Способ защиты электродвигателей от коротких замыканий



Способ защиты электродвигателей от коротких замыканий
Способ защиты электродвигателей от коротких замыканий
Способ защиты электродвигателей от коротких замыканий

 


Владельцы патента RU 2535297:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том, что измеряют токи в каждой фазе со стороны выводов выключателя электродвигателя и его нулевых выводов, сравнивают по величине токи между каждыми двумя фазами как со стороны выводов выключателя, так и со стороны нулевых выводов электродвигателя, и если со стороны выводов выключателя ток в одной из фаз меньше токов в двух других фазах по абсолютной величине в n раз, где n>1, а со стороны нулевых выводов ток в этой же фазе больше токов в двух других в m раз, где m>1, то подают сигнал на отключение выключателя электродвигателя. 3 ил.

 

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей от коротких замыканий.

Известен способ защиты электродвигателей от коротких замыканий [Федосеев А. М. Релейная защита электроэнергетических систем. Релейная защита сетей: Учеб.пособие для вузов. - М.: Энергоатомиздат, 1992. - С.487-489.], при котором измеряют токи в фазах двигателя со стороны источника питания, сравнивают их с эталонной величиной, и если хотя бы один из них превышает ее, подают команду на отключение выключателя.

Этот способ не позволяет обеспечить высокую чувствительность защиты, так как необходима отстройка от пусковых токов электродвигателя.

Наиболее близким к предлагаемому является способ защиты электродвигателей от коротких замыканий [Андреев В.А. Релейная защита и автоматика систем электроснабжения - М.: Высш.Шк., 2008. - С. 562-563], при котором измеряют токи в каждой фазе со стороны выводов выключателя электродвигателя и его нулевых выводов, сравнивают их по величине, и если разность между ними больше эталонной величины, подают сигнал на отключение выключателя электродвигателя.

Недостатком данного способа является недостаточная чувствительность защиты, так как на мощных электродвигателях необходима отстройка от их номинальных токов в связи с насыщением трансформаторов тока со стороны нулевых выводов электродвигателя.

Задачей изобретения является повышение чувствительности к токам двухфазных коротких замыканий.

Это достигается тем, что в способе защиты электродвигателей от коротких замыканий, также как и в прототипе, измеряют токи в каждой фазе со стороны выводов выключателя электродвигателя и его нулевых выводов, сравнивают их по величине, и если разность между ними больше эталонной величины, подают сигнал на отключение выключателя электродвигателя.

Согласно изобретению сравнивают по величине токи между каждыми двумя фазами как со стороны выводов выключателя, так и со стороны нулевых выводов электродвигателя, и если со стороны выводов выключателя ток в одной из фаз, например А, меньше токов в двух других фазах В и С по абсолютной величине в n раз, где n>1, а со стороны нулевых выводов ток в этой же фазе А больше токов в двух других В и С в m раз, где m>1, то подают сигнал на отключение выключателя электродвигателя.

На фиг. 1 представлено устройство, реализующее заявляемый способ.

На фиг. 2 представлен режим двухфазного короткого замыкания на шинах, от которых двигатель питается, где стрелками показаны направления токов в фазах.

На фиг. 3 представлен режим двухфазного короткого замыкания в кабеле, которым электродвигатель присоединен к шинам, где стрелками показаны направления токов в фазах.

Способ защиты электродвигателей от коротких замыканий может быть реализован с помощью устройства, в котором трансформаторы тока 1, 2, 3 (фиг. 1) подключены в рассечку фаз А, В, С электродвигателя 4 со стороны источника питания. Трансформаторы тока 5, 6, 7 подключены в рассечку фаз А, В, С со стороны нейтрали. Блоки преобразователей тока 8 (ПТ1) и 9 (ПТ2) подключены к вторичным обмоткам трансформаторов тока 1, 2, 3 и 5, 6, 7 соответственно. Входы блока сравнения с эталонной величиной 10 (БС) подключены к вторичным обмоткам трансформаторов тока 1, 2, 3 и 5, 6, 7, а также к нулевой точке соединения этих трансформаторов тока.

Входы блока сравнения и логики 11 (БЛ) подключены к выходам преобразователей тока блоков 8 (ПТ1) и 9 (ПТ2). Выход блока сравнения и логики 11 (БЛ) и выход блока сравнения с эталонной величиной 10 (БС) подключеныв цепь отключения выключателя 12. Выключатель 12 установлен на линии, соединяющей источник питания с электродвигателем 4.

В качестве блоков преобразователей тока 8 (ПТ1) и 9 (ПТ2) могут быть использованы автотрансформаторы типа АТ-32. Блок сравнения с эталонной величиной 10 (БС) и блок сравнения и логики 11 (БЛ) могут быть выполнены на микроконтроллере серии 51 производителя amtel АТ89S53.

Трансформаторы тока 1, 2, 3 и 5, 6, 7 преобразуют токи в первичных цепях токопроводов фаз А, В, С электродвигателя 4 со стороны источника питания и со стороны нулевых выводов электродвигателя 4 во вторичные токи, отделяя первичные цепи высокого напряжения 3-10 кВ от вторичных цепей. Блоки преобразователей тока 8 (ПТ1) и 9 (ПТ2) преобразуют вторичные токи фаз А, В, С, полученные от трансформаторов тока 1, 2, 3 и 5, 6, 7 со стороны источника питания и со стороны нулевых выводов электродвигателя 4, в напряжения UA1, UB1, UC1 и UA2, UB2, UC2, соответственно.

В блоке сравнения 10 (БС) сравнивают вторичные токи со стороны источника питания и со стороны нулевых выводов электродвигателя 4.

В блоке сравнения и логики 11 (БЛ) обеспечиваются условия срабатывания защиты, которые определяют по одновременному выполнению следующих неравенств для фазы А или В, или С соответственно:

nUA1<UB1, nUA1<UC1 или nUВ1<UА1, nUВ1<UC1, или nUС1<UB1, nUС1<UА1; (1)

UA2>mUB2, UA2>mUC2 или UВ2>mUА2, UВ2>mUC2, или UС2>mUА2, UС2>mUВ2, (2)

где UA1, UB1, UC1 - напряжения, пропорциональные соответственно токам IА1, IВ1, IС1 в токопроводах фаз электродвигателя 4 со стороны источника питания;

UA2, UB2, UC2 - напряжения, пропорциональные соответственно токам IА2, IВ2, IС2 в токопроводах фаз электродвигателя 4 со стороны нулевых выводов;

n, m - коэффициенты пропорциональности,

где n>1 и m>1, их задают в блоке сравнения и логики 11(БС).

Коэффициенты пропорциональности n и m должны быть такими, чтобы блок сравнения и логики 11 (БЛ) не выдавал сигнала при максимальных токах внешнего трехфазного короткого замыкания, когда из-за погрешностей ε1=0,1 трансформаторов тока и погрешностей ε2=0,05 самого реализующего устройства отношения токов фаз достигают максимальных величин. Тогда, учитывая коэффициент запаса kЗ=1,05, получаем

n = U B1 U А1 = k З 1 + ε 2 1 ε 1 I КЗ I КЗ = 1 ,25 ,

где IКЗ - абсолютное значение максимального тока трехфазного короткого замыкания на выводах электродвигателя 4 без учета перечисленных погрешностей.

В нормальном режиме работы и при внешних трехфазных коротких замыканиях выполняются равенства:

UA1=UB1=UC1 и UA2=UB2=UC2,

и поэтому не выполняются неравенства (1) и (2). На выходе блока сравнения и логики 11 (БЛ) сигнал отсутствует и защита не срабатывает. При внешних несимметричных коротких замыканиях (КЗ) и обрывах проводов выполняется только одна пара выше указанных неравенств, например при двухфазном КЗ в точке 13 между фазами В и С (фиг. 2) ток в свободной фазе протекает по обмоткам поврежденных фаз электродвигателя 4 и подпитывает место КЗ. Поэтому выполняется неравенство (2). Но так как неравенство (1) не выполняется, то блок сравнения и логики 11(БЛ) не выдает сигнал, и защита не срабатывает.

При трехфазном КЗ в защищаемой зоне напряжения:

UA1=UB1=UC1 и UA2=UB2=UC2,

поэтому блоки преобразователей тока 8 (ПТ1), 9 (ПТ2) и блок сравнения и логики 11 (БЛ) сигнал на отключение не формируют.

В блоке сравнения 10 (БС) сравнивают величины токов, и если выполняются условия:

IA1-IА2≥IЭТ, IВ1-IВ2≥IЭТ и IС1-IС2≥IЭТ,

где IЭТ - эталонная величина,

IЭТ=1.3·IНОМ,

где IНОМ - номинальный ток электродвигателя 4,

то на выходе блока сравнения 10 (БС) формируется сигнал на отключение электродвигателя 4.

При двухфазном коротком замыкании на выводах электродвигателя 4, например, между фазами В и С, точка 14 (фиг. 3) со стороны источника питания, ток в фазе А становится меньше токов в фазах В и С, а со стороны нулевых выводов наоборот, так как ток в свободной фазе подпитывает место КЗ через поврежденные фазы. Выполняются обе пары неравенств, блок сравнения и логики 11 (БЛ) выдает сигнал, и выключатель 12 отключается.

Использование заявляемого способа позволяет повысить чувствительность защит к двухфазным коротким замыканиям.

Чувствительность защит, как правило, оценивают коэффициентом kч чувствительности. Для токовых защит:

kч=Iк.мин/Iс.з,

где Iк.мин - минимальный ток короткого замыкания,

Iс.з - ток срабатывания защиты, при достижении которого она дает сигнал на отключение.

В дистанционных защитах kч - это отношение сопротивлений. По аналогии с этими представлениями в заявляемом способе kч - это отношение коэффициентов пропорциональности nКЗ при двухфазном коротком замыкании и n. Определив ток двухфазного короткого замыкания, например, между фазами В и С на выводах электродвигателя мощностью 8МВт, подключенного к шинам напряжением 6кВ, и питающем их трансформаторе мощностью 25МВа, получаем, что токи, протекающие со стороны источника питания в поврежденных фазах электродвигателя IВ1=IС1=3800А, а в неповрежденной - IA1=770А. Разделив IВ1 и IС1 на IA1 для режима короткого замыкания, получаем nКЗ=IВ1/IA1=3800/770=4,9. При выполнении защит по заявляемому способу коэффициент чувствительности

kчз=nКЗ /n=4,9/1,25=3,9, причем это число не зависит от величины тока короткого замыкания, что очень важно при коротком замыкании через переходное сопротивление. Защита, выполняемая по способу, взятому за прототип, имеет

kч=IКЗMIN/IСЗ,

где IСЗ=kОТС·IНОМ,

где kОТС=2 - 4, в зависимости от того, на каких реле выполняется защита.

Принимая kОТС=2, получаем kч=3800/(770*2)=2,4. Для электродвигателей меньшей мощности, подключенных к тем же шинам, разница между kчз и kч еще больше.

Таким образом, заявляемый способ позволяет строить защиты, обладающие более высокой чувствительностью к двухфазным коротким замыканиям, чем способ-прототип.

Способ защиты электродвигателей от коротких замыканий, при котором измеряют токи в каждой фазе со стороны выводов выключателя электродвигателя и его нулевых выводов, сравнивают их по величине, и если разность между ними больше эталонной величины, подают сигнал на отключение выключателя электродвигателя, отличающийся тем, что сравнивают по величине токи между каждыми двумя фазами как со стороны выводов выключателя, так и со стороны нулевых выводов электродвигателя, и если со стороны выводов выключателя ток в одной из фаз меньше токов в двух других фазах по абсолютной величине в n раз, где n>1, а со стороны нулевых выводов ток в этой же фазе больше токов в двух других в m раз, где m>1, то подают сигнал на отключение выключателя электродвигателя.



 

Похожие патенты:

Использование: в области электротехники. Технический результат - расширение функциональных возможностей.

Изобретение относится к области электротехники и может быть использовано для защиты электрической сети энергоснабжения. Технический результат - повышение надежности и избирательности решений о рабочих состояниях параллельных линий многофазной электрической сети энергоснабжения.

Изобретение может быть использовано для релейной защиты линий электропередачи распределительных сетей напряжением 6-35 кВ. Технический результат заключается в повышении надежности работы устройства при неисправности цепей напряжения нулевой последовательности или при отсутствии в распределительном пункте или на трансформаторной подстанции трансформаторов напряжения, с помощью которых возможна организация цепей напряжения нулевой последовательности.

Использование: в области электротехники. Технический результат - повышение надежности.

Изобретение относится к электротехнической промышленности, в частности к электрическим схемам, и может быть использовано в составе схемы включения и аварийной блокировки металлорежущих станков, в том числе зубообрабатывающих станков с числовым программным управлением (ЧПУ).

Изобретение относится к электротехнике и, в частности, к устройствам контроля изоляции и защитного отключения шахтных электрических сетей. Технический результат заключается в повышении надежности устройства защитного отключения.

Использование: в области электротехники. Технический результат заключается в повышении надежности.

Изобретение относится к электронной технике СВЧ. Достигаемый технический результат - расширение рабочей полосы частот и снижение прямых потерь СВЧ при сохранении допустимой входной мощности.

Изобретение относится к электротехнике. Технический результат заключается в обеспечении дифференциально-фазной высокочастотной защиты линии электропередачи напряжением 110-220 кВ с двухсторонним питанием в сочетании с дальним резервированием релейных защит и коммутационных аппаратов подстанций, подключенных к ответвлениям от указанной линии.

Использование: в области электротехники. Технический результат - повышение точности и надежности срабатывания защиты.

Использование: в области электротехники. Технический результат - уменьшение энергопотребления. Схема энергоснабжения, соединенная сетевой линией с положительным потенциалом и GND-потенциалом блока питания, содержит катушку, подключенную первым выводом к положительному потенциалу, и вторым выводом - к GND-потенциалу, полупроводниковый переключатель, включенный между катушкой и GND-потенциалом, полупроводниковый переключатель, включенный между положительным потенциалом и катушкой, диод, включенный между вторым выводом катушки и положительным потенциалом в прямом направлении, и диод, включенный между GND-потенциалом и первым выводом катушки в прямом направлении. Аккумулятор, заряжаемый энергией сетевого блока питания по меньшей мере в одной фазе технологического процесса, имеет возможность зарядки накопленной в катушке энергией по меньшей мере в одной из фаз технологического процесса с последующим снабжением данной рекуперированной энергией катушки. Микроконтроллер активирует полупроводниковые переключатели в зависимости от параметров отслеженного детектирующей схемой сигнала, при достижении током на катушке порогового значения выключает полупроводниковые переключатели, что приводит к протеканию тока по рекуперирующему контуру, а при снижении тока до минимально допустимого, включает их, что приводит к использованию катушкой рекуперированной энергии. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области автоматики и может быть использовано для защиты приемников электрической энергии от аварийных значений напряжений в электрических сетях. Технический результат заключается в повышении помехоустойчивости устройства к сетевым импульсным помехам и гибкости его функционирования, сокращении времени и упрощении процедуры задания верхнего и нижнего порогов срабатывания устройства. Для этого заявленное устройство по напряжению содержит электрически связанные выпрямитель напряжения сети, делитель напряжения, аналого-цифровой преобразователь, микропроцессор, электронный цифровой коммутатор, узел индикации, узел коммутации. В качестве выпрямителя напряжения сети используется двухполупериодный выпрямитель напряжения электрической сети, в качестве аналого-цифрового преобразователя используется аналого-цифровой преобразователь, встроенный в микропроцессор. 1 ил.

Изобретение относится к электротехнике, а именно к схемам защиты трехфазных электрических линий, машин и приборов, в частности к схемам защиты, реагирующим на разность токов. Оно предназначено для защиты синхронных генераторов компенсаторов, а также синхронных и асинхронных двигателей. В устройство дополнительно введены второй четырехфазный мостовой выпрямитель, выходные зажимы которого являются вторыми выходными зажимами устройства, и три третьих дифференцирующих индукционных преобразователя тока, причем начала вторых обмоток тока подключены к общему нулевому зажиму защищаемой электрической машины, а концы этих обмоток тока соединены с концами соответствующих фазных обмоток этой машины, начала которых подключены к концам соответствующих третьих обмоток тока, начала которых непосредственно подключены к концам соответствующих по фазе токопроводящих жил линии для присоединения защищаемой машины к ее выключателю, при этом входные зажимы второго выпрямителя подключены по одному к общему нулевому зажиму устройства и началам третьих катушек всех групп, концы которых подключены к упомянутым соединительным узлам соответствующей фазы устройства. Технический результат: защита от внутренних коротких замыканий на двух участках зоны защиты: первый участок - сама электрическая машина, второй участок - выключатель, подключающий ее к электроэнергетической системе, и линия для присоединения защищаемой машины к этому выключателю, а также получение информации о том, на каком из двух участках зоны защиты произошло внутреннее короткое замыкание, одновременно с моментом срабатывания устройства продольной дифференциальной токовой защиты электрической машины. 1 ил.

Изобретение относится к области электротехники и может использоваться для преобразования постоянного тока в переменный. Достигаемый технический результат - повышение надежности. Реверсивный вентильный преобразователь содержит два разнонаправленных источника постоянного тока, объединенных одними выводами, предназначенными для подключения к нагрузке, снабжен устройством защитного отключения (УЗО), первый контактный вывод в положении первого прохода подключен к второму выводу первого источника, а первый контактный вывод в положении второго прохода УЗО предназначен для подключения ко второму выводу нагрузки, при этом катушечные выводы УЗО объединены, а средняя точка УЗО, образованная соединением контакта и обмотки, соединена со вторым выводом нагрузки. 1 ил.

Использование: в области электротехники и электроэнергетики. Технический результат - повышение точности компенсации емкостных токов при однофазных замыканиях на землю и расширение диапазона изменения параметров устройства. Устройство содержит три обмотки, каждая из которых размещена на отдельном стержне из магнитного материала, соединенные по схеме «звезда» или «зигзаг», входы которых соединены каждый с соответствующим своим фазным проводником электрической сети, а нейтральная точка соединена со входом четвертой обмотки с переменной индуктивностью, размещенной на четвертом стержне из магнитного материала с воздушными зазорами. Выход четвертой обмотки соединен с землей, все четыре стержня соединены ярмами с одной и с другой стороны. Ярма, соединяющие стержни первых трех обмоток состыкованы в виде двух симметричных трехлучевых звезд под углом 120 градусов относительно друг друга, и четвертый стержень соединяет места стыковки ярм. Параллельно четвертой катушке подключено переменное активно-реактивное (индуктивное или емкостное) сопротивление. Четвертая катушка выполнена с отводами, а переменное активно-реактивное сопротивление через коммутационный аппарат подключается параллельно части витков четвертой катушки. На четвертом стержне размещена дополнительная пятая катушка и к выводам этой катушки параллельно с ней включено второе переменное активно-реактивное сопротивление. 3 з.п. ф-лы, 5 ил.

Устройство для защиты конденсаторной батареи с заземленной нейтралью от внутренних повреждений содержит микропроцессорное устройство, обрабатывающее цифровые значения токов небаланса, токов, измеренных на вводе в батарею конденсаторов, напряжений, измеренных на шинах подстанции. Микропроцессор осуществляет расчет действующих значений ортогональных составляющих фазных токов и напряжений, расчет тока компенсации и расчет тока нулевой последовательности. Сравнивая токи с учетом заданной характеристики торможения, микропроцессор формирует признак срабатывания защиты. Включение и отключение признака срабатывания производится с учетом заданного коэффициента возврата. Также микропроцессор формирует по отдельному алгоритму признак неисправности вторичных контрольных цепей напряжения и блокирует включение признака срабатывания при наличии положительного признака неисправности вторичных контрольных цепей напряжения. Микропроцессор выявляет режимы, в которых возможно перегорание предохранителей секций, осуществляет расчет относительного значения тока небаланса, приращения относительного тока небаланса, суммарного тока небаланса по диагоналям с конденсаторами. Сравнивая значение суммарного тока небаланса с уставкой, микропроцессор формирует сигнал о наличии конденсаторов с перегоревшими секциями. 5 ил., 2 табл.

Использование: в области электротехники. Технический результат - повышение безопасности. Бытовой прибор (1) содержит сетевой кабель (2), который имеет сетевой штекер (3) для подключения бытового прибора (1) к энергоснабжению, систему (4) управления для управления эксплуатацией бытового прибора (1), причем сетевой штекер (3) содержит защитную схему (5). При этом обеспечена возможность установления между системой (4) управления и защитной схемой (5) канала (6) связи для передачи сигналов. 11 з.п. ф-лы, 2 ил.

Изобретение относится к защите тяговых сетей постоянного тока. Техническим результатом является повышение надежности срабатывания защиты от токов короткого замыкания, а также уменьшение вероятности ложных срабатываний. Результат достигается тем, что система дифференциальной защиты тяговой сети обеспечивает непрерывный мониторинг тока нагрузки питающего фидера и одновременно токов, потребляемых каждым транспортным средством на защищаемом участке тяговой сети. Для этого система включает в себя два типа устройств: расположенный на каждом транспортном средстве бортовой модуль и фидерный модуль, установленный в ячейке линейного выключателя. Бортовой модуль представляет собой комплект устройств, содержащий блоки измерения и обработки данных о потребляемом токе, приемник GPS/ГЛОНАСС, преобразователь интерфейса, модем и блок сигнализации водителю. Фидерный модуль содержит блоки обработки данных о токе нагрузки фидера и всех токов, потребляемых транспортными средствами, находящимися на защищаемом участке тяговой сети, фидерный модем, преобразователь интерфейса, блок формирования сигнала водителю и блоки формирования команды на отключение линейного выключателя и на включение сигнализации. Информация о токах, потребляемых транспортными средствами, передается бортовыми модемами по беспроводному каналу связи на фидерный модуль, который осуществляет суммирование сигналов с транспортных средств и анализ состояния тяговой сети на наличие либо отсутствие короткого замыкания на основе сравнения тока нагрузки фидера и суммарного тока, потребляемого подвижным составом на защищаемом участке тяговой сети. В результате, при наличии короткого замыкания, формируется сигнал на отключение линейного выключателя, а в случае возникновения режима перегрузки - сигнал водителям транспортных средств о необходимости перейти из режима тяги в режим выбега. 2 ил.

Устройство относится к области систем управления силовыми преобразователями. Техническим результатом является повышение точности работы и расширение функциональных возможностей устройства. Результат достигается тем, что устройство контроля амплитудной асимметрии напряжений содержит последовательно включенные первый демодулятор, первый сглаживающий фильтр, а также первый пороговый элемент, причем вход первого демодулятора соединен с первой входной клеммой устройства, вторая и третья входные клеммы устройства, выходная клемма, причем согласно изобретению в него введены последовательно включенные второй демодулятор и второй сглаживающий фильтр, последовательно включенные третий демодулятор и третий сглаживающий фильтр, а также первый, второй и третий сумматоры, первый второй и третий пороговые элементы, логический элемент «3И», при этом вход второго и третьего демодулятора подключен к второй и третьей входной клемме устройства соответственно, выход логического элемента «3И» соединен с выходной клеммой устройства, выход первого сглаживающего фильтра соединен с первым входом первого сумматора и подключен ко второму входу третьего сумматора, выход второго сглаживающего фильтра подключен к первому входу второго сумматора и соединен со вторым входом первого сумматора, выход третьего сглаживающего фильтра подключен к первому входу третьего сумматора и соединен со вторым входом второго сумматора, выход первого, второго и третьего сумматоров подключены к входу первого, второго и третьего пороговых элементов соответственно, а выходы пороговых элементов подключены к соответствующему входу логического элемента «3И». 1 ил.

Настоящее изобретение относится к способу выбора защитных зон в компоновке с множеством шин (11), при этом компоновка с множеством шин содержит шинные зоны (ZA1, ZB1, ZC1, ZA2, ZB2, ZC2) и ячейки (FB-1, BC-1, BS, BC-2, FB-2), соединяемые с шинными зонами (ZA1, ZB1, ZC1, ZA2, ZB2, ZC2), при этом ячейки (FB-1, BC-1, BS, BC-2, FB-2) содержат измерительные трансформаторы (CT1, CT2, CT3, CT4, CT5, CT6, CT7, CT8). Данный способ включает в себя этапы: получения первых данных о соединении, содержащих информацию о рабочем состоянии соединений измерительного трансформатора с шинной зоной; установления всех пар подключенных соединений шинной зоны с шинной зоной на основе первых данных о соединении; сравнения данных, соответствующих парам подключенных соединений шинной зоны с шинной зоной; выделения - на основе сравнения - каждой пары шинных зон, которая имеет шинную зону, являющуюся общей, по меньшей мере, с другой парой подключенного соединения шинной зоны с шинной зоной, соответствующей защитной зоне; и назначение любой шинной зоны, которая не подключена ни к какой иной шинной зоне, защитной зоной. 3 н. и 9 з.п. ф-лы, 4 ил.
Наверх