технологическими клиньями и притиром притирают внутреннюю поверхность сегментов 2 до получения необходимого монтажного радиального зазора в подшипнике. Демонтируют технологические клинья, покрывают притертую поверхность антифрикционным покрытием, например, ВАП-2. Цапфу 3 покрывают слоем меди и обрабатывают с высокой степенью чистоты.

Радиальный подшипниковый узел работает следующим образом. Перед началом вращения цапфы 3 через отверстия патрубков 13 и штуцеры 17 в сегменты втулки 2 подают под высоким давлением смазывающий газ от внешнего компрессора. Этот газ поступает в тангенциальный канал 12 и затем распределяется по осевым каналам 11 сегментов втулки 2 и далее через радиальные питающие отверстия 14 в сегментах втулки 2 и полюсах 5 поступает в рабочий зазор 8. В результате этого цапфа 3 всплывает на газовом смазочном слое. При вращении цапфы 3 дополнительно возникают электродинамические силы, обусловленные взаимодействием вихревых токов, наведенных магнитным полем магнитных планок 6 в цапфе 3, с этим полем. Радиальные составляющие электродинамических сил действуют отталкивающим образом между цапфой 3 и полюсами 5. Эти силы суммируются с силами газостатического подшипника, действующими на цапфу 3. В результате увеличивается радиальный рабочий зазор 8 в подшипниковом узле за счет деформации гофры 10 и пластины 9 упругой прокладки. При этом снижается трение в радиальном подшипниковом узле ввиду увеличения радиального зазора. Пластина 9 упругой прокладки и гофр 10 позволяют компенсировать как температурную деформацию цапфы 3, так и ее радиальную деформацию от действия центробежных сил при вращении. Тангенциальная составляющая электродинамической силы оказывает тормозящее воздействие, но она незначительна. С увеличением линейной скорости на поверхности цапфы 3 отталкивающая составляющая электродинамической силы увеличивается, а тормозящая - уменьшается.

Магнитная и газостатическая части предлагаемого радиального подшипникового узла автоматически реализуют отрицательную обратную связь по отклонению цапфы 3 от соосного положения относительно точки подвижного равновесия цапфы 3 в радиальном подшипниковом узле и не требуют дополнительных устройств (датчиков отклонения и быстродействующих регуляторов).

1. Радиальный подшипниковый узел, включающий полый корпус, в полости которого размещена втулка, выполненная из сегментов, и цапфу, размещенную с возможностью вращения в полости втулки, при этом корпус снабжен патрубками для ввода сжатого воздуха с возможностью его подвода в рабочий зазор между поверхностью полости втулки и поверхностью цапфы, отличающийся тем, что использован внешний источник сжатого воздуха, при этом сегменты втулки выполнены из немагнитного материала в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями, выполненными в виде Т-образных планок с возможностью скрепления с корпусом, при этом контактирующие боковые кромки клиньев и сегментов втулки выполнены с возможностью зацепления последних первыми, кроме того, на поверхности желоба каждого сегмента втулки, обращенной к цапфе, выполненной из немагнитного материала, зафиксированы полюса, выполненные в виде планок из материала с высокой магнитной проницаемостью, между которыми размещены магнитные планки, контактирующие с полюсами, выполненные из постоянных магнитов с тангенциальным намагничиванием, при этом магнитным планкам придана трапециевидная форма поперечного сечения, широкое основание которых обращено к поверхности желоба сегмента, кроме того, с узким основанием каждой магнитной планки контактирует немагнитный клин, выполненный в виде полосы из немагнитного материала, жестко скрепленный с контактирующими с ним сторонами полюсов, при этом внешняя поверхность, образованная немагнитными клиньями и полюсами, обращенная к цапфе, выполнена цилиндрической с образованием рабочего зазора с поверхностью цапфы, кроме того, на поверхности полости корпуса размещена упругая прокладка, кроме того, в объеме сегментов втулки выполнена система сообщающихся каналов, сообщенная с патрубками для ввода сжатого воздуха, выполненными с возможностью подачи сжатого воздуха от внешнего источника, при этом выходные отверстия системы сообщающихся каналов сообщены с рабочим зазором через радиальные питающие отверстия, проходящие через сегменты втулки и полюса.

2. Радиальный подшипниковый узел по п.1, отличающийся тем, что упругая прокладка выполнена в виде сегментов цилиндрической втулки, содержащей пластину с продольными гофрами, заполненными привулканизированным слоем резины или полиуретана.

3. Радиальный подшипниковый узел по п.1, отличающийся тем, что магнитные планки выполнены из сплава неодим-железо-бор.

4. Радиальный подшипниковый узел по п.1, отличающийся тем, что магнитные планки и полюса скреплены клеем с сегментами втулки.

5. Радиальный подшипниковый узел по п.1, отличающийся тем, что цапфа выполнена полой и снабжена внутренним силовым каркасом.

6. Радиальный подшипниковый узел по п.1, отличающийся тем, что поверхность цапфы, обращенная к цилиндрической поверхности втулки, покрыта слоем высокоэлектропроводного материала, например меди, и выполнена с высокой чистотой поверхности.



 

Похожие патенты:

Изобретение относится к подшипникам скольжения с рабочей поверхностью из силицированного графита, применяемым в электро- и гидромашинах с валами большого диаметра, преимущественно, в главных циркуляционных насосных агрегатах на АЭС.

Изобретение относится к эластичному подшипнику скольжения, используемому в опорах крупногабаритных, тяжелых и вращающихся элементов, и может использоваться, например, в опоре башни на борту судна, подъемного крана, моста и т.п., где внешние воздействия оказывают на подшипники большие динамические нагрузки.

Изобретение относится к области машиностроения, а именно к опорам скольжения. .

Изобретение относится к области машиностроения, а именно к турбокомпрессорам, например, для наддува двигателей внутреннего сгорания, в частности к радиальным подшипникам скольжения, и позволяет при его использовании повысить КПД путем улучшения работы радиальных подшипников скольжения.

Изобретение относится к подшипникам скольжения для цилиндрических опор большого диаметра, в частности для тяжелонагруженных мельниц реверсивного вращения, применяемых на рудообогатительных предприятиях или на угледробильных мельницах больших тепловых электростанций.

Изобретение относится к машиностроению, преимущественно к турбиностроению, и может быть использовано в качестве самоустанавливающихся подшипников роторов турбин, работающих при высокой частоте вращения и высокой удельной нагрузке.

Изобретение относится к опоре для защиты сооружений, которая выполнена в виде маятниковой скользящей опоры. .

Изобретение относится к области компрессоростроения и может быть использовано в воздушных центробежных компрессорных машинах, где отсутствуют концевые гидродинамические уплотнения, выполняющие роль демпфера.

Изобретение относится к области турбостроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокого давления быстроходных паровых турбин.

Изобретение относится к области машиностроения, а именно к самоустанавливающимся колодочным подшипникам, и может быть использовано в конструкциях быстроходных компрессоров, газовых и паровых турбин, насосов и других роторных машинах.

Изобретение относится к подшипнику, вкладышу и способу формирования механизма перераспределения масла на вкладыше опорного подшипника скольжения. Подшипник (40) содержит кольцо (42), имеющее по меньшей мере одну удерживающую головку, по меньшей мере один вкладыш (44), расположенный в кольце (42) и имеющий нижнюю выемку, выполненную с возможностью помещения по меньшей мере одной удерживающей головки, механизм распределения масла, выполненный с возможностью введения масла на переднем крае по меньшей мере одного вкладыша (44) с обеспечением протекания к его заднему краю, и механизм перераспределения масла на по меньшей мере одном вкладыше (44), выполненный с возможностью перераспределения масла от заднего края по меньшей мере одного вкладыша (44) к его переднему краю. Передний край представляет собой первый край, а задний край представляет собой второй край по меньшей мере одного вкладыша (44), встречающийся при перемещении вдоль окружности кольца (42) в направлении вращения ротора, поддерживаемого по меньшей мере одним вкладышем (44). Технический результат: создание усовершенствованного подшипника, обеспечивающего лучшее масляное перераспределение без потребности во внешнем источнике энергии, уменьшая таким образом масляное голодание на вкладышах и увеличивая при этом грузоподъемность подшипника. 3 н. и 17 з.п. ф-лы, 16 ил.

Изобретение относится к подшипнику, приспособлению для удержания вкладыша и способу удержания по меньшей мере одного вкладыша в подшипнике. Подшипник содержит кольцо, имеющее по меньшей мере удерживающую головку (44), по меньшей мере один вкладыш (34), который расположен в кольце, имеет нижнюю выемку (42), выполненную с возможностью помещения по меньшей мере удерживающей головки (44), и выполнен с возможностью поворота на по меньшей мере удерживающей головке, и приспособление для удержания, выполненное с возможностью удержания по меньшей мере одного вкладыша (34) в заданном объеме в кольце. Приспособление для удержания выполнено с возможностью приложения удерживающей силы к указанному по меньшей мере одному вкладышу (34), в дополнение к силе, действующей между удерживающей головкой (44) и по меньшей мере одним вкладышем (34), при этом удерживающая сила действует по существу в радиальном направлении кольца, от центра кольца. Технический результат: создание подшипника с присоблением для удержания вкладыша, обеспечивающего надежное удержание вкладыша при высоких скоростях и стабильную работу, что увеличивает срок службы и грузоподъемность. 4 н. и 16 з.п. ф-лы, 14 ил.

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок, работающих как по замкнутому, так и по открытому циклам, при высоких давлениях наддува в подшипниках и градиентах температур. Радиальный подшипниковый узел включает полый корпус (1), в полости которого размещена втулка (2), выполненная из сегментов, и цапфу (3), размещенную с возможностью вращения в полости втулки (2). Сегменты втулки (2) выполнены из немагнитного материала в виде желобообразных удлиненных элементов одинаковой угловой длины и отделены друг от друга клиньями (4), выполненными в виде Т-образных планок, скрепленных с корпусом (1). На поверхности желоба каждого сегмента втулки (2), обращенной к цапфе (3), выполненной из немагнитного материала, равномерно по окружности расположены, по крайней мере, две магнитные планки (6, 7), выполненные из постоянных магнитов, между которыми размещена магнитная планка (5), контактирующая с планками (6, 7). Внешняя поверхность, образованная планками (5, 6, 7), обращенная к цапфе (3), выполнена цилиндрической с образованием рабочего зазора (8) с поверхностью цапфы (3). На поверхности полости корпуса (1) размещена упругая прокладка (9) с продольными гофрами (10). В объеме сегментов втулки (2) выполнена система сообщающихся каналов, сообщенная с патрубками для ввода сжатого воздуха от внешнего источника, при этом выходные отверстия системы сообщены с рабочим зазором (8) через радиальные питающие отверстия (14), проходящие через сегменты втулки (2) и планки (5, 6, 7). Технический результат: обеспечение высокой несущей способности радиального подшипникового узла в рабочем режиме при уменьшении в нем потерь на трение, надежный запуск турбомашины, а также повышение устойчивости ротора к «полускоростному вихрю» и снижение деформации зазора в газостатическом подшипнике при высоких давлениях наддува. 5 з.п. ф-лы, 3 ил.

Изобретение относится к гидродинамическим подшипникам, в частности, для тяжелых роторов в силовых установках. Гидродинамический сегментный подшипник содержит несколько подушек (131), распределенных по окружности вокруг ротора большой паровой турбины. Каждая подушка (131) установлена на платформу, отделяющую подушку от цилиндрического сепаратора, соединенного, в свою очередь, с полом зала, вмещающего турбину. Область контакта между по меньшей мере одной из нескольких подушек (131) и платформой, на которой установлена по меньшей мере одна из нескольких подушек (131), образована таким образом, чтобы содержать по меньшей мере две зоны с разной кривизной для увеличения жесткости области контакта в случае относительного перемещения между подушкой (131) и платформой. По меньшей мере одна из нескольких подушек (131) имеет в зоне контакта между подушкой (131) и платформой первый радиус кривизны (R1) вне центра зоны контакта и второй радиус кривизны (R2) в центре зоны контакта, причем второй радиус (R2) превышает первый радиус кривизны (R1) в 5-10 раз. Технический результат: изменение жесткости подшипника и, следовательно, увеличение устойчивости подшипника и его опорной конструкции. 9 з.п. ф-лы, 6 ил.

Изобретение принадлежит к области машиностроения и может быть использовано в устройствах, которые содержат вал, который вращается, и хотя бы один опорный подшипник скольжения, который может быть как нереверсивным, так и реверсивным. Такими устройствами могут быть газовые или паровые турбины, компрессоры, центробежные насосы и др. Способ включает подачу масла к вставным деталям и в емкости, которые находятся в корпусе, обеспечение вращения вала, блокировку движения каждой из вставных деталей, в любом направлении вращения, передвижение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, обеспечение перетекания масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе. Максимальное расстояние передвижения каждой из вставных деталей в направлении к поверхности вала обеспечивают не больше 0,002 D и не меньше 0,0008 D. Динамическую вязкость масла обеспечивают в пределах от 4 мкПа·с до 50 мкПа·с при скорости вращения вала не меньше 500 об/мин и не больше 60000 об/мин. Шероховатость контактирующих поверхностей вала и каждой из вставных деталей соответственно должна находиться в пределах от Ra0,8 до Ra0,2. Для каждой из емкостей, что находятся в корпусе, под каждой из вставных деталей, и/или в каждой вставной детали, и которых должно быть не меньше двух, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости при максимальном объеме масла, который может вместить отдельная емкость, a So - площадь отверстия у вставной детали или общая площадь отверстий у вставной детали. Технический результат: увеличение ресурса работы подшипника и механической нагрузки на подшипник, не приводя при этом к усложнению конструкции подшипника, по сравнению с конструкциями других опорных подшипников скольжения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, в частности к опорам с расположением подшипника качения между двумя вращающимися роторами. Самоустанавливающийся многосегментный подшипник скольжения состоит из корпуса, внешнего (1) и внутреннего (3) колец, сепаратора (4), в прямоугольные окна которого установлены сегменты (2), и маслоподводящих отверстий (6). Внутреннее кольцо (3) содержит упорные буртики (5), обеспечивающие отсутствие осевого перемещения сегментов. Сегменты (2) одной стороной контактируют с возможностью скольжения по рабочей поверхности внешнего кольца (1), а противоположной стороной контактируют с возможностью скольжения по рабочей поверхности внутреннего кольца (3). Технический результат: обеспечение безотказной работы подшипника в условиях переменных нагрузок, 3 з.п. ф-лы, 5 ил.

Изобретение относится к области турбо- и компрессоростроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокооборотных машин. Опорный сегментный подшипник скольжения содержит корпус с каналами подвода смазки и сливной полостью и с размещенным в нем вкладышем (2) из двух полувкладышей с кольцевой канавкой (3) и каналами (4) индивидуального подвода смазки в них к размещенным в плавающем сепараторе (5) самоустанавливающимся сегментам (7) с установочными шипами и с распределительными осевыми канавками для подвода смазки на входных и слива масла на выходных кромках, одна из которых, у входной кромки, соединена радиальными каналами с полостью под сегментом (7). Индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке (13) сегменты (7), которые размещены в окнах сепаратора (5) с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента (7) в пределах, соответствующих возможности перемещения цапфы вала (8) в пределах диаметрального зазора между цапфой вала (8) и внутренней расточкой подшипника. Технический результат: повышение виброустойчивости и несущей способности опорного сегментного подшипника скольжения путем повышения его демпфирующих свойств, снижение расхода смазки и оптимизация теплового режима работы подшипника. 4 ил.

Изобретение относится к деталям машин, а именно, к конструкциям радиальных и упорных газостатических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Подшипник газостатический содержит выполненный в виде кольца корпус (1), имеющий, как минимум, одну колодку (3), на опорной поверхности которой выполнены две канавки, имеющие возможность соединения через выполненные в колодке (3) дроссельные отверстия с системой подачи смазки в смазочный зазор подшипника, образованный валом и опорной поверхностью колодки (3), одна (10) из канавок выполнена прямолинейной и расположена со стороны входной кромки опорной поверхности колодки (3), а вторая (11) расположена со стороны выходной кромки опорной поверхности колодки (3) и имеет серповидную или дугообразную форму. На внутренней образующей поверхности корпуса (1) выполнена кольцевая канавка, а на колодке (3) имеется цапфа с отверстием. Монтаж колодки (3) на корпусе (1) осуществлен посредством пальца (6), введенного во втулки (5), установленные в отверстиях корпуса (1), выполненных в области кольцевой канавки, и проходящего через отверстие цапфы (4), размещенной с зазором в кольцевой канавке корпуса (1). При этом на пальце (6) выполнен кольцевой выступ, имеющий сферическую форму, который расположен с зазором в отверстии цапфы. Технический результат: повышение грузоподъемности подшипника при минимальном расходе смазки. 5 з.п. ф-лы, 5 ил.
Наверх