Гидростатический подшипник

Изобретение относится к области машиностроения и может применяться в радиальных опорах шпиндельных узлов металлорежущих станков, при использовании в качестве смазывающей среды как жидкостей, так и газов. Гидростатический подшипник содержит вал (1) и корпус (2), сопряженные поверхности которых образуют щелевой зазор (9) основного несущего слоя смазки, корпус (2) имеет радиальные дросселирующие каналы (3), сообщающиеся с источником нагнетания смазки (рн). На торцах корпуса (2) выполнены кольцевые выступы, с внутренней стороны которых установлены мембраны (4) кольцевого типа, а внутри мембран (4) герметично закреплены жесткие кольца, образуя с валом (1) и корпусом (2), соответственно, осевые и радиальные дросселирующие щели (7, 8). В корпусе (2) выполнены камеры (10), симметрично расположенные относительно центральной поперечной плоскости, каждая из которых через соответствующий радиальный канал (11) сообщена со щелевым зазором (9) основного несущего слоя смазки. Технический результат: повышение динамических характеристик, в частности повышение виброустойчивости подшипника в диапазонах нулевой и отрицательной податливости. 2 ил.

 

Изобретение относится к области машиностроения и может применяться в радиальных опорах шпиндельных узлов металлорежущих станков, при использовании в качестве смазывающей среды как жидкостей, так и газов.

Известен гидростатический подшипник, содержащий корпус, вал и подвижную втулку, находящуюся в полости между корпусом и валом и образующую с поверхностью вала щелевой дросселирующий зазор, на внешней цилиндрической поверхности втулки по обоим концам выполнены кольцевые выступы, образующие между корпусом и втулкой ступенчатые щелевые дросселирующие зазоры. В средней плоскости подшипника с внешней и внутренней сторон втулки выполнены кольцевые каналы, сообщенные между собой и с источником нагнетания смазки. Элементы сборного корпуса образуют щелевые дросселирующие зазоры с сопряженными торцевыми поверхностями втулки и цилиндрической поверхностью вала. На стыке щелевых дросселирующих зазоров, образованных сопряженными торцевыми поверхностями корпуса и втулки с щелевыми дросселирующими зазорами, образованными сопряженными цилиндрическими поверхностями втулки и корпуса, выполнены дренажные кольцевые полости (Патент РФ №2208723, МПК F16C 32/06, опубликован в 2003 г.). Наиболее близким по технической сущности к заявленному изобретению является гидростатический подшипник, содержащий корпус с радиальным каналом, сообщенным с источником нагнетания смазки, и вал. В корпусе выполнен второй радиальный канал, сообщающийся с источником нагнетания смазки, и оба радиальных канала выполнены дросселирующими. На торцах корпуса выполнены кольцевые выступы, на внутренней стороне которых установлены мембраны кольцевого типа, образующие с корпусом и выступами корпуса полости, сообщенные с радиальными каналами. Внутри мембран герметично закреплены жесткие кольца, образующие с валом осевые дросселирующие щели, а с корпусом - радиальные дросселирующие щели, внутренняя поверхность корпуса и поверхность вала образуют щелевой зазор для основного несущего слоя смазки (Патент РФ №2370680 CI, F16C 32/06, опубликован в 2009 г.).

Известные гидростатические подшипники при работе в режиме нулевой и тем более в режиме отрицательной податливости имеют низкие динамические характеристики, в частности, они обладают весьма низкой степенью устойчивости к воздействию внешних сил. Это связано с тем, что демпфирующих свойств малого объема несущего смазочного слоя недостаточно для гашения возникающих вынужденных колебаний, это является основным недостатком гидростатических подшипников.

В основу изобретения положена задача повышения динамических характеристик, в частности повышение виброустойчивости подшипника в диапазонах нулевой и отрицательной податливости.

Поставленная задача решается тем, что в гидростатическом подшипнике, содержащем вал и корпус, сопряженные поверхности которых образуют щелевой зазор основного несущего слоя смазки, корпус имеет радиальные дросселирующие каналы, сообщающиеся с источником нагнетания смазки, на торцах корпуса выполнены кольцевые выступы, с внутренней стороны которых установлены мембраны кольцевого типа, а внутри мембран герметично закреплены жесткие кольца, образуя с валом и корпусом, соответственно, осевые и радиальные дросселирующие щели, согласно изобретению в корпусе выполнены камеры, симметрично расположенные относительно центральной поперечной плоскости, каждая из которых через соответствующий радиальный канал сообщена со щелевым зазором основного несущего слоя смазки.

На фиг.1 показан продольный разрез предлагаемого гидростатического подшипника; на фиг.2 - разрез А-А на фиг.1.

Гидростатический подшипник содержит вал 1, корпус 2 с радиальными дросселирующими каналами 3, сообщающиеся с источником нагнетания смазки рн. На торцах корпуса 2 выполнены кольцевые выступы, на внутренней стороне которых установлены мембраны 4 кольцевого типа, образующие с корпусом и выступами корпуса полости 5, сообщающиеся с радиальными дросселирующими каналами 3. Мембраны 4 герметично прикреплены внешней кромкой к выступам корпуса, а изнутри к мембранам 4 герметично прикреплены жесткие кольца 6, образующие с валом 1 и корпусом 2, соответственно, осевые и радиальные дросселирующие щели 7 и 8. Внутренняя поверхность корпуса 2 и поверхность вала 1 образуют щелевой зазор 9 основного несущего слоя смазки. Внутри корпуса 2 выполнены камеры 10, симметрично расположенные относительно центральной поперечной плоскости подшипника (например, в два ряда, как на фиг.1). Каждая камера через соответствующий радиальный канал 11 сообщается с щелевым зазором 9 основного несущего слоя смазки.

Гидростатический подшипник работает следующим образом. Смазка поступает в подшипник от источника нагнетания смазки под давлением рн через дросселирующие радиальные каналы 3 в полости 5. Гидростатическая сила, создаваемая давлением в полостях 5 на мембраны 4 кольцевого типа, уравновешивается силами упругой деформации мембран 4. Из полостей 5 смазка проходит через радиальные дросселирующие щели 8 и разделяется на два потока. Часть смазки поступает в щелевой зазор 9, другая часть через осевые дросселирующие щели 7 выходит в окружающую среду под давлением ра. Гидростатическая сила смазки в щелевом зазоре 9, действующая на вал 1, уравновешивается внешней нагрузкой f.

С изменением нагрузки f на вал 1, он смещается в направлении действия нагрузки f, появляется эксцентриситет е отклонения оси вала 1 относительно оси корпуса 2. Вследствие этого уменьшается (увеличивается) щелевой зазор 9 в нагруженной (разгруженной) зоне, что приводит к увеличению (уменьшению) его гидравлического сопротивления и, как следствие, увеличению (уменьшению) давлений в щелевом зазоре 9 и полостях 5. В результате, суммарная гидростатическая сила в полостях 5 принимает направление, противоположное эксцентриситету е, и деформирует мембраны 4. Это приводит к увеличению (уменьшению) упругих сил в нагруженной (разгруженной) зоне, которые уравновешивают увеличившиеся (уменьшившиеся) гидростатические силы в полостях 5, а также приводит к перемещению жестких колец 6 в направлении, противоположном эксцентриситету е, при этом величина радиальных дросселирующих щелей 8 не меняется. Высота осевой дросселирующей щели 7 уменьшается (увеличивается) в направлении эксцентриситета е (в противоположном направлении эксцентриситета е), что приводит к дополнительному увеличению (уменьшению) давления в щелевом зазоре 9, но при этом расход смазки через подшипник не увеличивается. Дополнительное давление в щелевом зазоре 9 смещает вал 1 в направлении, противоположном действию нагрузки f, таким образом достигается эффект отрицательной податливости вала 1. Благодаря тому, что жесткие кольца 6 соединены с корпусом 2 мембранами 4, которые стремятся вернуть кольца 6 в центральное положение, между валом 1 и кольцами 6 всегда присутствует минимальный осевой дросселирующий зазор 7. Его наличие вынуждает вал 1 постоянно смещаться против действия нагрузки f, чем достигается отрицательная податливость практически на всем диапазоне нагрузки f. Введение камер 10, связанных с несущим слоем смазки, позволяет эффективно гасить вынужденные колебания, а выбор оптимальных значений их геометрических параметров приводит к повышению демпфирующих свойств подшипника при работе в режимах нулевой и отрицательной податливости.

Гидростатический подшипник, содержащий вал и корпус, сопряженные поверхности которых образуют щелевой зазор основного несущего слоя смазки, корпус имеет радиальные дросселирующие каналы, сообщающиеся с источником нагнетания смазки, на торцах корпуса выполнены кольцевые выступы, с внутренней стороны которых установлены мембраны кольцевого типа, а внутри мембран герметично закреплены жесткие кольца, образуя с валом и корпусом, соответственно, осевые и радиальные дросселирующие щели, отличающийся тем, что в корпусе выполнены камеры, симметрично расположенные относительно центральной поперечной плоскости, каждая из которых через соответствующий радиальный канал сообщена со щелевым зазором основного несущего слоя смазки.



 

Похожие патенты:

Изобретение относится к области машиностроения и может найти применение в замкнутых гидростатических направляющих металлообрабатывающих станков и других ответственных машин.

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок. Упорный подшипниковый узел состоит из подпятника и пяты (7), выполненной из немагнитного материала.

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок. Упорный подшипниковый узел состоит из подпятника и пяты (8).

Предложены устройство (18) и способ поддержки цилиндрического элемента (12). Устройство (18) содержит основание (28), имеющее верхнюю поверхность (40) полусферической вогнутой формы, и каретку (30), опирающуюся на верхнюю поверхность (40) основания (28).

Изобретение относится к области машиностроения и может найти применение в шпиндельных узлах, а также в других ответственных узлах с гидростатическими, аэростатическими или комбинированными опорами скольжения.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными и осевыми нагрузками, при необходимости обеспечить большую несущую способность при сохранении устойчивого положения ротора, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении и в микрогазотурбинных электроагрегатах.

Изобретение относится к области машиностроения и может найти применение в станкостроении в системах питания замкнутых и незамкнутых гидростатических опор, работающих в условиях оппозитного нагружения, а также в системах адаптивного управления положением шпинделя или направляющих.

Изобретение относится к области машиностроения и может применяться в радиальных опорах шпиндельных узлов металлорежущих станков и другого оборудования с быстроходными роторами при использовании в качестве смазывающей среды как газов, так и жидкостей.

Изобретение относится к узлу гидродинамического ленточного подшипника для использования во вращающихся машинах. .

Изобретение относится к области машиностроения и может найти применение в станкостроении в качестве адаптивных опорных модулей незамкнутых гидростатических направляющих, а также в других ответственных гидростатических опорах с плоскими рабочими поверхностями скольжения.

Изобретение относится к области машиностроения и может применяться в радиальных и радиально-осевых опорах шпиндельных узлов металлообрабатывающих станков и имеет повышенную нагрузочную характеристику с диапазоном отрицательной податливости. Подшипник содержит корпус, вал и втулку, имеющую на внутренней поверхности два кольцевых ряда несущих карманов и установленную в корпусе на эластичной оболочке с вырезами, которые образуют между корпусом и втулкой два кольцевых ряда управляющих камер. В каждой камере между поверхностями корпуса и подвижной втулки образован дросселирующий щелевой зазор, соединенный каналами на входе - с гидростанцией, а на выходе - с несущим карманом, расположенным в другом кольцевом ряду. Управляющие камеры имеют осевое смещение относительно несущих карманов. Соединительные каналы, связывающие управляющие камеры с несущими карманами, выполнены слабо дросселирующими. В радиально-осевом подшипнике сопряженные поверхности корпуса, вала и втулки выполнены коническими. Технический результат: повышение радиальной и осевой нагрузочной способности подшипника, а также обеспечение угловой самоустановки втулки и отрицательной податливости подшипника в радиальном и осевом направлении. 2 з.п. ф-лы, 4 ил.

Изобретение относится, прежде всего, к прецизионному станкостроению и приборостроению и может применяться для создания пористых газостатических опор в высокоскоростных и/или высокоточных шпиндельных узлах, линейных направляющих, подпятниках и в других устройствах станков и измерительного оборудования. Способ формирования пористых ограничителей наддува (пористые вставки (5, 6) в газостатических подшипниках включает контролируемую механическую обработку поверхности ограничителей (5, 6) посредством механического удаления части поверхности. При этом обработку проводят в два этапа с индивидуальным контролем проницаемости каждого обрабатываемого ограничителя (5, 6) посредством измерения давления и расхода воздуха через него. На первом этапе обработки формируют совместную чистовую лицевую поверхность корпуса и ограничителей (5, 6), ранее установленных в него с заведомо большей проницаемостью до начала обработки и с припуском на механическую обработку, и контролируют только геометрическую точность поверхности. На втором этапе проводят срезание слоев пористого материала отдельно каждого ограничителя (5, 6) с его задней поверхности, до тех пор, пока не будет достигнута требуемая проницаемость ограничителя (5, 6), определяемая по величине расхода и давления. Для этого к каждому ограничителю (5, 6) подводят воздух с помощью приспособления (13) с герметичным креплением к лицевой поверхности и осуществляют замер давления и расход проходящего воздуха. Технический результат: обеспечение более эффективного по трудо- и времязатратам способа формирования пористых ограничителей наддува с заданной проницаемостью в газостатических подшипниках. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок. Упорный подшипниковый узел состоит из подпятника и пяты (7). Подпятник образован корпусом (1), снабженным цилиндрической выемкой с плоским дном, образованной кольцевым выступом (2) по периметру корпуса (1). На дне цилиндрической выемки размещены сектора упругой прокладки (3) с опертыми на них секторами (5) газостатических подшипников, образующих, соответственно, кольцо упругой прокладки (3) и кольцо из немагнитного материала. Сторона секторов (5), обращенная к пяте (7), снабжена выемкой с плоским дном, образованной буртиками (8) по периметру сектора (5). В выемке каждого сектора (5) равномерно распределены по окружности и зафиксированы несколько секторных постоянных магнитов, намагниченных в осевом направлении, и контактирующие с ними секторные постоянные магниты, намагниченные в тангенциальном направлении. Поперечному сечению накладок (6) придана T-образная форма. Внешняя поверхность секторных постоянных магнитов составляет одну плоскость, обращенную к пяте (7), выполненной из немагнитного материала, с образованием с нею рабочего зазора (12). В объеме секторов (5) выполнена система сообщающихся каналов малого диаметра с возможностью подачи в нее сжатого воздуха от внешнего источника, выходные отверстия которой сообщены со сквозными отверстиями (20, 21), выполненными в секторных постоянных магнитах, сообщающимися с рабочим зазором (12). Технический результат: обеспечение высокой несущей способности упорного подшипникового узла в рабочем режиме (с уменьшением в нем потерь на трение, вплоть до вентиляционных), надежный запуск турбомашины, снижение деформации зазора в упорном подшипниковом узле от высокого давления наддува газа, демпфирование колебаний ротора турбомашины, обусловленных осевыми газодинамическими силами турбины и компрессора. 5 з.п. ф-лы, 5 ил.

Изобретение относится к системе для использования в гидростатическом подшипнике (10) прокатного стана для удаления ламинарного потока масла, выходящего тангенциально из зазора между вращающейся опорной втулкой (12) и фиксированным вкладышем (18), окружающим втулку (12). Система содержит ограничивающие поверхности, взаимодействующие с втулкой (12) и вкладышем (18) для задания кольцевой камеры (40а), предназначенной для приема тангенциально выходящего ламинарного потока. Лопасти (42) выступают в камеру (40а) и вращаются вместе с втулкой и со скоростью втулки (12) для закручивания масла в камере (40а). Выход (44) связан тангенциально с кольцевой камерой (40а) для удаления масла, закручиваемого внутри камеры (40а) за счет вращения лопастей (42). Размер выхода (44) относительно объема масла, принимаемого в кольцевой камере (40а), выбран так, что камера (40а) остается заполненной маслом во время устойчивой работы подшипника (10). Технический результат: использование кинетической энергии вращающихся компонентов подшипников для откачки масла из подшипников, при этом поскольку масло извлекается принудительно, то можно использовать меньшие дренажные трубопроводы для управления выходящим потоком масла, без необходимости поддерживания дренажных уклонов, требуемых для приема гравитационного потока. 3 н. и 13 з.п. ф-лы, 7 ил.
Изобретение относится к машиностроению, преимущественно может применяться в высокоточных машинах и аппаратах с движущимися деталями, работающих в условиях газовой смазки. Способ обработки пористого вкладыша газового подшипника заключается в том, что в качестве материала вкладыша используется предварительно обработанная до нужной геометрической формы заболонная часть древесины, вываренная в концентрированном растворе поваренной соли, торцы которой после вываривания замазываются клейким раствором, и затем заготовку помещают в сушильный шкаф. Сушку проводят в ступенчатом температурном режиме. Предложенный способ полностью избавляет заболонные части древесины от смолистых веществ за счет вываривания заготовки в концентрированном растворе соли. Раствор вытягивает смолистые вещества, сохраняя однонаправленное расположение капилляров. При этом отсутствует растрескивание заготовки по торцам и в середине благодаря применению клейкого раствора. Применяемый способ сушки обеспечивает однородность и постоянную структуру, так как из заготовки легче удалить, выпарить, воду, чем смолы, этим обеспечивается постоянная проницаемость пористого вкладыша газового подшипника и позволяет уменьшить время, требуемое на его изготовление. Технический результат: уменьшение требуемого времени на изготовление пористого вкладыша.

Изобретение принадлежит к области машиностроения и может быть использовано в устройствах, которые содержат вал, который вращается, и хотя бы один опорный подшипник скольжения, который может быть как нереверсивным, так и реверсивным. Такими устройствами могут быть газовые или паровые турбины, компрессоры, центробежные насосы и др. Способ включает подачу масла к вставным деталям и в емкости, которые находятся в корпусе, обеспечение вращения вала, блокировку движения каждой из вставных деталей, в любом направлении вращения, передвижение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, обеспечение перетекания масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе. Максимальное расстояние передвижения каждой из вставных деталей в направлении к поверхности вала обеспечивают не больше 0,002 D и не меньше 0,0008 D. Динамическую вязкость масла обеспечивают в пределах от 4 мкПа·с до 50 мкПа·с при скорости вращения вала не меньше 500 об/мин и не больше 60000 об/мин. Шероховатость контактирующих поверхностей вала и каждой из вставных деталей соответственно должна находиться в пределах от Ra0,8 до Ra0,2. Для каждой из емкостей, что находятся в корпусе, под каждой из вставных деталей, и/или в каждой вставной детали, и которых должно быть не меньше двух, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости при максимальном объеме масла, который может вместить отдельная емкость, a So - площадь отверстия у вставной детали или общая площадь отверстий у вставной детали. Технический результат: увеличение ресурса работы подшипника и механической нагрузки на подшипник, не приводя при этом к усложнению конструкции подшипника, по сравнению с конструкциями других опорных подшипников скольжения. 2 з.п. ф-лы, 2 ил.

Изобретение принадлежит к области машиностроения и может быть использовано в устройствах, содержащих ротор, который вращается, и хотя бы один упорный подшипник скольжения, который может быть как нереверсивным, так и реверсивным. Такими устройствами могут быть газовые или паровые турбины, компрессоры, центробежные насосы и др. Способ работы опорного подшипника скольжения включает подачу масла ко вставным деталям упорного подшипника скольжения и в емкости, которые находятся в корпусе упорного подшипника скольжения, вращение ротора, блокирование движения каждой из вставных деталей в любом направлении вращения, передвижение каждой из вставных деталей к поверхности упорного диска ротора, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения ротора, обеспечение перетекания масла как в прямом, так и в обратном направлении из емкостей или в емкости. Технический результат: увеличение ресурса работы упорного подшипника скольжения и увеличение механической нагрузки на упорный подшипник скольжения путем использования способа гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения, для гашения осевых колебаний ротора, который вращается, и усовершенствование способа гашения колебаний ротора, который вращается, с помощью вставных деталей на гидростатическом подвесе упорного подшипника скольжения. 3 з.п. ф-лы, 3 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении. Лепестковый газодинамический подшипник с активным управлением содержит корпус (1), в который вставлены от 16 до 24 пьезоактуаторов (3), расположенных равномерно по окружности корпуса (1), на которые опирается круговой гофрированный элемент (10), на который, в свою очередь, опирается тонкий лепесток (11), охватывающий вал (12), а также позволяющих снимать данные о положении вала и деформациях опорной поверхности и варьировать жесткостью опорной поверхности. Технический результат: повышение надежности и долговечности подшипникового узла, ресурса работы, устойчивости движения и подавление биений валов и роторов за счет пьезоактуаторов, с помощью которых можно управлять жесткостью опорной поверхности. 1 з.п. ф-лы, 4 ил.

Изобретение относится к упорным подшипникам, в частности к способам и системам равномерного распределения осевых нагрузок по несущей поверхности упорных подшипников. Способ включает организацию равномерного распределения осевых нагрузок по несущей поверхности при взаимном скольжении сферических поверхностей опирания подшипника. Взаимное скольжение обеспечивают организацией жидкостного трения между сферическими поверхностями, причем для создания жидкостного трения в зоне взаимодействующих сферических поверхностей поддерживают давление смазочной жидкости, величина которого больше или равна величине давления осевой силы. Способ осуществляют с применением упорного подшипника, в котором система выравнивания выполнена в виде упорного кольца со сферической поверхностью, при этом сферическая поверхность упорного кольца связана с несущим слоем опорной колодки через карман на тыльной стороне опорной колодки и/или с несущим слоем упорного кольца через сквозное отверстие упорного кольца, расположенное в гидродинамической зоне упорного кольца. Технический результат: повышение эффективности выравнивания осевых нагрузок по несущей поверхности упорных подшипников. 4 н. и 7 з.п. ф-лы, 19 ил.

Изобретение относится к области машиностроения и предназначено для использования в высокоскоростных механизмах. Опорный подшипниковый узел включает вал (2), подшипник, в зазоре между которыми размещены лепестки, выполненные с возможностью газодинамического формирования газовой смазки, снабженный средством подвода сжатого газа в зазор (3) между валом (2) и рабочей поверхностью подшипника. Использован лепестковый подшипник, включающий, по меньшей мере, опорную (4) и несущую (5) платы, выполненные в виде втулок из упругого материала, последняя (5) из которых образует рабочую поверхность подшипника. Средство подвода сжатого газа в зазор (3) между валом (2) и рабочей поверхностью подшипника выполнено в виде сквозных каналов (6), сформированных в валу (2), выпускные отверстия (7) которых распределены по поверхности вала (2), обращенной в рабочий зазор, а приемное отверстие сквозного канала (6), расположенного в валу (2), выполнено с возможностью приема сжатого газа от внешнего источника при вращении вала (2). Технический результат: дополнительное повышение несущей способности лепесткового подшипника, в результате подачи сжатого газа от внешнего источника, а также увеличение эффективности охлаждения рабочей поверхности смазочным газом. 3 ил.
Наверх