Способ теплопередачи и антигравитационная бесфитильная тепловая труба



Способ теплопередачи и антигравитационная бесфитильная тепловая труба
Способ теплопередачи и антигравитационная бесфитильная тепловая труба
Способ теплопередачи и антигравитационная бесфитильная тепловая труба
Способ теплопередачи и антигравитационная бесфитильная тепловая труба
Способ теплопередачи и антигравитационная бесфитильная тепловая труба
Способ теплопередачи и антигравитационная бесфитильная тепловая труба

 


Владельцы патента RU 2539167:

Открытое акционерное общество "Газпром промгаз" (RU)

Изобретение относится к области энергетики и может быть использовано в системах аккумулирования теплоты и холода, например в антигравитационных бесфитильных тепловых трубах. Способ теплопередачи включает размещение в первом теплоносителе второго теплоносителя и теплообмен между ними. Используют второй теплоноситель, способный к перемещению в первом теплоносителе за счет уменьшения его объема при повышении температуры для переноса аккумулированной тепловой энергии. Аккумулируют тепловую энергию в вышерасположенной области первого теплоносителя с более высокой температурой, а переносят аккумулированную тепловую энергию в нижерасположенную область первого теплоносителя с более низкой температурой. При понижении температуры, второй теплоноситель из нижерасположенной области первого теплоносителя с более низкой температурой перемещают в вышерасположенную область первого теплоносителя с более высокой температурой за счет увеличения его объема. Средство переноса теплоты обычно выполнено с возможностью возвращения в зону приема теплоты теплоносителем при восстановлении равновесия между силами его плавучести и силами тяжести вследствие снижения температуры. Технический результат - повышение энергоэффективности. 2 н. и 9 з.п. ф-лы, 6 ил.

 

Изобретение относится к области энергетики и может быть использовано в системах аккумулирования теплоты и холода.

Известные конструкции обычных гравитационных тепловых труб или термосифонов представляют собой устройства, в которых подвод (в приемнике) и последующее отведение теплоты (в передатчике) осуществляется, соответственно, в их нижних и верхних частях. Таким образом, ориентация теплопередающей трубы в пространстве строго определена и формирует граничные условия эксплуатации.

Для случаев, при которых подвод теплоты следует осуществлять в верхней точке, разработаны теплопередающие трубы с противоположным расположением приемника и передатчика [Дан П.Д., Рей Д.А. Тепловые трубы. Москва, «Энергия», 1979, с.168]. К ним относятся антигравитационный термосифон и обратные фитильные трубы, обладающие, между тем, рядом недостатков.

Основным недостатком существующих антигравитационных термосифонов является их сложная конструкция, которая для возврата конденсата в испаритель должна содержать «паровой подъемный насос», либо электродвигатель в нижней части. Кроме того, обратные фитильные тепловые трубы, основанные на капиллярном эффекте, имеют предельное расстояние передачи теплоты в пределах 1 м.

Известен способ работы тепловой трубы, по существу, теплопередачи путем частичного испарения теплоносителя в зоне испарения, отделения пара от жидкости, транспортированния паров под действием перепада давлений в зону конденсации, конденсации паров, смешения конденсата с отделенной жидкостью, транспортирования теплоносителя вниз под действием сил тяжести и вязкостных сил в зону испарения и частичного охлаждения его при транспортировании, в котором для повышения термодинамической эффективности при передаче тепла сверху вниз, в качестве, теплоносителя используют смесь жидкостей, выделяющих тепло при смешении, причем перед смешением конденсата и отделенной жидкости их транспортируют вниз раздельно, а конденсацию осуществляют при начальной температуре, соответствующей значению, вычисленному с использованием математического выражения (SU 1064113, 1983).

Недостатком известного способа является его сложность в осуществлении и низкая энергоэффективность.

Известно в технике использование разницы в температуре воды на поверхности и в глубине. Используют тепловое расширение рабочего тела для перемещения объекта находящегося в верхней точке траектории до тех пор, пока рабочее тело не нагреется до температуры окружающей среды и давление насыщенных паров не повысится до соответствующего уровня. При достижении нижней точки траектории объект находится в состоянии нейтральной плавучести до охлаждения рабочего тела до температуры окружающей среды, конденсации паров и уменьшения давления насыщенных паров. Здесь используется градиент температуры окружающей среды для перемещения объекта по глубине (RU 2124457, 1999).

Это известное техническое решение не предназначено для передачи теплоты с поверхности воды (из вышерасположенной области) на глубину (в нижерасположенную область), а сводится к использованию разницы температур между верхней (на поверхности воды) и нижней (в глубине) областями для перемещения объекта по вертикали в водоеме. Здесь объем теплоносителя неограничен.

Предлагается группа технических решений, которая объединена единым изобретательским замыслом и представляет собой способ теплопередачи и реализующую его антигравитационную бесфитильную трубу.

Техническим результатом предложенной группы технических решений является повышение энергоэффективности.

Технический результат достигается тем, что способ теплопередачи включает размещение в первом теплоносителе второго теплоносителя и теплообмен между ними, при этом используют второй теплоноситель, способный к перемещению в первом теплоносителе за счет уменьшения его объема при повышении температуры для переноса аккумулированной тепловой энергии, причем аккумулируют тепловую энергию в вышерасположенной области первого теплоносителя с более высокой температурой, а переносят аккумулированную тепловую энергию в нижерасположенную область первого теплоносителя с более низкой температурой.

Способствует достижению технического результата то, что используют второй теплоноситель, способный к перемещению в первом теплоносителе из нижерасположенной области первого теплоносителя с более низкой температурой в вышерасположенную область первого теплоносителя с более высокой температурой за счет увеличения объема второго теплоносителя при понижении температуры, а также то, что используют второй теплоноситель, охваченный разделяющей их, по крайней мере, единичной поверхностью, и для теплообмена используют второй теплоноситель и упомянутую, по крайней мере, единичную поверхность.

Технический результат в отношении объекта изобретения - устройства - достигается тем, что антигравитационная тепловая труба включает зону приема теплоты теплоносителем, расположенную в верхней части трубы, зону отвода теплоты теплоносителем, расположенную в нижней части трубы, и средство переноса теплоты из зоны приема теплоты теплоносителем в зону отвода теплоты теплоносителем, выполненное с возможностью уменьшения своего объема от максимального значения, обусловленного необходимостью его плавучести в зоне приема теплоты теплоносителем, до минимального значения - по условиям его устойчивого перемещения в зону отвода теплоты теплоносителем, обусловленного смещением равновесия между силами его плавучести и силами тяжести в сторону последних вследствие повышения температуры.

В частном случае средство переноса теплоты выполнено с возможностью возвращения в зону приема теплоты теплоносителем при восстановлении равновесия между силами его плавучести и силами тяжести вследствие снижения температуры и может быть выполнено в виде, по крайней мере, одной капсулы - газовой емкости.

Газовая емкость может быть выполнена из материала, обладающего за счет эффекта Гуха-Джоуля свойством сжатия при повышении температуры, приводящего к уменьшению объема газовой емкости.

В другом варианте газовая емкость выполнена из эластичного материала и охвачена полимерной сеткой, обладающей за счет эффекта Гуха-Джоуля свойством сжатия при повышении температуры.

Еще в одном варианте газовая емкость выполнена из эластичного материала и полуохвачена снаружи средством, способным ее сжимать при повышении температуры для уменьшения объема газовой емкости.

В свою очередь средство, способное сжимать при повышении температуры газовую емкость, выполненную из эластичного материала, представляет собой подковообразный биметаллический элемент или кинематический механизм, связанный с приводом в виде сильфона, заполненного легкокипящей жидкостью.

Предложение поясняется графическими изображениями, на которых: на фиг.1-3 показаны варианты выполнения газовых емкостей антигравитационной тепловой трубы при нахождении в верхнем положении в вышерасположенной области первого теплоносителя в зоне аккумулирования (приема) теплоты теплоносителем; на фиг.4-6-то же при нахождении в нижнем положении в нижерасположенной области первого теплоносителя с более низкой температурой в зоне отдачи (отвода) теплоты теплоносителем.

Антигравитационная тепловая труба заполнена теплоносителем и содержит собственно саму трубу (не показана) с зоной приема теплоты теплоносителем, расположенной в верхней ее части, зоной отвода теплоты теплоносителем, расположенной в нижней ее части, и средство переноса теплоты из зоны приема теплоты теплоносителем в зону отвода теплоты теплоносителем. Средством переноса теплоты являются газовые емкости (капсулы), которые выполнены с возможностью уменьшения своего объема вследствие повышения температуры и восстановления первоначальной формы при снижении температуры.

По своей конструкции капсулы могут быть нескольких видов (вариантов). Технологически наиболее простыми по конструкции могут быть воздушные шарики 1, в том числе обтянутые полимерными сетками 2, обладающими за счет эффекта Гуха-Джоуля [Гросберг А.Ю., Хохлов А.Р. Физика в мире полимеров. Москва, «Наука», Главная редакция физико-математической литературы, 1999, с.105] свойством сжиматься при повышении температуры (фиг.1, 4).

Другим вариантом конструктивного выполнения капсулы может быть воздушный шар или цилиндр 1, образованный эластичной оболочкой с элементами 3 жесткости, полуохваченный снаружи средством, способным сжимать при повышении температуры для уменьшения объема газовой емкости, например биметаллической пластиной 4, сжимающей шар при увеличении температуры (фиг.2, 5). В этой конструкции биметаллическая пластина (подковообразный биметаллический элемент) 4 взаимодействует (контактирует или имеет связь) с элементами 3 жесткости.

В третьем варианте биметаллическая пластина может быть заменена на кинематический механизм 6, связанный с приводом в виде сильфона 5, заполненного легкокипящей жидкостью (фиг.3, 6). Кинематический механизм 6 имеет шарниры и так устроен, что одни его шарнирные звенья взаимодействуют с элементами 3 жесткости эластичной оболочки воздушного шара 1, а другие с подвижными стенками сильфона 5. Изменение объема капсул, выполненных по третьему варианту, достигается в результате включения в работу привода (сильфона 5).

Способ теплопередачи осуществляют следующим образом. Размещают в первом теплоносителе в виде жидкости (например, воде), второй теплоноситель, охваченный разделяющей их поверхностью (эластичной оболочкой) и являющийся средством переноса теплоты в виде газовых емкостей (капсул), т.е. создают в трубе двухкомпонентную среду. Единичную поверхность, охватывающую второй теплоноситель (газ), формирует эластичная оболочка воздушного шара 1. Второй теплоноситель способен к перемещению в первом теплоносителе совместно с охватывающей его разделяющей поверхностью (эластичной оболочкой) в результате расходования им части тепловой энергии, полученной из первого теплоносителя.

Начальный объем капсул определяют исходя из обеспечения их плавучести на поверхности жидкости (первое крайнее положение), минимальный объем - по условиям устойчивого движения до нижней точки трубы (второе крайнее положение).

Движение капсул от первого крайнего положения до второго крайнего положения связано с уменьшением их объема от максимального значения, обусловленного необходимостью плавучести в зоне приема теплоты теплоносителем, до минимального значения - по условиям устойчивого перемещения в зону отвода теплоты теплоносителем, обусловленного смещением равновесия между силами плавучести и силами тяжести в сторону последних. Вследствие этого движения осуществляется перенос оставшейся части тепловой энергии, полученной из вышерасположенной области первого теплоносителя с более высокой температурой, в нижерасположенную область первого теплоносителя с более низкой температурой. Таким образом, происходит передача теплоты из верхней части трубы в ее нижнюю часть и осуществляется теплообмен.

За счет теплообмена между жидкостью и капсулами температура последних снижается, что приводит к увеличению их объема и, соответственно, восстановлению равновесия между силами плавучести и тяжести - всплытию капсул, т.е. второй теплоноситель из нижерасположенной области первого теплоносителя с более низкой температурой перемещается в вышерасположенную область первого теплоносителя с более высокой температурой после полного израсходования им оставшейся части тепловой энергии.

Наличие большого числа капсул способствует устойчивому процессу теплообмена вдоль вертикально расположенной теплопередающей (антигравитационной тепловой) трубы.

Стабильно работающие антигравитационные тепловые трубы большой длины позволят существенно развить системы аккумулирования теплоты и холода, способствующие повышению энергоэффективности зданий и различного рода сооружений, особенно агропромышленного комплекса.

Переменные режимы работы установок с возобновляемыми источниками теплоты, обусловленные самой природой поступления энергии, могут быть существенно сглажены за счет использования предлагаемого способа и реализующих его тепловых труб указанной конструкции

1. Способ теплопередачи, включающий размещение в первом теплоносителе второго теплоносителя и теплообмен между ними, при этом используют второй теплоноситель, способный к перемещению в первом теплоносителе за счет уменьшения его объема при повышении температуры для переноса аккумулированной тепловой энергии, причем аккумулируют тепловую энергию в вышерасположенной области первого теплоносителя с более высокой температурой, а переносят аккумулированную тепловую энергию в нижерасположенную область первого теплоносителя с более низкой температурой.

2. Способ по п.1, в котором используют второй теплоноситель, способный к перемещению в первом теплоносителе из нижерасположенной области первого теплоносителя с более низкой температурой в вышерасположенную область первого теплоносителя с более высокой температурой за счет увеличения объема второго теплоносителя при понижении температуры.

3. Способ по п.1 или 2, в котором используют второй теплоноситель, охваченный разделяющей их, по крайней мере, единичной поверхностью, и для теплообмена используют второй теплоноситель и упомянутую, по крайней мере, единичную поверхность.

4. Антигравитационная тепловая труба, включающая зону приема теплоты теплоносителем, расположенную в верхней части трубы, зону отвода теплоты теплоносителем, расположенную в нижней части трубы, и средство переноса теплоты из зоны приема теплоты теплоносителем в зону отвода теплоты теплоносителем, выполненное с возможностью уменьшения своего объема от максимального значения, обусловленного необходимостью его плавучести в зоне приема теплоты теплоносителем, до минимального значения - по условиям его устойчивого перемещения в зону отвода теплоты теплоносителем, обусловленного смещением равновесия между силами его плавучести и силами тяжести в сторону последних вследствие повышения температуры.

5. Антигравитационная тепловая труба по п.4, в которой средство переноса теплоты выполнено с возможностью возвращения в зону приема теплоты теплоносителем при восстановлении равновесия между силами его плавучести и силами тяжести вследствие снижения температуры.

6. Антигравитационная тепловая труба по п.5, в которой средство переноса теплоты выполнено в виде, по крайней мере, одной капсулы.

7. Антигравитационная тепловая труба по п.6, в которой капсула выполнена в виде газовой емкости.

8. Антигравитационная тепловая труба по п.7, в которой газовая емкость выполнена из материала, обладающего за счет эффекта Гуха-Джоуля свойством сжатия при повышении температуры, приводящего к уменьшению объема газовой емкости.

9. Антигравитационная тепловая труба по п.8, в которой газовая емкость выполнена из эластичного материала и охвачена полимерной сеткой, обладающей за счет эффекта Гуха-Джоуля свойством сжатия при повышении температуры.

10. Антигравитационная тепловая труба по п.7, в которой газовая емкость выполнена из эластичного материала и полуохвачена снаружи средством, способным ее сжимать при повышении температуры для уменьшения объема газовой емкости.

11. Антигравитационная тепловая труба по п.10, в которой средство, способное сжимать при повышении температуры газовую емкость, выполненную из эластичного материала, представляет собой подковообразный биметаллический элемент или кинематический механизм, связанный с приводом в виде сильфона, заполненного легкокипящей жидкостью.



 

Похожие патенты:

Изобретение относится к теплотехнике и может быть использовано в теплообменниках для кондиционеров. Предложен теплообменник, в котором в трубке подачи газа и трубке подачи жидкости блока соединительных трубок соединительные части, в которых алюминиевые трубки (первые трубки для хладагента: трубки для хладагента, сформированные из алюминия или алюминиевого сплава) и медные трубки (вторые трубки для хладагента: трубки для хладагента, сформированные из меди или медного сплава), соответственно, соединяются друг с другом, располагаются в ниспадающих частях алюминиевых трубок.

Изобретение относится к холодильной технике и может быть использовано как испаритель-конденсатор в каскадных холодильных установках. В испарителе-конденсаторе каскадных холодильных машин, состоящем из двух змеевиковых теплообменников, соединенных между собой теплопроводящими ламелями, закрепленных на общей раме, змеевики погружены в промежуточный жидкий хладоноситель, содержащийся в теплоизолированном корпусе.

Изобретение относится к области теплотехники, в частности к контурным тепловым трубам, и может быть использовано при создании регулируемых радиационных теплообменников космических аппаратов.

Изобретение относится к конструкции теплообменника, в частности к теплообменнику металлическому системы отопления помещения. Теплообменник содержит трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также внешние элементы теплопередачи, которые закреплены к одному концевому участку.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий и может быть использовано при изготовлении теплообменника металлического системы отопления помещения.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий, в частности к способу изготовления теплообменника металлического системы отопления.

Изобретение относится к конструкции элементов системы отопления помещения, в частности к теплообменнику металлическому, и может быть использовано при изготовлении системы отопления помещения.

Изобретение относится к области теплотехники, в частности к контурным тепловым трубам, и может быть использовано в различных системах терморегулирования, в том числе в составе космических аппаратов для эффективного отведения тепловых потоков от твердых тепловыделяющих поверхностей, а также от жидких и газообразных сред.
Изобретение относится к теплотехнике, а именно к способу заправки тепловой трубы теплоносителем. .

Изобретение относится к теплоэнергетике и может быть использовано для проведения процессов теплообмена, в частности, для утилизации низкопотенциальной тепловой энергии.

Изобретение относится к теплоэнергетике и может быть использовано для передачи теплоты на значительные расстояния при малом температурном напоре. Магнитожидкостная тепловая труба, содержащая частично заполненный теплоносителем - магнитной жидкостью герметичный цилиндрический корпус с зонами испарения, конденсации и транспортировки, фитиль, расположенный на внутренней стенке корпуса, артериальный электромагнитный фитиль, жестко закрепленный внутри корпуса соосно с ним, состоящий из защитного корпуса, корпуса-основы из немагнитного материала, предназначенного для намотки поверх него нескольких отделенных друг от друга диэлектрическими разделительными шайбами электромагнитных катушек индуктивности, создающих внутри артериального фитиля, соединяющего торцевые стенки магнитожидкостной тепловой трубы, размещенного в корпусе-основе, бегущее в сторону зоны испарения магнитное поле, направленное вдоль оси магнитожидкостной тепловой трубы. Изобретение позволяет уменьшить габариты электромагнитного фитиля и обеспечить большую технологичность при изготовлении магнитожидкостной тепловой трубы, работающей в любом положении при воздействии сил гравитации и в невесомости. 1 ил.

Изобретение относится к спиртовой промышленности, в частности к способу подогрева бражки теплом барды. Способ включает подачу бражки в трубное пространство одного кожухотрубного теплообменника, при этом барда направляется в трубные пучки другого теплообменника, а межтрубное пространство заполняется жидким теплоносителем (лютером, технологической водой, ректификованным спиртом), который постоянно перекачивается насосом из межтрубного пространства одного теплообменника в межтрубное пространство другого, обеспечивая непрерывную циркуляцию теплоносителя между двумя теплообменниками и теплообмен в системе барда-теплоноситель-бражка. Способ позволяет исключить засорение и необходимость чистки межтрубного пространства теплообменников. 1 ил., 1 табл., 2 пр.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках для микроприборов. Представлены материалы, компоненты и способы, направленные на изготовление и использование микромасштабных каналов с текучей средой для системы теплообмена, причем температура и поток текучей среды регулируется, частично, за счет макроскопической геометрии микромасштабного канала и подбора по меньшей мере части стенки микромасштабного канала и составляющих частиц, образующих текучую среду. Кроме того, стенка микромасштабного канала и составляющие частицы подобраны таким образом, чтобы столкновения между составляющими частицами и стенкой были, главным образом, зеркальными. Ускоряющие и замедляющие элементы, предусмотренные здесь, могут быть выполнены с микромасштабными каналами, которые могут описывать, как правило, спиральную траекторию. Технический результат - расширение арсенала средств. 3 н. и 22 з.п. ф-лы, 6 ил.

Изобретение относится к области теплотехники и может быть использовано в газоразделительных теплообменных установках, предназначенных для разделения газовых сред путем их охлаждения и дальнейшей конденсации или десублимации. Газоразделительная теплообменная установка содержит последовательно соединенные теплообменные кожухотрубные аппараты с гибкой мембраной, где в режиме противотока происходит теплообмен через стенки, и в которых предусмотрены два внутренних отсека, первый для более нагретой газовой среды, второй для более холодной газовой среды, разделенных гибкими непроницаемыми мембранами, предназначенными для выравнивания давления внутри аппаратов. Газоразделительная теплообменная установка также содержит компактную систему разделения газовых сред, включающую в себя механизмы для подвода и отвода охлажденной газовой смеси с необходимой температурой и давлением, и аппарат для разделения газовых сред. Вертикальные стенки образуют в аппарате для разделения газовых сред изолированные отделения, внутри которых за счет изменения давления последовательно сначала конденсируется или десублимируется газовая среда, затем данная среда испаряется или сублимируется. Конструктивная особенность аппарата для разделения газовых сред - наличие боковых линейных направляющих внутри аппарата, которые позволяют сохранить и прижать сконденсированную или десублимированную газовую среду к вертикальным стенкам аппарата. Технический результат - повышение эффективности теплопередачи и снижение габаритов установки. 2 з.п. ф-лы, 12 ил.

Изобретение относится к теплопередающим устройствам, а именно к гравитационным тепловым трубам, предназначенным преимущественно для использования при охлаждении грунта. Гравитационная тепловая труба имеет герметичный корпус с зонами 2 испарения, транспортной зоной 3 и зоной 4 конденсации. Корпус, выполненный с возможностью заправки жидким теплоносителем, изготовлен в виде заглушенной сверху и снизу стальной цилиндрической трубы 1, которая в зоне 4 конденсации заключена в трубу 5 из алюминиевого сплава с ребрами 6. Особенностью гравитационной тепловой трубы является то, что стальная цилиндрическая труба 1 имеет полученный горячим цинкованием слой покрытия 11 на наружной и 13 на внутренней поверхности, и то, что в зоне 4 конденсации она плотно контактирует с внутренней поверхностью трубы 5 своей наружной поверхностью через слой 11. Достигаемый технический результат заключается в предотвращении блокирования верхней части зоны конденсации неконденсирующимися газами и устранении факторов, ухудшающих тепловой контакт между стальной цилиндрической трубой 1 в зоне конденсации и алюминиевым оребрением 6, а также в уменьшении нарастания влияния этих негативных факторов со временем. 2 ил.

Изобретение относится к энергетике. Теплообменная система, содержащая единое устройство, имеющее область, погруженную в ванну с текучей средой, и свободное пространство вверху, в котором накапливается паровая фаза, одну внутреннюю область, открытую с обоих концов, расположенную внутри упомянутого устройства и полностью погруженную в ванну с текучей средой, теплообменные поверхности, причём, по меньшей мере, одна из теплообменных поверхностей находится внутри данной внутренней области и, по меньшей мере, одна другая поверхность находится в пространстве между упомянутой внутренней областью и стенками данного устройства. Также представлен способ обмена и извлечения тепла, использующий теплообменную систему согласно изобретению. Изобретение позволяет упростить конструкцию, а также улучшить энергетическую эффективность и безопасность операций получения водорода и синтез-газа. 2 н. и 14 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к устройству и способу кондиционирования при помощи активных охлаждающих балок. Система охлаждающих балок для кондиционируемого помещения содержит: блоки охлаждающих балок, каждый из которых имеет первый теплообменник и сконфигурирован для приема первичного воздуха и эжектирования первичного воздуха для создания потока вторичного воздуха через теплообменник; блок подготовки, сконфигурированный для передачи первичного воздуха из центрального блока подготовки воздуха на вход охлаждающей балки; и терминальные блоки, сконфигурированные для кондиционирования, с помощью второго теплообменника, потока рециркуляционного воздуха, извлекаемого из помещения, и смешивания кондиционированного воздуха с первичным воздухом из центрального блока подготовки воздуха для формирования объединенного потока первичного воздуха и передачи кондиционированного рециркуляционного воздуха на вход воздуха охлаждающей балки. Это позволяет повысить эффективность нагрева/охлаждения, а также увеличить разнообразие режимов работы системы кондиционирования. 7 н. и 17 з.п. ф-лы, 14 ил.

Изобретение относится к теплотехнике. Радиатор тепловой трубы состоит из набора горизонтальных колец 2, закрепленных на вертикально расположенном цилиндрическом корпусе 1. Причем периферийные зоны колец 2 приподняты относительно их зоны крепления к цилиндрическому корпусу 1. Кольца 2 могут иметь отверстия 3, выполненные в их периферийных зонах. Отверстия 3 могут быть круглой формы или выполнены в виде прорезей. Также набор колец 2 может быть выполнен с увеличением их диаметров книзу радиатора. Технический результат - уменьшение нагрева тепловой трубы. 3 з.п. ф-лы, 6 ил.
Наверх