Способ получения нитридной наноплёнки или нанонити

Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака. Согласно второму варианту нитридную наноплёнку или нанонить получают выдержкой корундового волокна или пленки при температуре 800-1200оC в атмосфере азота или аммиака в присутствии восстановителя. Согласно третьему варианту нитридную наноплёнку или нанонить получают осаждением слоя бора на корундовое волокно или пленку с последующей выдержкой при температуре 1360оC в атмосфере азота или аммиака при давлении 60-70 т/см2 с получением боразона. Изобретения позволяют расширить арсенал средств получения нитридных наноплёнок или нанонитей. 3 н.п. ф-лы, 4 пр.

 

Изобретение относится к нанотехнологиям и предназначено для получения нитридной трубчатой или комбинированной нити, пленки или ленты (разница только в ширине) нанотолщины.

Известен способ получения трубчатой нитридной нанонити, см. заявку № CN 101928915, состоящий в осаждении неметалла на любое волокно и последующую реакцию с азотом. А также известно трубчатое или комбинированное корундовое нановолокно, пат. России №2458861. Однако в некоторых случаях могут потребоваться материалы с другими свойствами.

Задача изобретения - получение нитридных наноструктур другим способом.

Нитридная нанопленка или нанонить - это состоящая из нитридов металлов структура в слое нанотолщины.

СПОСОБ - 1 получения нанопленки или нанонити состоит в том, что на фторопластовое волокно или пленку (далее «основа») осаждается слой металла или неметалла, который затем выдерживается при температуре 800-1200°C в атмосфере азота или аммиака (далее «нитридизация»).

Фторопласт испарится при высокой температуре процесса нитридизации и будет получена чистая нитридная пленка или трубчатое волокно.

СПОСОБ - 2 получения нанопленки или нанонити состоит в том, что на фторопластовое волокно или пленку (далее «основа») производится осаждение слоя оксида металла или неметалла, который затем выдерживается при температуре 800-1200°C в атмосфере азота или аммиака в присутствии восстановителя, например угля.

СПОСОБ - 3 получения нанопленки или нанонити состоит в том, что нитридизации подвергается нановолокно или нанопленка, выполненные непосредственно из окисла металла или неметалла.

Для получения карбида бора в модификации «боразон» требуются особые условия.

СПОСОБ - 4 получения боридной нанопленки или нанонити в модификации боразона состоит в том, что на любое волокно или пленку (далее «основа») осаждается слой бора, который затем выдерживается при температуре 1360°C в атмосфере азота или аммиака при давлении 60-70 т/см2.

Пример 1. На фторопластовое волокно в вакууме осаждается слой кремния который затем выдерживается при температуре 800-1200°C в атмосфере азота или аммиака. Фторопласт испаряется при нагреве и может быть сконденсирован и использован повторно. Получается нанонить из нитрида кремния.

Пример 2. На волокно из оксида кремния или на углеродное волокно осаждают слой кремния, который обрабатывается, как в варианте 1. Исходная нить остается внутри трубчатой нанонити из нитрида кремния.

Пример 3. Корундовое нановолокно (то есть оксид алюминия) выдерживается при температуре 800-1200°C в атмосфере аммиака или в атмосфере азота в присутствии восстановителя, например угля. В результате корунд преобразуется в нитрид алюминия, и получается нанонить из нитрида алюминия.

Пример 4. На корундовую нанопленку осаждается (возможно, с двух сторон) слой бора, который затем выдерживается при температуре 1360°C в атмосфере азота при давлении 60-70 т/ см2. Получается комбинированная нанопленка, снаружи - из нитрида бора в модификации «боразон».

1. Способ получения нитридной нанопленки или нанонити, состоящий в том, что на фторопластовое волокно или на фторопластовую пленку осаждается слой кремния, который затем выдерживается при температуре 800-1200оC в атмосфере азота или аммиака.

2. Способ получения нитридной нанопленки или нанонити, состоящий в том, что корундовое волокно или пленку выдерживают при температуре 800-1200оC в атмосфере азота или аммиака в присутствии восстановителя.

3. Способ получения нитридной нанопленки или нанонити, состоящий в том, что на корундовое волокно или пленку осаждается слой бора и выдерживается при температуре 1360оC в атмосфере азота или аммиака при давлении 60-70 т/см2 с получением боразона.



 

Похожие патенты:

Изобретение относится к производству конструктивных деталей, подвергающихся при эксплуатации воздействию высоких температур, и касается детали из композиционного материала с керамической матрицей и способа ее изготовления.

Изобретение относится к деталям из термоструктурного композиционного материала, имеющим по меньшей мере в одной части малую толщину, и может быть использовано в авиационной и космической областях, например в корпусах газотурбинных двигателей или диффузорах сопел.
Изобретение относится к области нанотехнологий, в частности к производству высокопрочного и высокотермостойкого керамического композиционного материала на основе алюмокислородной керамики, структурированной в объеме наноструктурами (нанонитями) TiN, и может быть использовано в машиностроении, в изделиях авиационно-космической техники, двигателестроении, металлообрабатывающей промышленности, в наиболее важных и подверженных экстремальным термоциклическим нагрузкам узлах и деталях.
Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С.

Изобретение относится к композиции биоразлагаемого керамического волокна для высокотемпературной теплоизоляции. Техническим результатом изобретения является повышение теплостойкости изделий.

Изобретение относится к деталям из композиционного материала с керамической матрицей и может быть использовано в авиационных моторах, в особенности, в газовых турбинах или турбомашинах этих моторов.

Изобретение относится к области керамики и, в частности, к композиционному материалу и способу его получения. Керамический композиционный материал включает матрицу из оксида алюминия, легированного оксидом магния, и многослойные углеродные нанотрубки при следующем соотношении компонентов, об.%: оксид магния - 0,1-0,4; многослойные углеродные нанотрубки - 0,1-20; оксид алюминия - остальное.
Изобретение относится к области высокотемпературных радиотехнических материалов для спецтехники и электротехнической промышленности. Технический результат изобретения заключается в повышении температуры эксплуатации радиотехнического материала до 1800-2000°C с максимальным сохранением диэлектрических свойств материала.
Изобретение относится к нанотехнологиям и предназначено для получения высокопрочной трубчатой или комбинированной нити, пленки или ленты (разница только в ширине) нанотолщины из тройной структуры бор-углерод-кремний B-C-Si (насколько мне известно, оно не имеет названия, поэтому далее будем называть его, а точнее - наноизделия из него - «старброн»).
Изобретение относится к строительству, а именно к производству огнеупорных изделий. .
Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С.
Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/Al2O3, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов.
Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.

Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде сажи.
Изобретение относится к области производства различных видов металлообрабатывающих инструментов: резцов, фрез, притиров, в частности, к получению спеченного композиционного материала, изготовленного из порошков кубического нитрида бора.

Изобретение относится к способам получения огнеупорных материалов на неоксидной основе, а именно к огнеупорным материалам на основе бета-нитрида кремния -Si3N4, которые могут быть использованы в качестве упрочняющих добавок в неформованные огнеупорные массы.

Изобретение относится к области создания высокотемпературных конструкционных керамических материалов, а именно к способу получения керамического композита с матрицей на основе Ti3SiC 2.
Изобретение относится к составу и способу получения защитных покрытий. .

Изобретение относится к области порошковой технологии и предназначено для получения самораспространяющимся высокотемпературным синтезом (СВС) нитрида кремния с высоким содержанием основного вещества, тонкодисперсным размером основной массы частиц при достаточно узком гранулометрическом составе.

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при этом в качестве исходных реагентов используют порошок аморфного бора с размером частиц 1 мкм-100 мкм и порошок титана с размером частиц 1 мкм-100 мкм, причем используется микроволновой разряд мощностью от 50 кВт до 500 кВт и длительностью импульса от 100·10-6 с до 100·10-3 с, а рабочее давление азота составляет от 0,1 до 1 атмосферы.
Наверх