Способ управления прямым преобразователем и устройство для его осуществления



Способ управления прямым преобразователем и устройство для его осуществления
Способ управления прямым преобразователем и устройство для его осуществления

 


Владельцы патента RU 2537963:

АББ ШВАЙЦ АГ (CH)

Изобретение относится к области электротехники и может быть использовано в прямых преобразователях. Технический результат - уменьшение нежелательных флуктуаций энергии на фазовых модулях. В способе управления прямым преобразователем силовые полупроводниковые ключи коммутационных ячеек (2) соответствующего фазового модуля (1) управляются управляющим сигналом (S1). Для каждого фазового модуля (1) формируют управляющий сигнал (S1) на основе разности между опорным сигналом (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении напряжения (UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT) на фазовом модуле (1) и сигналом напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT,VLWR,VLWS,VLWT) на индуктивности (LUR,LUS,LUT,LVR,LVS,LVT,LWR,LWS,LWT), который формируют из опорного сигнала (Vref,UR, Vref,US, Vref.UT, Vref,VR Vref.VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), формируют из среднего значения ( P ¯ U , P ¯ V , P ¯ W ) или мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значения ( P ¯ R , P ¯ S , P ¯ T ) или мгновенного значения (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из суммы мгновенных значений (PUVW) или средних значений (PUVWM) мощностей фаз (U, V, W) первой системы тока или системы напряжения и из суммы мгновенных значений (PRST) или средних значений (PRSTM) мощностей фаз (R, S, Т) второй системы тока или системы напряжения. Также предлагается устройство для осуществления способа. 2 н. и 6 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к области силовой электроники. Оно основано на способе управления прямым преобразователем, а также устройстве для осуществления указанного способа согласно ограничительной части независимых пунктов формулы изобретения.

Уровень техники

Прямые преобразователи, в особенности матричные преобразователи, в прошлом имели скорее академическое значение. Однако в настоящее время прямые преобразователи имеют важное значение прежде всего в промышленных применениях, поскольку посредством прямого преобразователя, не содержащего дорогостоящей промежуточной цепи постоянного напряжения или цепи постоянного тока, можно преобразовать входное напряжение или входной ток первой амплитуды и первой частоты непосредственно в выходное напряжение или выходной ток второй амплитуды и второй частоты. Такая схема преобразователя приведена, например, в патенте США 6,900,998 В2. При этом, схема преобразователя имеет n=3 (входные фазовые подключения) и р=3 (выходные фазовые подключения), т.е. схема преобразователя в патенте США 6,900,998 В2 является трехфазной со стороны входа и со стороны выхода. Кроме того, схема преобразователя в патенте США 6,900,998 В2 содержит девять фазовых модулей, каждый с двухполюсной коммутационной ячейкой для коммутации положительного и отрицательного напряжения между полюсами, причем каждое выходное фазовое подключение соединено последовательно с каждым входным фазовым подключением непосредственно через коммутационную ячейку. Указанная коммутационная ячейка имеет управляемые однонаправленные силовые полупроводниковые ключи с регулируемым однонаправленным током и емкостным накопителем энергии.

Недостаток схемы преобразователя согласно патенту США 6,900, 998 В2 состоит в том, что напряжение в каждом ответвлении, т.е. в каждом фазовом модуле, не может быть установлено так, чтобы можно было добиться постоянного тока через коммутационные ячейки, в результате чего невозможна установка действительного тока через соответствующее ответвление. Вследствие этого, в схеме преобразователя согласно патенту США 6,900,998 В2 невозможен или сильно ограничен обмен электрической энергией между отдельными ответвлениями. Однако, если предполагается, что схема преобразователя должна быть способна передавать большое количество электрической энергии, то конденсаторы коммутационных ячеек согласно патенту США 6,900,998 В2 должны иметь большой размер, что приводит к необходимости значительного пространства для такой схемы преобразователя и к повышению ее стоимости. Для размещения систем, созданных с таким типом схем преобразователя, в любом случае, потребуется большое пространство и, соответственно, повысятся расходы.

Флуктуации энергии в отдельных фазовых модулях приводят к колебаниям напряжения в емкостных накопителях энергии соответствующих коммутационных ячеек. Для обеспечения безопасной и стабильной работы, а также для снижения затрат на реализацию схемы преобразователя необходимо ограничить и минимизировать амплитуду флуктуации энергии в указанном фазовом модуле, чтобы была возможность ограничения максимального напряжения на каждом отдельном емкостном накопителе энергии соответствующей коммутационной ячейки фазового модуля до требуемой величины и использования минимально возможного емкостного накопителя энергии.

В работе "A Methodology for Developing 'Chainlink' Converters", EPE, опубликованной 8 сентября 2009, приведена схема преобразователя, в которой каждый фазовый модуль имеет индуктивность, последовательно подключенную к последовательной схеме включения коммутационных ячеек.

В документе WO 2008/067788 А1 описывается способ управления преобразователем в соответствии с документом WO 2007/023064 А1, в котором регулируется энергия коммутационных ячеек. Способ, описанный в документе WO 2008/067788 А1, применим только для схем, соответствующих схеме преобразователя из документа WO 2007/023064 А1, в которых три фазы одной системы соединены с двумя фазами другой системы, причем ток на клеммах подключения схемы прямого преобразователя всегда равен нулю.

В работе "On Dynamics and Voltage Control of the Modular Multilevel Converter", EPE, опубликованной 8 сентября 2009, приведен способ управления преобразователем, в котором согласование фазовых модулей осуществляется с помощью предусмотренного для этого управления.

Раскрытие изобретения

Задачей изобретения является создание способа управления прямым преобразователем, позволяющего добиться незначительных флуктуаций энергии на фазовых модулях. Следующей задачей изобретения является устройство, с помощью которого наиболее простым образом может быть осуществлен способ согласно изобретению.

Указанные задачи решаются согласно признакам, приведенным в пунктах 1 и 5 формулы изобретения. В зависимых пунктах формулы изобретения представлены дополнительные признаки и преимущества изобретения.

Схема прямого преобразователя содержит, по меньшей мере, два фазовых модуля и обеспечивает соединение фаз первой системы тока или системы напряжения с фазами второй системы тока или системы напряжения. Кроме того, каждый фазовый модуль содержит множество двухполюсных коммутационных ячеек, соединенных последовательно, и каждая коммутационная ячейка содержит управляемые двунаправленные полупроводниковые силовые ключи с регулируемым однонаправленным током и емкостным накопителем энергии. Согласно предлагаемому способу полупроводниковые силовые ключи коммутационных ячеек фазового модуля управляются управляющим сигналом. Согласно изобретению каждый фазовый модуль содержит индуктивность, последовательно подключенную к последовательной схеме включения коммутационных ячеек, и управляющий сигнал для каждого фазового модуля формируется на основе разности между опорным сигналом в отношении напряжения на фазовом модуле и сигналом напряжения на индуктивности, причем сигнал напряжения на индуктивности сформирован из опорного сигнала в отношении тока через фазовый модуль. Опорный сигнал в отношении тока через фазовый модуль, в свою очередь, формируется из среднего значения или мгновенного значения мощности фазы первой системы тока или системы напряжения, подключенной к фазовому модулю, из среднего значения или мгновенного значения мощности фазы второй системы тока или системы напряжения, подключенной к фазовому модулю, из суммы мгновенных значений или средних значений мощности фазы первой системы тока или системы напряжения и из суммы мгновенных значений или средних значений мощности фазы второй системы мощности или системы напряжения.

Поскольку среднее значение или мгновенное значение мощности фазы первой системы тока или системы напряжения, подключенной к фазовому модулю, среднее значение или мгновенное значение мощности фазы второй системы тока или системы напряжения, подключенной к фазовому модулю, сумма мгновенных значений или средних значений мощностей фаз первой системы тока или системы напряжения и сумма мгновенных значений или средних значений мощностей фаз второй системы тока или системы напряжения, в конечном счете, включены в формирование управляющего сигнала, то, предпочтительно, может быть достигнуто такое распределение всех токов фаз и токов емкостного накопителя энергии в фазовых модулях, чтобы амплитуда флуктуаций энергии на фазовых модулях была низкой, в результате чего, может быть достигнута надежная и стабильная работа прямого преобразователя и могут использоваться емкостные накопители энергии коммутационных ячеек небольшого размера, занимающие небольшое пространство и экономичные.

Для осуществления способа управления прямым преобразователем устройство согласно изобретению содержит схему управления для каждого фазового модуля, генерирующую управляющий сигнал, причем указанная схема управления подключается к полупроводниковым силовым ключам коммутационных ячеек фазового модуля. Что касается каждого фазового модуля, то разность между опорным сигналом в отношении напряжения на фазовом модуле и сигналом напряжения на индуктивности возбуждает схему управления для формирования управляющего сигнала. Кроме того, для всех фазовых модулей предусмотрен общий первый вычислительный блок для формирования сигнала напряжения на индуктивности из опорного сигнала в отношении тока через фазовый модуль. К тому же, для всех фазовых модулей предусмотрен общий второй вычислительный блок для формирования опорного сигнала в отношении тока через фазовый модуль из среднего значения или мгновенного значения мощности фазы первой системы тока или системы напряжения, подключенной к фазовому модулю, из среднего значения или мгновенного значения мощности фаз второй системы тока или системы напряжения, подключенной к фазовому модулю, из суммы мгновенных значений или средних значений мощности фаз первой системы тока или системы напряжения и из суммы мгновенных значений или средних значений мощности фаз второй системы тока или системы напряжения.

Таким образом, согласно изобретению предлагается простое и экономичное устройство для осуществления способа управления прямым преобразователем, поскольку схема преобразователя является чрезвычайно недорогой, к тому же, для монтажа требуется небольшое количество компонентов. Соответственно, с помощью указанного устройства способ согласно изобретению может быть осуществлен наиболее просто.

Указанные и дополнительные задачи, преимущества и признаки настоящего изобретения будут очевидны из следующего подробного описания предпочтительных вариантов осуществления изобретения со ссылкой на чертежи.

Краткое описание чертежей

Фиг.1 - вариант устройства согласно изобретению для осуществления способа управления прямым преобразователем согласно изобретению.

Фиг.2 - вариант схемы прямого преобразователя.

Ссылочные позиции и наименования обозначаемых на чертежах элементов приведены в перечне ссылочных позиций. На чертежах одинаковым деталям присвоены, по существу, одинаковые ссылочные позиции. Изобретение описывается на примере вариантов его осуществления, которые не являются ограничительными.

Способы осуществления изобретения

На фиг.1 представлен вариант устройства согласно изобретению для осуществления способа управления прямым преобразователем согласно изобретению, причем для упрощения чертежа на фиг.1 показан лишь один фазовый модуль 1 схемы прямого преобразователя. На фиг.1 представлена схема прямого преобразователя, который, как правило, содержит по меньшей мере два фазовых модуля 1, при этом каждый фазовый модуль 1 соединяет фазы U, V, W первой системы тока или системы напряжения с фазами R, S, Т второй системы тока или системы напряжения. Исходя из фиг.1 предполагается, что первая система тока или система напряжения имеет три фазы U, V, W и вторая система тока или система напряжения также имеет три фазы R, S, Т, причем очевидно, что в системах может быть любое количество фаз. Каждый фазовый модуль 1 содержит множество двухполюсных коммутационных ячеек 2, соединенных последовательно, причем каждая коммутационная ячейка 2 имеет управляемые двунаправленные силовые полупроводниковые ключи с регулируемым однонаправленным током и емкостным накопителем энергии. Соответствующий управляемый силовой полупроводниковый ключ разработан, в частности, как запираемый тиристор (ОТО - тиристорный выключатель) или как интегрированный тиристор с коммутируемым управляющим электродом (IGCT - запираемый тиристор с интегрированным управлением) в каждом случае с антипараллельно-переключаемым диодом. Однако также можно спроектировать управляемый силовой полупроводниковый ключ, например, как силовой MOSFET транзистор с дополнительно антипараллельно-соединенным диодом или как биполярный транзистор с изолированным затвором (IGBT), размещенный в изоляции с дополнительно антипараллельно-соединенным диодом. На фиг.2 в качестве примера приведен вариант прямого преобразователя с фазовыми модулями, описанными выше.

Согласно изобретению силовые полупроводниковые ключи коммутационных ячеек 2 каждого фазового модуля 1 управляются управляющим сигналом S1. Управляющий сигнал S1 для каждой коммутационной ячейки 2, предпочтительно, временно смещен, чтобы каждую коммутационную ячейку 2 можно было регулировать, предпочтительно, при временном смещении. Согласно изобретению, каждый фазовый модуль 1 имеет индуктивность LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT, последовательно подключенную к последовательной схеме включения коммутационных ячеек, и для каждого фазового модуля 1 управляющий сигнал S1 сформирован на основе разности между опорным сигналом Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT в отношении напряжения UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT на фазовом модуле 1 и сигналом напряжения VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT на индуктивности LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT, причем сигнал напряжения VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT на индуктивности LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT сформирован из опорного сигнала iref,UR, lref,US, iref,UT, Iref.VR, iref,VS, iref,vt, iref,WR, iref,WS, iref,WT в отношении тока iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT через фазовый модуль 1. Опорный сигнал Vref,UR, Vref,US, Vref.UT, Vref,VR Vref.VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT в отношении напряжения UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWR на фазовом модуле 1, предпочтительно, генерируется сильноточным регулятором тока фаз U, V, W первой системы тока или системы напряжения, а также сильноточным регулятором тока фаз R, S, Т второй системы тока или системы напряжения. Кроме того, опорный сигнал iref,UR, iref.US, iref.UT, iref.VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT в отношени тока iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT через фазовый модуль 1 сформирован из среднего значения P ¯ U , P ¯ V , P ¯ W или мгновенного значения PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, из среднего значения P ¯ R , P ¯ S , P ¯ T или мгновенного значения, PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, из суммы мгновенных значений PUVW или средних значений PUVWM мощностей фаз U, V, W первой системы тока или системы напряжения и из суммы мгновенных значений PRST или средних значений PRSTM мощностей фаз R, S, Т второй системы тока или системы напряжения.

Поскольку среднее значение P ¯ U , P ¯ V , P ¯ W или мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, среднее значение P ¯ R , P ¯ S , P ¯ T или мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, сумма мгновенных значений PUVW или средних значений PUVWM мощностей фаз U, V, W первой системы тока или системы напряжения и сумма мгновенных значений PRST или средних значений PRSTM мощностей фаз R, S, Т второй системы тока или системы напряжения, в конечном счете, включены в формирование управляющего сигнала S1, то, предпочтительно, может быть достигнуто такое распределение всех токов фазы и токов емкостного накопителя энергии среди фазовых модулей 1, чтобы амплитуда флуктуации энергии на фазовых модулях 1 была низкой, в результате чего, может быть достигнута надежная и стабильная работа схемы прямого преобразователя и могут использоваться емкостные накопители энергии коммутационных ячеек 2 небольшого размера, занимающие небольшое пространство и экономичные.

Сформированный сигнал напряжения VLXY на индуктивности LXY, соответствующего фазового модуля 1, обычно описывается следующей формулой:

V L X Y = L X Y d d t i r e f , X Y [ 1 ] ,

где, как правило, индекс XY указывает на соединение фазы Х первой системы тока или системы напряжения с фазой Y второй системы тока или системы напряжения. Альтернативно, сигнал напряжения VLXY на индуктивности LXY соответствующего фазового модуля 1 также может быть сформирован, например, посредством обратной связи:

V L X Y = K ( i r e f , X Y i X Y ) [ 1 a ] ,

где К является подбираемым коэффициентом.

Согласно фиг.1, силовые полупроводниковые ключи каждой коммутационной ячейки 2 соединены по мостовой схеме, причем емкостный накопитель энергии подключается параллельно мостовой схеме. Альтернативно, можно соединить силовые полупроводниковые ключи каждой коммутационной ячейки 2 по полумостовой схеме, причем емкостный накопитель энергии подключается параллельно полумостовой схеме.

Для каждого фазового модуля 1 опорный сигнал iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT в отношении тока iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT через фазовый модуль 1 дополнительно сформирован из тока iU, iV; iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и из тока iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1.

Опорный сигнал iref,XY в отношении тока iXY через фазовый модуль 1 обычно описывается следующей формулой:

i r e f , X Y = P ¯ X P 1 M i Y + P ¯ Y P 2 M i X [ 2 a ] ,

где, как правило, индекс Х обозначает фазу первой системы тока или системы напряжения, а индекс Y обозначает фазу второй системы тока или системы напряжения, P ¯ X , P ¯ Y являются средними значениями PX, PY мощностей фаз, P1M является суммой средних значений мощностей фаз первой системы тока или системы напряжения и P2M является суммой средних значений мощностей фаз второй системы тока или системы напряжения.

Альтернативно, опорный сигнал iref,xy в отношении тока ixy через фазовый модуль 1 также может описываться следующей формулой:

i r e f , X Y = P ¯ X P 1 M i Y + P ¯ Y P 2 M i X [ 2 a ] ,

где, как правило, индекс Х также обозначает фазу первой системы тока или системы напряжения, индекс Y обозначает фазу второй системы тока или системы напряжения, PX, PY являются мгновенными значениями мощностей фаз, P1 является суммой мгновенных значений мощностей фаз первой системы тока или системы напряжения и P2 является суммой средних значений мощностей фаз второй системы тока или системы напряжения.

Соответствующий ток iU, iV, iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1 и соответствующий ток iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, имеет, предпочтительно, мгновенное значение, которое определяется, например, измерением.

Для каждого фазового модуля 1, мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, сформировано, например, из опорного сигнала Iref,U, Iref,V, Iref,W в отношении тока iU, iV, iW фазы U, V, W первой системы тока или системы напряжения и из опорного сигнала Vref,U, Vref,V, Vref,W в отношении напряжения uU, uV, uW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1. Мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, связанной с фазовым модулем 1, альтернативно, можно сформировать, к примеру, из тока iU, iV, iW фазы, т.е. из измеренного значения тока фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и из напряжения uU, uV, uW фаз, т.е. из измеренного значения напряжения фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1.

Кроме того, мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, сформировано, например, из опорного сигнала Iref,R, Iref,S, Iref,T в отношении тока iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, и из опорных сигналов Vref,R, Vref,S, Vref,T в отношении напряжения UR, US, UT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1. Мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, альтернативно, можно сформировать, к примеру, из тока iR, iS, iT фазы, т.е. из измеренного значения напряжения фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, и из напряжения uU, uV, uW фазы, т.е. из измеренного значения напряжения фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1.

Соответствующее мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и соответствующее мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, рассчитывают, в частности, по формуле [3а]:

P X = V r e f , X I r e f , X P Y = V r e f , Y I r e f , Y [ 3 a ] ,

где, как правило, индекс Х также обозначает фазу первой системы тока или системы напряжения и индекс Y обозначает фазу второй системы тока или системы напряжения.

В каждом случае предварительно определяются опорный сигнал Iref,U, Iref,V, Iref,W в отношении тока iU, iV, iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, или обобщенно опорный сигнал Iref,X, опорный сигнал Vref,U, Vref,V, Vref,W в отношении напряжения uU, uV, uW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, или обобщенно опорный сигнал Vref,X, опорный сигнал Iref,R, Iref,S, Iref,T в отношении тока iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, или обобщенно опорный сигнал Iref,Y и опорный сигнал Vref,R, Vref,S, Vref,T в отношении напряжения uR, uS, uT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, или обобщенно опорный сигнал Vref,Y.

Соответствующее мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и соответствующее мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, альтернативно, можно рассчитать на основании вышеупомянутых измеренных значений по формуле [3b].

P X = u X i X P Y = u Y i Y [ 3 b ] ,

где, как правило, индекс Х также обозначает фазу первой системы тока или системы напряжения и индекс Y обозначает фазу второй системы тока или системы напряжения.

Следует отметить, что вышеупомянутое мгновенное значение PU, PV, PW, PR, PS, PT мощности также может быть получено другими способами.

Устройство согласно изобретению для осуществления способа управления прямым преобразователем, представленное на фиг.1, содержит схему 3 управления для каждого фазового модуля 1, генерирующую управляющий сигнал S1, при этом указанная схема 3 управления подключена к силовым полупроводниковым ключам коммутационных ячеек 2 фазового модуля 1. В изобретении применительно для каждого фазового модуля 1, разность между опорными сигналами Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT в отношении напряжения UUR, UUS, UUT, UVR, UVS, UVT, UWR, UWS, UWT на фазовом модуле 1 и сигналами напряжения VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT на индуктивности LUR, LUS, LUT, LVR, LYS, LVT, LWR, LWS, LWR возбуждает схему 3 управления для формирования управляющего сигнала S1. Кроме того, предусмотрен общий первый вычислительный блок 4 для всех фазовых модулей 1, чтобы можно было сформировать сигнал напряжения VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT на индуктивностях LUR, LUS, LUT, LVR, LVS, LVT, LWR, LWS, LWT, в частности, согласно формуле [1], из опорного сигнала iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT в отношении тока iUR, iUS, iUT, iVR, iVS, iVT, iWR, iWS, iWT через фазовый модуль 1. К тому же, предусмотрен общий второй вычислительный блок 5 для всех фазовых модулей 1, чтобы можно было сформировать опорный сигнал iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT в отношении тока iUR, iUS, iUT, iVR, iVS, iVT, iWR, iWS, iWT через фазовый модуль 1, в частности, согласно формуле [2а] или [2b], из среднего значения P ¯ U , P ¯ V , P ¯ W или мгновенного значения PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, из среднего значения P ¯ R , P ¯ S , P ¯ T или мгновенного значения PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, из суммы мгновенных значений PUVW или средних значений PUVWM мощностей фаз U, V, W первой системы тока или системы напряжения и из суммы мгновенных значений PRST или средних значений PRSTM мощностей фаз R, S, Т второй системы тока или системы напряжения.

Общий второй измерительный блок 5 дополнительно формирует опорный сигнал iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT, в отношении тока iUR, iUS, iUT, iVR, iVS, iVT, iWR, iWS, iWT через фазовый модуль 1, в частности, согласно формуле [2а] или [2b], из тока iU, iV, iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и из тока iR, iS, iT фазы R, S, Т второй системы тока или напряжения, подключенной к фазовому модулю 1.

Кроме того, предусмотрен общий третий вычислительный блок 6 для всех фазовых модулей 1, чтобы можно было сформировать мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, в частности, согласно формуле [3а], из опорного сигнала Iref,U, Iref,V, Iref,W в отношении тока iU, iV, iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и из опорного сигнала Vref,U, Vref,V, Vref,W в отношении напряжения uU, uV, uW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и сформировать мгновенное значение PR, PS, PT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, в частности, согласно формуле [3а], из опорного сигнала Iref,R, Iref,S, Iref,T в отношении тока iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, и из опорного сигнала Vref,R, Vref,S, Vref,T в отношении напряжения uR, uS, uT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1.

При использовании общего третьего вычислительного блока 6 для всех фазовых модулей 1, альтернативно, можно сформировать мгновенное значение PU, PV, PW мощности фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, в частности, согласно формуле [3b], из тока iU, iV, iW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и из напряжения uU, uV, uW фазы U, V, W первой системы тока или системы напряжения, подключенной к фазовому модулю 1, и сформировать мгновенное значение PR, PS, RT мощности фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, в частности, согласно формуле [3b], из тока iR, iS, iT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1, и из напряжения uR, uS, uT фазы R, S, Т второй системы тока или системы напряжения, подключенной к фазовому модулю 1.

В конечном счете следует отметить, что представленное, в частности, на фиг.1 устройство согласно изобретению для осуществления способа управления прямым преобразователем согласно изобретению может быть простым и экономичным, поскольку затраты на изготовление схемы являются чрезвычайно низкими и для монтажа требуется небольшое количество компонентов. С использованием указанного устройства способ согласно изобретению может быть осуществлен весьма просто.

Перечень ссылочных позиций

1 фазовый модуль

2 коммутационная ячейка

3 схема управления

4 первый вычислительный блок

5 второй вычислительный блок

6 третий вычислительный блок

1. Способ управления прямым преобразователем, содержащим по меньшей мере два фазовых модуля (1) для соединения фаз (U, V, W) первой системы тока или системы напряжения с фазами (R, S, Т) второй системы тока или системы напряжения, причем каждый фазовый модуль (1) содержит множество двухполюсных коммутационных ячеек (2), соединенных последовательно, и каждая коммутационная ячейка (2) включает в себя управляемые двунаправленные силовые полупроводниковые ключи с управляемым однонаправленным протеканием тока и емкостной накопитель энергии, включающий управление силовыми полупроводниковыми ключами коммутационных ячеек (2) соответствующего фазового модуля (1) с помощью управляющего сигнала (S1) и подключение индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) в каждом фазовом модуле (1) последовательно к указанной последовательной схеме включения коммутационных ячеек,
отличающийся тем, что для каждого фазового модуля (1) управляющий сигнал (S1) формируют на основе разности между опорным сигналом (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении напряжения (UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT) на фазовом модуле (1) и сигналом напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT), а
сигнал напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) формируют из опорного сигнала (iref,UR, lref,US, iref,UT, Iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), причем
опорный сигнал (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) формируют из среднего значения ( P ¯ U , P ¯ V , P ¯ W ) или мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значения ( P ¯ R , P ¯ S , P ¯ T ) или мгновенного значения, (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из суммы мгновенных значений (PUVW) или средних значений (PUVWM) мощностей фаз (U, V, W) первой системы тока или системы напряжения и из суммы мгновенных значений (PRST) или средних значений (PRSTM) мощностей фаз (R, S, Т) второй системы тока или системы напряжения.

2. Способ по п.1, отличающийся тем, что для каждого фазового модуля (1) опорный сигнал (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) дополнительно формируют из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).

3. Способ по п.2, отличающийся тем, что для каждого фазового модуля (1) мгновенное значение (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из опорного сигнала (Iref,U, Iref,V, Iref,W) в отношении тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,U, Vref,V, Vref,W) в отношении напряжения (UU, UV, UW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а
мгновенное значение (PR, PS, РT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из опорного сигнала (Iref,R, Iref,S, Iref,T) в отношении тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,R, Vref,S, Vref,T) в отношении напряжения (UR, US, UT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).

4. Способ по п.2, отличающийся тем, что для каждого фазового модуля (1) мгновенное значение (РU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uU, uV, uW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а
мгновенное значение (PR, PS, РT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uR, uS, uT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).

5. Устройство для осуществления способа управления прямым преобразователем, содержащим по меньшей мере два фазовых модуля (1) для соединения фаз (U, V, W) первой системы тока или системы напряжения с фазами (R, S, Т) второй системы тока или системы напряжения, причем каждый фазовый модуль (1) содержит множество двухполюсных коммутационных ячеек (2), соединенных последовательно, и каждая коммутационная ячейка (2) включает в себя управляемые двунаправленные силовые полупроводниковые ключи с управляемым однонаправленным протеканием тока и емкостной накопитель энергии,
содержащее схему (3) управления для каждого фазового модуля (1), выполненную с возможностью формирования управляющего сигнала (S1), причем указанная схема (3) управления подключена к силовым полупроводниковым ключам коммутационных ячеек (2) фазового модуля (1) и каждый фазовый модуль (1) содержит индуктивность (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT), последовательно подключенную к последовательной схеме включения коммутационных ячеек,
отличающееся тем, что для формирования управляющего сигнала (S1) на схему (3) управления для каждого фазового модуля (1) подается разность между опорным сигналом (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении напряжения (UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT) на фазовом модуле (1) и сигналом напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LYS, LVT; LWR, LWS, LWT),
при этом устройство содержит общий первый вычислительный блок (4) для всех фазовых модулей (1), выполненный с возможностью формирования сигнала напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) из опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), и
общий второй вычислительный блок для всех фазовых модулей (1), выполненный с возможностью формирования указанного опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) из среднего значения ( P ¯ U , P ¯ V , P ¯ W ) или мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значения ( P ¯ R , P ¯ S , P ¯ T ) или мгновенного значения (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из суммы мгновенных значений (PUVW) или средних значений (PUVWM) мощностей фаз (U, V, W) первой системы тока или системы напряжения и из суммы мгновенных значений (PRST) или средних значений (PRSTM) мощностей фаз R, S, Т второй системы тока или системы напряжения.

6. Устройство по п.5, отличающееся тем, что общий второй вычислительный блок выполнен с возможностью формирования указанного опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), также из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или напряжения, подключенной к фазовому модулю (1).

7. Устройство по п.6, отличающееся тем, что содержит общий третий вычислительный блок (6) для всех фазовых модулей (1), выполненный с возможностью формирования указанного мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из опорного сигнала (Iref,U, Iref,V, Iref,W) в отношении тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,U, Vref,V, Vref,W) в отношении напряжения (UU, UV, UW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а также с возможностью формирования указанного мгновенного значения (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из опорного сигнала (Iref,R, Iref,S, Iref,T) в отношении тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,R, Vref,S, Vref,T) в отношении напряжения (UR, US, UT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).

8. Устройство по п.6, отличающееся тем, что содержит общий третий вычислительный блок (6) для всех фазовых модулей (1), выполненный с возможностью формирования указанного мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения и из напряжения (uU, uV, uW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а также с возможностью формировать указанное мгновенное значение (PR, PS, RT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uR, uS, uT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю 1.



 

Похожие патенты:

Изобретение относится к преобразовательной технике, широко применяемой, например, в солнечной энергетике. Технический результат заявляемого решения - улучшение массогабаритных показателей и расширение функциональных возможностей достигается за счет обеспечения работы на трехфазную нагрузку и совместной работы с трехфазной сетью путем выполнения многоуровневого повышающего трехфазного преобразователя, содержащего общий источник постоянного напряжения, например в виде солнечной батареи, однофазный мостовой автономный инвертор, к выходу которого подключен дополнительно введенный трехфазный преобразователь частоты ячейкового типа, состоящий из высокочастотного повышающего однофазного многообмоточного трансформатора, однофазных выпрямительно-инверторных ячеек, соединенных с вторичными обмотками трансформатора, системы управления, датчиков тока, напряжения и задатчика выходного напряжения промышленной частоты.

Изобретение относится к области электротехники. Компоновка для подачи электрической энергии на нагрузку через фильтрующую шину содержит, по меньшей мере, два преобразователя источника напряжения, каждый из которых подключен параллельно к фильтрующей шине через катушку индуктивности и сконфигурирован с возможностью совместной работы на нагрузку.

Изобретение относится к области электротехники. Многофазной электрической машиной (30) управляют при помощи, по меньшей мере, двух параллельных многофазных инверторов (101, 102), при этом каждый инвертор содержит ветви (101a, 101b, 101c; 102a, 102b, 102c) в количестве, равном числу фаз электрической машины, и инверторами управляют посредством широтно-импульсной модуляции (ШИМ).

Изобретение относится к силовой преобразовательной технике и является DC/DC-преобразователем с трансформаторной связью между источником питания и нагрузкой. Технический результат заключается в повышении эффективности и надежности заявленного устройства.

Изобретение относится к области электротехники, а именно к сварочному оборудованию, в частности к управлению сварочными инверторами. Технический результат заключается в снижении дисперсии силового тока и снижении обрыва дуги и технологических коротких замыканий.

Изобретение относится к трехфазному источнику бесперебойного питания. Технический результат заключается в осуществлении заявленного изобретения без использования ступенчатого изменения в работе двух преобразователей электроэнергии так, чтобы на нагрузку могла подаваться стандартная трехфазная электроэнергия.

Изобретение относится к области электротехники и может быть использовано для преобразования подведенной электрической мощности в выходные мощности во множестве различных фаз.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к электронике, в частности к средствам выпрямления переменного электрического напряжения. Целью изобретения является увеличение значения постоянного напряжения, генерируемого устройством.

Изобретение относится к области электротехники и может быть использовано для преобразования подведенной электрической мощности в выходные мощности во множестве различных фаз.

Изобретение относится к области электротехники и может быть использовано для управления резонансным преобразователем мощности. Техническим результатом является уменьшение флуктуаций на выходе резонансного преобразователя мощности.

Изобретение относится к области электротехники и может быть использовано для преобразования мощности постоянного тока в мощность переменного тока. Техническим результатом является предотвращение быстрых флуктуаций тока, связанных с операциями включения/выключения каждого элемента переключения.

Изобретение относится к области силовой электроники и может быть использовано для питания автономных инверторов, станций катодной защиты, установок микродугового оксидирования и для питания других различных электротехнологических установок.

Изобретение относится к области электротехники, к управлению преобразователем, связанным, по меньшей мере, с одним из источников бесперебойного питания. Техническим результатом является устранение искажений из сигнала управления, улучшение работы преобразователя, снижение гармонических искажений и субгармонических колебаний из сигнала управления.

Изобретение относится к области электротехники и может быть использовано в системах запуска нагрузки такой, как электродвигатель. Техническим результатом является понижение пульсирующего тока в сглаживающем конденсаторе даже при ШИМ управлении инвертором в режиме двухфазной модуляции.

Изобретение относится к области электротехники и может быть использовано для питания высоковольтных асинхронных и синхронных двигателей. .

Изобретение относится к преобразовательной технике и может быть использовано в системах управления тиристорами в преобразователях различной мощности. .

Изобретение относится к области электротехники и может быть использовано в устройствах преобразования мощности электромобиля. .

Изобретение относится к устройству для выработки постоянного напряжения из переменного напряжения с параллельно включенными диодными мостами, преимущественно, для энергопитания железных дорог.

Изобретение относится к области электротехники и может быть использовано в преобразователях мощности. Технический результат - повышение коэффициента мощности и коэффициента полезного действия. Звено (3) DC содержит конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выдает пульсирующее напряжение (vdc) звена DC. Схема (4) инвертора преобразует выход звена (3) DC в АС путем коммутации и подает АС в подключенный к ней двигатель (7). Контроллер (5) управляет коммутацией схемы (4) инвертора таким образом, что токи (iu, iv и iw) двигателя пульсируют синхронно с пульсацией напряжения (vin) питания. Контроллер (5) управляет коммутацией схемы (4) инвертора в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw) двигателя. 5 з.п. ф-лы, 5 ил.
Наверх