Наноэмульсия с биологически активными веществами



Наноэмульсия с биологически активными веществами

 


Владельцы патента RU 2535022:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" (RU)

Изобретение относится к фармацевтической и косметологической промышленности, в частности к наноэмульсиям типа вода в масле для трансдермального применения с биологически активными соединениями. Наноэмульсия типа вода в масле содержит 35-80% гидрофобной фазы, 1-15% гидрофильной фазы, поверхностно-активное вещество. Наноэмульсия типа вода в масле для трансдермального применения с биологически активными соединениями обладает хорошей стойкостью при хранении. 7 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к фармацевтической, пищевой промышленности, косметологии и ветеринарии, а именно к области создания наноэмульсионных систем, используемых в качестве носителей активных веществ в фармацевтических композициях, а также при производстве пищевых, косметических и ветеринарных продуктов на натуральной основе. Под этим подразумевается, что природных компонентов в такой продукции должно быть не менее 95 процентов. Далеко не каждая продукция отвечает этим требованиям: чаще всего используют лишь добавки экстрактов растений, а основные вещества не натурального, а химического происхождения.

Под наноэмульсиями понимают системы, не проявляющие двойного преломления в лучах поляризованного света, прозрачные или полупрозрачные, термодинамически устойчивые, состоящие из чрезвычайно мелких капель с диаметром в интервале от 5 до 200 нм, для формирования которых обычно используют масло, воду, поверхностно-активное вещество или сурфактант и, необязательно, вспомогательное поверхностно-активное вещество или косурфактант с тщательным подбором оптимального соотношения сурфактанта и косурфактанта, а также их общего количества в системе, что зачастую достаточно сложно и трудоемко. Эмульсии масло в воде хорошо известны в области косметологии и дермофармации, особенно для получения косметических продуктов, таких как лосьоны, тоники, сыворотки, туалетная вода. Наноэмульсии позволяют получать рецептуры с пролонгированным выделением биологически активных соединений.

Известна наноэмульсия на основе амфифильных неионных липидов и аминированных силиконов (Патент РФ №2142481, C08L 83/04, A61K 7/00, публ. 1999 г.), глобулы масла которой имеют средний размер ниже 150 нм, включающая амфифильную липидную фазу, содержащую по крайней мере один амфифильный неионный липид, жидкий при комнатной температуре ниже 45°С, по крайней мере одно масло и по крайней мере один аминированный силикон, также ее использование в косметике и дермофармации.

Известна также наноэмульсия с биологически активными веществами (Патент РФ №2362544, A61K 9/10, A61K 9/107, публ. 2008 г.), прозрачная или слегка опалесцирующая наноэмульсия типа вода в масле для орального, трансдермального применения для использования в офтальмологической практике с биологически активными соединениями, характеризующаяся тем, что содержит 35-80% гидрофобной фазы, 17-43% поверхностно-активного вещества, 3-7% сорастворителя и 1-15% водной фазы. В качестве гидрофобной фазы используют смеси моно-, ди- и триглицеридов с моно- и диэфирами насыщенных и ненасыщенных жирных кислот, поверхностно-активное вещество выбирают из группы неионогенных поверхностно-активных веществ - сорбитанов в смеси со вспомогательным поверхностно-активным веществом (из группы полигидроксиалканов или одноатомных спиртов).

При этом биологически активные соединения наноэмульсий представляют собой флавоноиды, или бетулин, или экстракт босвеллии, или витамины, или микроэлементы и пр. и используются в качестве добавок.

Кроме того, наноэмульсия имеет рН в интервале между 5,0 и 7,5, а отношение поверхностно-активного вещества к вспомогательному поверхностно-активному веществу от 3:1 до 9:1.

Недостатками известных наноэмульсий являются невысокая стойкость при хранении, возможные аллергические реакции из-за присутствия химических компонентов, а также высокая стоимость и необходимость строгого контроля вследствие использования сырья синтетического происхождения.

Техническим результатом настоящего изобретения является разработка натуральных композиций на основе масляных и водных экстрактов сырья растительного происхождения, стойких при хранении, биологически совместимых, хорошо переносимых наноэмульсий типа вода в масле.

Указанный технический результат достигается тем, что наноэмульсия типа вода в масле для трансдермального применения, характеризующаяся тем, что содержит гидрофильую фазу - 1-15%, гидрофобную фазу - 35-80% и поверхностно-активное вещество, согласно заявляемому изобретению в качестве гидрофобной фазы используют масляные экстракты растительного сырья на основе оливкового, или миндального, или персикового, или абрикосового, или кедрового, или соевого масел или масла виноградных косточек, поверхностно-активное вещество выбирают из группы фосфолипидов природного происхождения.

Предлагаемые наноэмульсии также могут содержать другие биологически совместимые соединения, не оказывающие влияния на устойчивость наноэмульсий, например витамин Е.

Растительные экстракты перспективны в качестве компонентов натуральных препаратов, т.к. содержат максимально полную сумму биологически активных веществ лекарственных растений, способных оказывать на организм комплексное воздействие, проявлять широкий спектр фармакологической активности, а также характеризуются низкой токсичностью.

Для приготовления экстрактов и комплексов на основе растительного сырья используется двухфазная система растворителей. Применение в качестве экстрагента двухфазной системы растворителей (спиртоводная смесь/масло) позволяет за один технологический цикл получить сразу водно-спиртовое и масляное извлечения, т.е. проэкстрагировать из сырья гидрофильные и гидрофобные вещества. Двухфазная экстракция основана на предварительном смачивании сырья 96% этиловым спиртом и выдержкой его в течение 1,5-2 ч. Затем добавляют масло растительное и очищенную воду, доводя до необходимой концентрации спиртоводный экстрагент и соотношение фаз (сырье/масло/спиртоводная смесь). Экстрагирование ведут при нагревании (до 60-80°C) и периодическом перемешивании. Затем разделяют по плотности вытяжки (спиртоводную и масляную).

Высокая эффективность метода экстракции двухфазной системой экстрагентов по сравнению с экстракцией маслом определяется ролью спиртовой фазы (ее составом и количеством) как фактора набухания растительного сырья, промежуточного растворителя и переносчика липофильных веществ из клеток сухого растительного сырья в масляную фазу. При контакте сырья с жидкими фазами экстрагентов спиртоводная смесь благодаря меньшей вязкости легко проникает в растительный материал, десорбирует внутриклеточные биологически активные вещества и путем диффузии переносит их через пористые клеточные стенки в спиртоводную фазу. Затем протекает процесс экстракции жидкость-жидкость (спиртоводный раствор-масло) при перемешивании мешалкой. Между спиртоводной и масляной фазами происходит процесс массопередачи, приводящий к перераспределению гидро- и липофильных соединений между фазами в соответствии с коэффициентами распределения. При этом преимущественно гидрофильные вещества остаются в спиртоводной фазе, а липофильные переходят в масляную.

Качественное и количественное отличие водно-спиртовых и масляных экстрактов растительного сырья от индивидуальных компонентов (экстрагентов, т.е. растительного, персикового, абрикосового, миндального и др. масел) на примере содержания суммы биологически активных веществ с антиоксидантными свойствами представлено в таблице 1. Данные получены методом перманганатометрического титрования.

Таблица 1
Содержание суммы биологически активных веществ с антиоксидантными свойствами в исходных экстрагентах и в экстрактах
Экстрагент Содержание суммы биологически активных веществ с антиоксидантными свойствами, мкг/мл
В экстрагенте В экстракте на его основе
Водно-спиртовая смесь 0,02 0,27
Растительное масло 0,06 0,11
Абрикосовое масло 0,05 0,10
Персиковое масло 0,06 0,11

Таким образом, результаты, приведенные в таблице 1, показывают, что экстракты растительного сырья на основе натуральных масел обладают намного большей биологической активностью, чем натуральные растительные масла, и создание на их основе натуральных эмульсионных композиций более предпочтительно и будет иметь больший терапевтический эффект.

Пример 1. Получение наноэмульсий с биологически активными веществами.

Масляный экстракт растительного сырья (45%) перемешивают с помощью мешалки с поверхностно-активным веществом (40%) до получения гомогенного раствора. Водный экстракт (15%) и полученный на основе масляного экстракта гомогенный раствор смешивают друг с другом с помощью гомогенизатора до образования однородной эмульсии и далее проводят озвучание на ультразвуковом диспергаторе, затем фильтруют через фильтр с размером пор 220 нм для стерилизации, разливают по флаконам.

Стабильность наноэмульсий изучали в условиях ускоренного хранения при температуре 40°C. Методы ускоренного хранения (ускоренного старения) позволяют за 15-115 дней при 40-70°C установить сроки хранения, которые, как правило, совпадают с результатами, полученными при хранении при комнатной температуре в течение 3-5 лет. Оценку стабильности в данном методе осуществляют, исследуя физические и химические изменения наноэмульсий (качество наноэмульсий). В данных экспериментах по исследованию стабильности наноэмульсий качество препарата в процессе хранения оценивали по изменению светопоглощения. Определение светопоглощения проводили на спектрофотометре ПЭ-5300 В (Россия) при длине волны 660 нм.

Рис.1. Сравнение зависимости светопоглощения образцов от времени хранения при 40°C.

Таким образом, наилучшие результаты в плане стабильности эмульсий были достигнуты с применением в качестве поверхностно-активного вещества лецитина и достигают более 60 суток в условиях ускоренного хранения.

Срок годности (C) при температуре хранения (Tхр) связан с экспериментальным сроком годности (Cэ) при температуре экспериментального хранения (Tэ) зависимостью C=KCЭ,

где К - коэффициент соответствия:

.

Исходя из правила Вант-Гоффа, температурный коэффициент скорости химической реакции (А) при увеличении температуры на 0°C принят равным A=2.

Согласно проведенным исследованиям стабильность наноэмульсии с содержанием лецитина при температуре хранения 24°C соответствует 6,5 месяцам, а при температуре хранения 4°C - соответствует 14,5 месяцам.

Наноэмульсия является биологически совместимой и хорошо переносимой, а также обеспечивает равномерное пролонгированное высвобождение действующего вещества и обладает достаточной стабильностью.

1. Наноэмульсия типа вода в масле для трансдермального применения с биологически активными соединениями, содержащая 35-80% гидрофобной фазы, 1-15% гидрофильной фазы, поверхностно-активное вещество, отличающаяся тем, что в качестве поверхностно-активного вещества используют фосфолипиды природного происхождения - 5-50%, в качестве гидрофобной и гидрофильной фаз используют экстракты сырья растительного происхождения в масляном и водно-спиртовом виде соответственно.

2. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе персикового масла.

3. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе абрикосового масла.

4. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе миндального масла.

5. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе кедрового масла.

6. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе оливкового масла.

7. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе масла виноградных косточек.

8. Наноэмульсия по п.1, отличающаяся тем, что содержит в качестве гидрофобной части экстракты сырья растительного происхождения на основе соевого масла.



 

Похожие патенты:

Изобретение относится к многослойному защитному барьерному покрытию для конструкционного сплава V-4Cr-4Ti, которое может быть использовано для нанесения на конструкционные элементы термоядерных установок, имеющие контакт с водородсодержащими средами, и препятствовать накоплению водорода в элементах конструкций, а также утечке через элементы конструкций трития путем диффузии через металл.

Изобретение относится к сварке, в частности к изготовлению порошков, используемых для плазменно-порошковой наплавки антифрикционных упрочняющих покрытий при изготовлении износостойких деталей.
Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%, вводят в поток термической плазмы.

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий.

Группа изобретений может быть использована при изготовлении материалов для электротехнической и химической промышленности. Графитсодержащий компонент смешивают с наполнителем на основе каолина, проводят сухое перемешивание с одновременным диспергированием последовательно в барабанном и центробежном смесителях.
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой. Способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой включает проведения реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280-1000°С.

Группа изобретений относится к получению нанодисперсного порошка оксида алюминия. Способ включает подачу в предкамеру порошкообразного алюминия и первичного активного газа, их смешивание, воспламенение металлогазовой смеси в предкамере с обеспечением перевода алюминия в газовую фазу за счет самоподдерживающейся экзотермической реакции, подачу образовавшейся смеси в основную камеру сгорания с дожиганием металла в газовой фазе при подаче вторичного активного газа - воздуха и образованием конденсированных продуктов сгорания.

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей подложкой, причем в процессе роста КТ периодически переключают полярность внешнего напряжения с отрицательной на положительную и фиксируют единичный пик на туннельной ВАХ при определенном значении приложенного напряжения из диапазона значений от 1 до 5 В.

Изобретение относится к области металлургии и может быть использовано при обработке чугуна. Способ включает анализ компонентов исходного углеродсодержащего сырья по фракционному и химическому составу, дозирование, промывку потоком воды, сушку и дробление до фракции 0,1…30,0 мм.

Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила(ПАН), наполненных углеродными нанотрубками. Сформированные волокна подвергают термообработке в воздушной среде при нагреве с сохранением постоянной длины.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.
Изобретение относится к химии и технологии полимеров и касается способов получения термостойкого нанокомпозитного полиэтилентерефталатного волокна, которое может найти применение в текстильной промышленности, в строительстве, а также в других отраслях промышленности.

Группа изобретений может быть использована при изготовлении материалов для электротехнической и химической промышленности. Графитсодержащий компонент смешивают с наполнителем на основе каолина, проводят сухое перемешивание с одновременным диспергированием последовательно в барабанном и центробежном смесителях.

Изобретение относится к нитрид-галлиевым транзисторам с высокой подвижностью электронов (GaN HEMT) и в частности к конструкции GaN НЕМТ для высоковольтных применений. Нитрид-галлиевый транзистор с высокой подвижностью электронов выращивается на кремниевой подложке с нанесенной на нее темплейтной структурой толщиной 700-800 нм, состоящей из чередующихся слоев GaN/AlN толщиной не более 10 нм, между буферным и барьерным слоями внедряется спейсерный слой AlN толщиной не более 1 нм, на пассивационный слой наносится полевая пластина, электрически соединенная с затвором, расстояние между затвором и стоком и длина полевой пластины - взаимосвязанные величины и подбираются исходя из требуемого значения напряжения пробоя.

Многофункциональная сенсорная микроэлектромеханическая система (МЭМС) предназначена для использования в газоанализаторах, в медицине в качестве биосенсоров, в микроэлектронике и других высокотехнологичных областях для контроля технологических процессов.
Изобретение относится к медицине, а именно к лучевой терапии опухолей. Способ включает введение в опухоль средства, содержащего наноразмерные частицы золота и йодсодержащее контрастное вещество.

Изобретение относится к области медицины и ветеринарии и может быть использовано для индукции и поддержания анестезии. Предложена водная композиция для анестезии, которая содержит пропофол в качестве активно-действующего вещества, ПЭГ-660-12-гидроксистеарат в качестве солюбилизатора, бензиловый спирт, или хлорэтон, или парабены в качестве консерванта, токоферол и аргинин или глицин при определенном содержании компонентов, мас.%.
Наверх