Способ получения наноразмерных слоев углерода со свойствами алмаза


 


Владельцы патента RU 2532749:

Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук (RU)

Изобретение относится к нанесению покрытий путем проведения неравновесных процессов распыления в вакууме ионным пучком. Может использоваться для создания автоэмиссионных катодов, упрочнения рабочих кромок режущего инструмента, в частности хирургического, защиты от химически агрессивных сред и повышенных температур, требующих химической инертности и биосовместимости покрытий, высокой твердости и низкого трения, высокой теплопроводности покрытий. Графитовую мишень распыляют пучком ионов и кондесируют пары углерода на подложке. Рассеяние части ионов наращиваемым слоем ведут при касательном падении ионов на поверхность подложки. Атомами отдачи на ростовой поверхности слоя создаются сжимающие напряжения 10 ГПа, достаточные для образования алмазной фазы. Обеспечивается повышение эффективности процесса благодаря оптимизации технологических параметров достижения пересыщения атомов углерода и получение наноразмерных слоев, обладающих высокой твердостью, химической инертностью, низким трением, высокой теплопроводностью, низкой работой выхода. 1 з.п. ф-лы, 5 ил., 1 пр.

 

Изобретение относится к технике нанесения покрытий путем проведения неравновесных процессов распыления в вакууме ионным пучком и может быть использовано для создания автоэмиссионных катодов,упрочнения рабочих кромок режущего инструмента, в частности хирургического, защиты от химически агрессивных сред и повышенных температур, требующих химической инертности и биосовместимости покрытий, высокой твердости и низкого трения, высокого электросопротивления и теплопроводности покрытий.

Известен способ нанесения аморфного углеводородного покрытия (патент RU 2382116, С23С 14/16, 2008), обладающего высокой твердостью, химической инертностью, низким трением, высоким электросопротивлением и теплопроводностью, с использованием плазменного катода, содержащего полый катод, поджигающий электрод и анодную сетку. Формирование покрытия осуществляется зажиганием несамостоятельного импульсно-периодического электрического разряда при подаче импульсно-периодического напряжения между стенками плазменной камеры и анодом в смеси химически инертного газа аргона Ar и углеводородсодержащего газа C2H2 ацетилена.

Общим недостатком способа осаждения аморфных алмазоподобных углеводородных покрытий является необходимость активируемого плазмой электрического разряда разложения газообразных токсичных соединений углеводородсодержащего газа C2H2. Кроме того, недостатком является сложность многоступенчатой газоразрядной структуры, использование импульсных источников питания и, как следствие, низкая энергоэффективность и надежность, сложность управления процессом нанесения покрытия и сложность технического решения в совокупности.

Известен способ получения алмазоподобных слоев (патент RU 1610949, C30C 23/02, 1988), который включает распыление мишени из графита импульсным TEA CO2-лазером с плотностью мощности излучения ~ 108 Вт/см2. Энергия в импульсе 1,3 Дж. Пары осаждают на подложку, расположенную от мишени на расстоянии не менее 10-3 Па. Недостаток данного способа состоит в низком качестве покрытий (покрытия рыхлые, сильно дефектные), недостаточной производительности и невозможности нанесения однородных покрытий на большие площади, трудности воспроизведения режимов осаждения и крайне низком коэффициенте использования испаряемого материала (графита).

Известны способы получения покрытий - с алмазоподобной структурой (патент RU 2105379, C23C 16/26, 1994), защитных покрытий (патент RU 2048607, C23C 16/26, 1989), наноструктурированных алмазных покрытий (патент RU 2456387, C23C 16/513, 2010), алмазного покрытия из паровой фазы (патент RU 2032765, C23C 14/00, 1988), слоев алмазоподобного углерода (патент RU 2205894, C23C 16/26, 1998). В известных способах нанесения покрытий на подложку используется плазма СВЧ-разряда либо в режиме электронного циклотронного резонанса в атмосфере рабочего газа или смеси газов, либо химическим осаждением из газовой фазы в СВЧ-плазме, либо из тепловой плазмы на постоянном токе с радикализацией газообразного углеродного соединения в плазменной струе и воздействием радикализованной плазменной струи на обрабатываемую подложку с образованием алмазного покрытия. При этом используется метан CH4 или другой летучий углеводород в смеси с водородом или парами воды, различные смеси на основе монооксида углерода CO, в том числе с добавками инертных газов. На подложку подают постоянный отрицательный электрический потенциал, за счет которого она равномерно бомбардируется ионами из СВЧ-плазмы и наблюдается рост равномерной по толщине и структуре пленки. В случае осаждения из газовой фазы в вакуумно-плотную камеру, снабженную системой регулировки подачи газа-генератора углерода (CH4, CO, C2H2, C2H4) и водорода H2, помещается изделие из вольфрама, в газовую форсунку СВЧ-плазмотрона подается смесь газов CH4:H2=20:1 и зажигается СВЧ-разряд так, чтобы образующаяся плазма вблизи поверхности изделия имела температуру 3000-5000 К. После поджига плазмы и установления необходимых параметров, процесс продолжают в течение 12 ч.

Недостатками известных способов является сложность управления и регулирования пространственным распределением магнитных полей, необходимость применения и трудность подготовки и поддержания необходимого состава газовой смеси, технические сложности, связанные с созданием магнитных полей объемными соленоидами, применение сложных конструкций генераторов СВЧ-энергии и ее подвода и необходимость зажигания СВЧ-разряда на частоте резонансного поглощения углеводородов. Кроме того, высокие температуры ограничивают и сужают номенклатуру обрабатываемых поверхностей.

Известен способ нанесения твердого углеродного покрытия на лезвие и бритвенный блок (патент RU 2238185, С23С 14/06, 1995), в котором графитовая мишень распыляется катодным пятном вакуумного дугового разряда, благодаря чему образуется интенсивный поток плазмы ионов углерода, который осаждается на лезвие, имеющее отрицательный потенциал. В результате образуется покрытие из аморфного алмаза толщиной 0,1 мкм.

Существенным недостатком является нестабильность катодного пятна, низкая энергоэффективность, невысокая эффективность испарения углерода и, как следствие, недостаточное воспроизведение свойств покрытия.

Известен способ выращивания алмазоподобных покрытий распылением ионным пучком в варианте с дополнительным ионным источником Финкельштейна со стеклянной вакуумной камерой (Семенов А.П. Пучки распыляющих ионов: получение и применение. Улан-Удэ: Изд-во БНЦ СО РАН, 1999. 207 с.). Графитовая мишень распылялась пучком ионов Ar+ плотностью тока 0,5-1 мА/см2, энергией до 10 кэВ при давлении 7·10-5 Па. Растущие слои осветлялись вспомогательным пучком ионов Ar+ или Ar+ и CH4+ энергией <2 кэВ и током 0,2-0,5 мА. Скорость наращивания слоев на расстоянии 15 см от мишени с учетом условия N1/N2<1, где N1 и N2 число атомов углерода, соответственно покидающих и падающих на ростовую поверхность, составляла 8,3·10-3-1,7·10-2 нм/с. Более значительные скорости роста получены в парах бензола при сравнительно высоком давлении.

Недостатком способа является сложность процессов распыления и осветления, состоящих в необходимости использования дополнительного ионного пучка. В этих условиях трудно обеспечить оптимизацию технологических параметров и реализовать пересыщение атомов углерода как необходимого условия синтеза алмаза, поскольку энергия ионов, падающих на растущий слой, должна быть достаточно низкой, чтобы не допустить каскада атомных смещений, затрудняющих образование устойчивых sp3 связанных областей и приводящих к появлению энергетически более выгодной структуры sp2 связанных атомов углерода.

Наиболее близким техническим решением является способ нанесения покрытия (патент RU 2052540, С23С 14/46, 1992). По которому, для упрочнения режущего инструмента, увеличения износостойкости трущихся деталей, защиты от агрессивных сред, повышенных температур, на поверхность изделия в вакууме наносят покрытие распылением мишени ионным пучком инертного или химически активного вещества, или комбинацией этих веществ. Кроме того, производят предварительную обработку этим же ионным пучком поверхности изделия, притом во время нанесения покрытия на поверхность изделия часть ионного пучка (до 10 процентов тока пучка) направляют непосредственно на обрабатываемую поверхность изделия, обеспечивая непрерывную его очистку.

К характерным недостаткам способа нанесения покрытия, принятого в качестве прототипа изобретения, относится невысокая эффективность процесса осаждения из-за перераспыления осаждаемых паров при наклонном падении ионного пучка (угол падения 45-60°), при котором коэффициент распыления оказывается сравнительно высоким. Кроме того, в этих условиях практически невозможно реализовать пересыщение атомов углерода как необходимого условия синтеза алмаза и обеспечить оптимизацию технологических параметров ввиду высокой энергии атомов отдачи выбиваемых при наклонном падении ионов под углом 45-60°, преодолевающих поверхностный потенциальный барьер. По сути, наблюдается распыление поверхности.

Изобретение позволяет устранить указанные недостатки прототипа, повысить эффективность процесса благодаря касательному (скользящему) падению ионного пучка на плоскую ростовую поверхность. В этом случае атомы отдачи имеют достаточную энергию для пересыщения и недостаточную, чтобы преодолеть потенциальный барьер и выйти в вакуум. В процессе распыления одним широким ионным пучком при наклонном падении ионов на графитовую мишень и скользящем падении ионов на ростовую поверхность достигаются необходимые условия выращивания тонких слоев алмаза. При этом процесс проводится при больших пересыщениях, обеспечивающих высокую вероятность образования алмазных зародышей, и в условиях предотвращения образования как графитовой структуры, так и перехода образовавшейся алмазной фазы в графит. Условия нанесения пленок таковы, что основным фактором является рассеяние падающих ионов растущей пленкой, благодаря которому атомами отдачи на ростовой поверхности пленки могут создаваться сжимающие напряжения ~10 ГПа, достаточные для образования алмазной фазы. В таком процессе участвуют два потока атомов: с одной стороны, поток выбитых атомов углерода, падающих на подложку, где в результате их наращивания происходит движение ростовой поверхности с некоторой скоростью, определяемой плотностью потока, с другой, поток атомов углерода отдачи, возникающих от рассеяния ионов в глубине растущей пленки и движущихся к ее поверхности, создавая некоторую предельную концентрацию междоузельных атомов, определяющих величину напряжений в растущем слое, соответствующую области стабильности алмазной фазы. Указанный характер распыления и облучения качественно и существенно отличен от такового в прототипе.

Процесс распыления ионным пучком осуществлялся по схеме фиг.1. Ускоренным пучком ионов 1 выбивались атомы углерода 2 из графитовой мишени 3. Распыленные атомы 2 конденсировались на подложке 4. Температура подложек задавалась подводом мощности 5 от специального нагревателя. Подложка 4 устанавливалась вдоль направления падения пучка ионов, притом часть ионов пучка при скользящем падении облучала непрерывно наращиваемый углеродный слой. Фазовый состав и морфология поверхности полученных наноразмерных углеродных покрытий исследовались с помощью дифракции рентгеновских лучей (дифрактометр Rigaku с Cukα-излучением), инфракрасной спектроскопии (спектрометр UR-20, интервал волновых чисел 700-4000 см-1), комбинационного рассеяния света (использовалась линия 488 нм аргонового лазера, спектрометр Т6400ТА of Dilor-Jobin Yvon-spex и спектрометр ДФС-24, для возбуждения использовали линию гелий-неонового лазера, λ=632,8 нм) и атомно-силовой микроскопии (Digital Instruments, Nanoscope 3, contact mode, Si3N4 type). Исследованы автоэмиссионные свойства полученных тонких пленок углерода.

Возможность осуществления изобретения с использованием признаков способа, включенных в формулу изобретения, подтверждается примером его практической реализации.

Пример. Процесс выращивания наноразмерных слоев углерода со свойствами алмаза осуществлялся распылением мишени 3 из графита марки 99,99 пучком ионов 1 смеси аргона и водорода. Распыленные атомы углерода осаждали на кремниевые подложки 4 при давлении 6,6·10-3 Па и температуре ростовой поверхности ≤ 673 К. Ток ионного пучка 5-10 мА, энергия ионов 4 кэВ. Часть распыляющих ионов пучка наклонно под углом ~ 45° падает на графитовую мишень 3 и часть ионов касательным образом под углом 85-90° контактирует с ростовой поверхностью подложки 4.

Проведенные рентгенофазовые исследования характеризуют выращенные покрытия как рентгеноаморфные. В спектре комбинационного рассеяния присутствуют полосы поглощения при 1330 см-1 и 1600 см-1, характерные для связей в алмазе (фиг.2). Результаты исследования поверхности аморфных углеродных слоев толщиной 50 нм (фиг.3 и 4), свидетельствуют о том, что в низкотемпературной области наблюдается глобулярная стадия роста с поверхностным размером частиц 50 нм и высотой 5 нм. Средняя высота неровностей поверхности составляет 6,425 нм.

Электронные эмиссионные свойства полученных слоев исследовались методом измерения зависимости эмиссионного тока от напряженности приложенного электрического поля. Измерение эмиссионного тока выполнялось в вакууме ~ 1,3·10-4 Па при подаче импульсного напряжения частотой 50 Гц и длительностью импульса 30 мкс. Толщина покрытия ~ 50 нм, эмитирующая поверхность ~ 0,25 см2. Электрическое поле до ~ 5,6 кВ прикладывалось между кремниевой плоской подложкой и плоским анодным электродом. Протяженность межэлектродного вакуумного промежутка эмитирующая поверхность покрытия - анодный электрод составляет ~160 мкм. Для наноразмерных углеродных слоев, выращенных пучками заряженных частиц, обнаружена высокая эффективность автоэлектронной эмиссии, наблюдаемой при напряженности электрического поля с пороговым значением около 3·105 В/см, плотностью эмиссионного тока 1,2·10-5 А/см2, фиг.5. Из экспериментальной эмиссионной характеристики определена работа выхода электронов ~ 0,332 эВ.

Предложенный способ выращивания наноразмерных углеродных покрытий со свойствами алмаза характеризуется неограниченной возможностью получения слоев алмазоподобной структуры при низких температурах и давлениях, причем распылением ионным пучком достигнуты приемлемые для ряда технологических применений условия роста. Особенно выделяется управляемый синтез углеродных покрытий структуры алмаза в широкой области свойств, посредством управления параметрами и характеристиками ионного распыления, задающими высокое содержание углеродных фаз с sp3 валентной гибридизацией электронов.

1. Способ получения наноразмерных слоев углерода со свойствами алмаза, включающий распыление в вакууме ионным пучком графитовой мишени, конденсацию паров углерода на подложке и рассеяние части ионов наращиваемым слоем, контактирующим с ионным пучком, отличающийся тем, что рассеяние падающих ионов наращиваемым слоем ведут при касательном падении ионов на контактирующую с пучком плоскость подложки, при этом на ростовой поверхности атомами отдачи наращиваемого слоя создают сжимающие напряжения 10 ГПа, достаточные для образования алмазной фазы.

2. Способ по п.1, отличающийся тем, что при больших пересыщениях, обеспечивающих высокую вероятность образования алмазных зародышей, рассеяние ведут с углами падения ионов на подложку 85-90°.



 

Похожие патенты:
Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных сверхвысокочастотных фильтров.
Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов.

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям.
Изобретение относится к области технологии материалов для оптоэлектроники конструкционной оптики, которые могут быть использованы для изготовления оптических элементов ИК-техники.

Изобретение относится к материаловедению и может быть использовано в физике конденсированного состояния, приборостроении, микроэлектронике, термоэлектричестве для получения тонкопленочных образцов твердого раствора висмут-сурьма с совершенной монокристаллической структурой.

Изобретение относится к оптико-механической промышленности, в частности к оптическим материалам, применяемым в устройствах и приборах инфракрасной техники, и может быть использовано для изготовления защитных входных люков (окон), обеспечивающих надежное функционирование приборов.

Изобретение относится к технологии получения многокомпонентных полупроводниковых материалов. .

Изобретение относится к устройствам для получения твердых растворов карбида кремния с нитридом алюминия, используемых в производстве силовых, СВЧ- и оптоэлектронных приборов, работающих при высокой температуре и в агрессивных средах.

Изобретение относится к способу получения биоактивных кальций-фосфатных покрытий и может быть использовано при изготовлении ортопедических и зубных протезов. .

Изобретение относится к области технологии получения многокомпонентных полупроводниковых материалов и может быть использовано в электронной промышленности для получения полупроводникового материала - твердого раствора (SiC)1-x(AlN)x для создания на его основе приборов твердотельной силовой и оптоэлектроники, для получения буферных слоев (SiC) 1-x(AlN)x при выращивании кристаллов нитрида алюминия (AlN) или нитрида галлия (GaN) на подложках карбида кремния (SiC).

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический теплозащитный слой и дополнительный металлический жаростойкий подслой между основным подслоем и керамическим слоем.

Изобретение относится к области машиностроения. Способ получения защитного металлического покрытия на поверхности изделия из алюминия и сплавов на его основе включает размещение изделия в зоне обработки, создание вакуума в зоне обработки, очистку поверхности пучком ионов и осаждение металлического покрытия с одновременной подачей на изделие отрицательного напряжения смещения.
Изобретение относится к нанотехнологиям, в частности к методам осаждения наноразмерной пленки α-Al2O3 (0001) на металлические подложки α-Al2O3 (0001) в условиях сверхвысокого вакуума.

Данное изобретение относится к покрытию для режущего инструмента и способу его нанесения. Покрытие для режущего инструмента имеет по меньшей мере один слой, содержащий металлические компоненты, имеющие формулу AlxCr1-x, где x представляет собой атомную долю, удовлетворяющую 0≤x≤0,84, и содержит неметаллические компоненты, имеющие формулу O1-yZy, где Z представляет собой по меньшей мере один элемент, выбранный из группы N, B, C, и 0≤y≤0,65, а предпочтительно y≤0,5.

Изобретение относится к способу получения пленочного металлсодержащего углеродного наноматериала, который может быть использован в различных элементах электроники, в частности при разработке фоторезисторов, фотоприемников, фотодиодов и элементов фотовольтаики.
Изобретение относится к способу антикоррозионной обработки металлической детали. .

Изобретение относится к барьерным слоям, обеспечивающим снижение проницаемости материала для конкретных субстанций. .

Изобретение относится к технологии повышения стойкости режущих инструментов за счет нанесения на их поверхность многокомпонентных износостойких покрытий. .

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь, а именно на полую деталь, содержащую внутреннюю рубашку, а также к рубашке для циркуляции охлаждающего воздуха, алюминированной полой лопатке газотурбинного двигателя и направляющему сопловому аппарату газотурбинного двигателя.

Изобретение относится к области машиностроения, а именно к методам формирования теплозащитных покрытий на лопатках турбин, и в особенности газовых турбин авиадвигателей и энергетических установок.

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO2, полупроводниковые квантовые точки и органический краситель, и заключается в том, что для уменьшения толщины слоя КТ, адсорбированных на поверхность TiO2, вводится технологический этап предварительного удаления избыточного количества молекул солюбилизатора полупроводниковых квантовых точек из раствора и частично с поверхности квантовых точек.
Наверх