Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья


 


Владельцы патента RU 2540647:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда цилиндрической формы, по всему объему которой имеются каналы ввода газифицирующего агента (5), а в верхней части смонтировано устройство для подачи исходного материала (4). Нижняя часть газификационной печи (3) соединена с конусообразной колосниковой решеткой и системой золоудаления. Газификационная печь совмещена с газовой камерой сгорания (7), по периметру нижней части которой выполнена металлическая сетка (8) с нанесенным на нее катализатором. За металлической сеткой (8) расположены кислородно-водородный топливный элемент (9) и воздушная камера (10). В верхней части корпуса (1) на выходе дымовых газов предусмотрены теплообменник (11) и дымовая труба (12). Изобретение позволяет увеличить эффективность переработки исходного сырья в водородсодержащий газ, сократить затраты на организацию технологического процесса. 1 ил.

 

Изобретение относится к теплоэнергетике, а именно к когенерационным энергетическим установкам термической переработки низкосортного сырья, и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений.

Известно изобретение «Способ управления устройством для выработки электроэнергии и устройство для использования в соответствии с данным способом» (RU 2464300, МПК C10J 3/20, F02B 43/08, опубл. 20.10.2012), в котором устройство для выработки электроэнергии включает газогенератор шахтного типа с расположенным сверху загрузочным конвейером. Агент газификации - увлажненный и предварительно нагретый воздух, подаваемый из увлажнителя и воздухоподогревателя, вводят в газогенератор снизу. Газ, образующийся в газогенераторе, поступает в газовый двигатель, приводящий в действие генератор для выработки электроэнергии. Между газогенератором и газовым двигателем предусмотрено наличие оборудования для очистки газа в виде системы охлаждения газа и электростатического осадителя. Кроме того, предусмотрены вентиляторы для увеличения давления топливного газа, подаваемого в газовый двигатель, поток топливного газа изменяют с помощью газового вентиля, установленного после вентилятора. Система охлаждения газа соединена с теплообменником для использования тепла, отводимого от газа в системе охлаждения. Теплообменник может являться частью системы охлаждения газа, а система охлаждения газа может включать дополнительный башенный охладитель газа, предназначенный для снижения температуры топливного газа и извлечения из топливного газа дополнительного количества конденсата. Дополнительное количество тепла может быть отведено от отработавшего газа в отдельном теплообменнике до того, как этот газ будет выпущен через трубу.

Недостатком изобретения является использование воздушного дутья, что снижает содержание водорода и теплоту сгорания получаемого газа. Следовательно, необходимо большее количество получаемого газа для газового двигателя, в результате чего увеличивается его металлоемкость, образуется большое количество дымовых газов, а значит, и вредных выбросов в окружающую среду, требуются мощные тягодутьевые машины.

Известна полезная модель «Алюмоводородная энергетическая установка с газификацией твердого топлива» (RU 111851, МПК C10J 3/00, опубл. 27.12.2011), содержащая высокотемпературный реактор окисления алюминия водяным паром, производимым за счет регенеративного тепла, в котором создается рабочее тело высоких параметров для тепловой машины первой ступени преобразования энергии в комбинированном цикле, которое является энергоносителем для последующих ступеней преобразования энергии при окислении кислородом воздуха. К указанному реактору окисления алюминия паром подключено устройство ввода газифицируемой углеродсодержащей среды, в частности малосернистого и малозольного угольного порошка, для его совместной газификации в среде реактора за счет выделяющегося тепла и при участии паров воды. К выходу реактора подключен сепаратор твердой фазы, за которым подключена тепловая машина первой ступени комбинированного цикла.

Недостатком полезной модели является использование в качестве катализатора алюминиевого порошка, повышающего стоимость выработки электричества. Стоит также отметить, что высокие температуры в технологическом процессе приводят к необходимости использования дорогих жаропрочных сталей, что существенно увеличивает стоимость отпускаемой тепло- и электроэнергии.

Наиболее близким, принятым за прототип, является изобретение «Система, вырабатывающая электрическую энергию с помощью газификации горючих веществ» (RU 2270849, МПК C10J 3/00, H01M 8/06, опубл. 27.02.2006), содержащее устройство для подачи исходного материала в низкотемпературную газификационную печь, в которой посредством пиролиза при температуре от 400 до 1000°C вырабатывается газ, содержащий водород и оксид углерода. После газификационной печи выполнены пылеуловитель и аппарат для удаления агрессивных газов, соединенный с устройством для риформинга топлива. Затем по ходу движения полученного газа расположен топливный элемент, предназначенный для выработки электроэнергии, и котел-утилизатор, соединеный с нагнетателем. Топливный элемент также соединен с высокотемпературным нагнетателем, используемым для повторного использования отработавшего газа, и газовой камерой сгорания, соединенной с охладителем газа.

Недостатком изобретения является использование высоких температур, что приводит к необходимости выполнения технологического оборудования из дорогих жаропрочных сталей. Высокие температуры газа, выходящего из устройства для риформинга топлива, ограничивают виды возможных для использования топливных элементов, оставляя возможными только дорогостоящие варианты. Предложенный способ газификации исходного материала позволяет получать газ с низким содержанием водорода и большим количеством балластных компонентов, в результате чего применение топливного элемента для выработки электроэнергии малоэффективно.

Задача изобретения - увеличение эффективности переработки исходного сырья в водородсодержащий газ, сокращение затрат на организацию технологического процесса.

Для решения поставленной технической задачи предложена когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья, содержащая устройство для подачи исходного материала в низкотемпературную газификационную печь, газовую камеру сгорания и топливный элемент. Корпус энергоустановки покрыт теплоизоляцией, внутри корпуса размещена газификационная печь в виде сосуда цилиндрической формы, по всему объему которой имеются каналы ввода газифицирующего агента. Нижняя часть газификационной печи соединена с конусообразной колосниковой решеткой и системой золоудаления. Газификационная печь совмещена с газовой камерой сгорания, по периметру нижней части которой выполнена металлическая сетка с нанесенным на нее катализатором. За металлической сеткой расположены кислородно-водородный топливный элемент и воздушная камера. В верхней части корпуса на выходе дымовых газов предусмотрены теплообменник и дымовая труба.

Изобретение поясняется следующим чертежом.

На фиг.1 показан продольный разрез когенерационной энергоустановки с топливным элементом на основе внутрицикловой конверсии органического сырья.

Когенерационная энергоустановка имеет корпус 1, покрытый теплоизоляцией 2. Внутри корпуса размещена газификационная печь 3 - сосуд цилиндрической формы, в верхней части которой смонтировано устройство для подачи исходного материала 4. По всему объему газификационной печи 3 выполнены каналы ввода газифицирующего агента 5. Нижняя часть газификационной печи 3 соединена с конусообразной колосниковой решеткой 6. Газификационная печь совмещена с газовой камерой сгорания 7, по периметру нижней части которой расположена металлическая сетка 8 с нанесенным на нее катализатором. За металлической сеткой 8 расположен кислородно-водородный топливный элемент 9 и воздушная камера 10. В верхней части корпуса 1 на выходе дымовых газов предусмотрены теплообменник 11 и дымовая труба 12.

Зольный остаток, образующийся при газификации сырья в газификационной печи 3, удаляется системой золоудаления 13.

Вблизи установки предусмотрен парогенератор (не показан) для генерации газифицирующего агента - перегретого пара.

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья работает следующим образом. Газификационную печь 3 через устройство для подачи исходного материала 4 заполняют сырьем, после чего по каналам ввода газифицирующего агента 5 из парогенератора (не показан) подается перегретый пар с температурой 300-500°C. В ходе процесса низкотемпературной газификации сырья выделяется газ, обогащенный водородом, сквозь колосниковую решетку 6 поступающий в газовую камеру сгорания 7. В газовой камере сгорания 7 газ, обогащенный водородом, реагирует с катализатором, нанесенным на металлическую сетку 8, и кислородно-водородным топливным элементом 9, омываемым воздухом из воздушной камеры 10. В результате чего кислородно-водородный топливный элемент 9 вырабатывает электрический ток, при этом происходит выделение тепла, передающегося дымовым газам - продукту реагирования газа, обогащенного водородом, с катализатором, нанесенным на металлическую сетку 8, и кислородно-водородным топливным элементом 9.

Часть теплоты, переданной дымовым газам посредством конвекционного теплообмена, идет на поддержание процесса газификации в газификационной печи 3, другая - теплообменнику 11. После прохождения теплообменника 11 охлажденные дымовые газы за счет естественной тяги покидают установку через дымовую трубу 12.

Зольный остаток, являющийся побочным продуктов процесса газификации, удаляется из газификационной печи 3 системой золоудаления 13.

В качестве катализатора, нанесенного на металлическую сетку 8, использованы нанопорошки (например, Ni+NiO, 75ZrO2+25Fe2O3, NiF2·2H2O, 10SrO+90Fe2O3, 85ZrO2+15Fe2O3).

Верхний предел температуры газификации выбран из соображения использования в технологическом процессе дешевых углеродистых сталей, способных работать при температурах до 500°C, что позволяет существенно снизить стоимость когенерационной энергоустановки.

В качестве примера представлены результаты расчета когенерационной энергоустановки с топливным элементом на основе внутрицикловой конверсии органического сырья, использующей в качестве топлива фрезерный торф.

В процессе газификации сухого фрезерного торфа в газификациоппой печи 3 получают газ, обогащенный водородом, следующего состава: H2=60,62%; CH4=29,54%; CO2=3,91%; CO=0,67%, неопределенные газы - остальное, при этом низшая теплота сгорания этого газа составляет 17,22 МДж/м3. КПД реакционной камеры составляет 94,93%.

Кислородно-водородный топливный элемент 9 выполнен из угольных цилиндров с использованием гидроокиси калия в качестве электролита, КПД которого составляет 32%.

В результате когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья позволяет вырабатывать 25,6 кВт тепла и 3,33 кВт электричества при расходе сухого фрезерного торфа 85,3 кг/сутки.

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья, содержащая устройство для подачи исходного материала в низкотемпературную газификационную печь, газовую камеру сгорания и топливный элемент, отличающаяся тем, что корпус энергоустановки покрыт теплоизоляцией, внутри корпуса размещена газификационная печь в виде сосуда цилиндрической формы, по всему объему которой имеются каналы ввода газифицирующего агента, нижняя часть газификационной печи соединена с конусообразной колосниковой решеткой и системой золоудаления, газификационная печь совмещена с газовой камерой сгорания, по периметру нижней части которой выполнена металлическая сетка с нанесенным на нее катализатором, за металлической сеткой расположены кислородно-водородный топливный элемент и воздушная камера, в верхней части корпуса на выходе дымовых газов предусмотрены теплообменник и дымовая труба.



 

Похожие патенты:

Изобретения могут быть использованы в химической промышленности. Способ деполимеризации пластмассовых отходов включает нагрев исходного твердого материала и получение в резервуаре или реакторе (311) с индукционным нагревателем (23) жидкой ванны легкоплавких металлов или металлических сплавов.

Изобретение относится к области металлургии, энергетики и химической промышленности при слоевой газификации твердого топлива с целью получения среднетемпературного кокса или энергетического и технологического газа, не содержащего конденсируемых продуктов.

Изобретение относится к химической и сельскохозяйственной промышленности, к области энергетики и может быть использовано для сушки сыпучего материала, например зерна, и получения кокса.

Изобретение относится к газификаторам, а более конкретно к узлу охлаждающей камеры для газификатора. Газификатор (10) содержит камеру (14) сгорания, в которой обеспечивается сгорание горючего топлива для производства синтетического горючего газа, охлаждающую камеру (16), содержащую жидкий хладагент (32) и расположенную ниже по потоку от камеры (14) сгорания, погружную трубку (38), соединяющую камеру (14) сгорания с охлаждающей камерой (16) и выполненную с возможностью направления синтетического горючего газа из камеры (14) сгорания в охлаждающую камеру (16) с обеспечением его контакта с жидким хладагентом (32) и получения охлажденного синтетического горючего газа, отводящую трубку (46), окружающую погружную трубку (38) и ограничивающую между ними кольцевой проход (50), асимметричный или симметричный сепаратор (54) жидкости, расположенный вблизи выходного пути (52) охлаждающей камеры (16) и выполненный с возможностью удаления захваченного жидкого содержимого из охлажденного синтетического горючего газа, направляемого через кольцевой проход (50) к выходному пути (52), причем указанный асимметричный или симметричный сепаратор жидкости представляет собой дефлектор или многогранный или круглый сепаратор, при этом дефлектор содержит ребра, отверстия или комбинацию ребер и отверстий, а круглый сепаратор представляет собой круглый сепаратор конической формы.

Изобретение относится к области энергетики, металлургии и химической промышленности и может быть использовано для получения кокса и генераторного газа. Способ газификации твердого топлива включает загрузку топлива в реактор, газификацию топлива и удаление продуктов газификации.

Изобретение относится к области энергетики и может быть использовано в устройствах для газификации твердого топлива. Установка газификации твердого топлива содержит корпус газификатора из двух частей, верхней в виде цилиндрической обечайки и нижней в виде полого усеченного конуса с кожухом.

Изобретение относится к области термохимической переработки влажных органических субстратов и к области получения газообразного топлива. Установка для переработки влажных органических субстратов в газообразные энергоносители состоит из последовательно расположенных механического обезвоживающего устройства (7), газогенератора (1), мокрого скруббера (10) и энергогенерирующей установки (13).

Изобретение может быть использовано в химической, металлургической и энергетической областях. Слоевой газификатор непрерывного действия представляет собой аппарат шахтного типа на обратном дутье и состоит из топки с охлаждаемой колосниковой решеткой (1), питателя (2) непрерывной подачи топлива в топку и узла (3) отгрузки кокса и золы, который расположен в нижней части.

Изобретение относится к способу и установке для получения синтез-газа (S) из твердых частиц (C) углерода, причем указанные частицы (C) углерода получают посредством пиролиза, газификация частиц (C) углерода происходит в результате непрямого нагрева частиц (C) углерода в присутствии технологического газа (P) в том же самом пространстве реактора, где находятся частицы (C) углерода, при этом непрямой нагрев осуществляют с помощью теплового излучения от горелок (Br1-Brn), расположенных в реакторе (1), а синтез-газ (S), образовавшийся во время газификации, выпускают из указанного пространства.

Изобретение относится к объединенным генераторам синтез-газа. Генерирование синтез-газа может быть объединено в различных системах и способах.

Изобретение относится к химико-энергетическому машиностроению, в частности к пиролизным установкам, и может быть использовано в конструкциях пиролизных реакторов. Реактор содержит загрузочное устройство (1), камеру термического разложения (2), корпус (3), дутьевые фурмы (4), дутьевой вентилятор (5), камеру газификации (6), колосник (7), зольник (8), трубопроводы отвода генераторного газа (9) и пиролизного газа (10). Верхняя часть А камеры термического разложения Б выступает над обогреваемой частью В камеры термического разложения на величину Н, находящуюся в диапазоне 0,05D≤Н≤5D, где D - диаметр камеры разложения, снабжена трубопроводом отвода пиролизного газа (10). Изобретение позволяет повысить качество процесса пиролиза, увеличить эффективность реактора, а также раздельно получить пиролизный и генераторный газы. 1 ил.
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов. Охладитель синтез-газа также включает кольцевой корпус (202), включающий трубопроводы (308, 309), которые выполнены с возможностью соединения по потоку с насадками (314) трубопроводов. Охладитель синтез-газа также включает часть быстрого охлаждения, предназначенную для удаления твердых частиц, захваченных потоком синтез-газа, проходящим через охладитель синтез-газа. Верхняя часть (214) и корпус (202) выполнены с возможностью соединения посредством кольцевого сварного шва. Описаны также система газификации и способ сборки охладителя синтез-газа. Технический результат заключается в возможности сборки элементов охладителя синтез-газа с использованием меньшего количества соединительных элементов по сравнению с известными охладителями. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к подаче тепловой энергии и может быть использовано в химической промышленности и газификации. Способ подачи тепловой энергии в систему термообработки (104) сырья включает: газификацию сухого сырья в первом реакторе (106) потоком газифицирующего газа (FGG) с получением первого газового потока (PFG); окисление во втором реакторе (108) с получением второго газового потока (DFG); активацию в третьем реакторе носителей кислорода с получением избытка тепловой энергии; подачу части тепловой энергии указанного второго газового потока (DFG) и/или избыточного тепла с активации носителей кислорода в систему (104) термообработки сырья; и повышение температуры потока газифицирующего газа (FGG) по меньшей мере одной частью избыточного тепла с активации носителей кислорода для повышения температуры указанного потока газифицирующего газа (FGG) до температуры газификации. Изобретение позволяет снизить энергопотребление, негативное влияние на окружающую среду, а также исключить непрерывное внешнее снабжение. 4 н. и 14 з.п. ф-лы, 2 ил.

Изобретение относится к химической промышленности. Газогенератор содержит вертикально расположенный корпус, индивидуальные дутьевые каналы с фурмами на конце, канал отвода газа и систему электромагнитных клапанов (6), подсоединенных индивидуально к трубкам (8) с дутьевыми фурмами на конце, расположенными в зоне фурменного пояса (12). Система электромагнитных клапанов (6) также присоединена к воздушному коллектору (3), имеющему на конце трехходовой электромагнитный клапан (2), соединенный с форсажным воздушным контуром, а вертикально расположенная цилиндрическая камера газификации (4) вместе с трубками (8) помещена в термоизоляционный футляр. Изобретение позволяет повысить энергетическую ценность генераторного газа на переходных режимах, повысить эффективность процесса газификации, снизить инерционность газогенератора. 5 ил., 1 табл.

Изобретение может быть использовано в области переработки углеродсодержащих катодных материалов. Способ включает загрузку отработанных катодных ванн производства алюминия в шахтную печь (1), где проводят их термообработку при температуре выше температуры воспламенения углерода и выше температуры испарения токсичных веществ, содержащихся в отработанных катодных ваннах. В первом продольном участке (8) шахтной печи (1) реакционные газы направляют в прямотоке с углеродом, а во втором продольном участке (9) шахтной печи - в противотоке углероду. Реакционные газы выводят (11) из шахтной печи в области с увеличенным сечением (7), находящейся между указанными продольными участками (8,9). Изобретение позволяет полностью отделить токсичные вещества, такие как натрий и фтор, и одновременно получить шлак, богатый алюминатом кальция, предотвратить рециркуляцию щелочей. 18 з.п. ф-лы, 9 ил.

Изобретение относится к устройствам для переработки твердого углеродсодержащего сырья, в том числе отходов сельскохозяйственного производства и бытовых отходов, с получением метансодержащего топливного газа. Устройство для газификации углеродсодержащего сырья включает вертикальный корпус 1 с зонами высокотемпературной, среднетемпературной и низкотемпературной газификации. В зоне 8 высокотемпературной газификации установлены плазменные горелки 9 и средства ввода газифицирующего агента 10. В зоне 6 низкотемпературной газификации размещен пакет чередующихся лопастных узлов 14, 15 и решеток 16, 17, выполненных с расположенными по кругу разными по размерам отверстиями в форме секторов или радиальных щелей с величиной их проходного сечения, постепенно увеличивающейся от зоны загрузки сырья в направлении вращения вала. Под нижней решеткой вышеуказанного пакета размещены форсунки 7 для подачи воды и катализаторов. Изобретение позволяет повысить производительность процесса газификации с одновременным обеспечением эффективности переработки углеродсодержащего сырья и увеличением выхода топливного газа. 10 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к способу газификации углеродсодержащих материалов с образованием синтез-газа. Способ газификации углеродсодержащих материалов в газогенераторе включает загрузку углеродсодержащих материалов в газогенератор, подачу газа, содержащего молекулярный кислород, и необязательно воды; причем общее количество подаваемого кислорода составляет от 0.75 до 3.0 фунт на фунт общего количества углерода, загруженного в газогенератор; при этом в газогенераторе получают золу, содержащую углерод в золе, где указанная зола содержит менее 10% углерода в золе; и образуется газ, содержащий монооксид углерода и водород; который затем обрабатывают при температуре от 954°С до 1927°С в присутствии молекулярного кислорода с образованием сингаза-сырца, содержащего моноокисд углерода, водород и углерод в сингазе. Полученный сингаз-сырец содержит меньше чем 0.227 кг углерода в сингазе на 28.3 стандартных м3 полученного сингаза-сырца. Изобретение позволяет разработать способ получения сингаза, обеспечивающий максимальное производство энергии или химических продуктов при сохранении на низком уровне количества непрореагировавшего углерода и сажи в сыром сингазе и углерода в золе. 3 н. и 16 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к топливной энергетике, а именно к газогенераторным установкам, в основном использующим отходы лесопереработки. Газогенератор содержит вертикально расположенную цилиндрическую камеру газификации, индивидуальные воздухоподводящие каналы в виде трубок с фурмами на конце и канал отвода газа. Фурмы расположены в разных плоскостях по объему камеры газификации фурменного пояса, количество фурм в каждой плоскости может быть различно, причем фурмы в плоскостях расположены со смещением относительно друг друга, расстояние между плоскостями, на которых расположены фурмы, может быть различно, при этом часть фурм имеет смещение выходного дутьевого отверстия от продольной оси на угол ±α, который лежит в интервале от 0 до 45 градусов. Камера газификации изготовлена в виде усеченного тела вращения. Технический результат - повышение энергетической ценности генераторного газа на переходных режимах, повышение эффективности процесса газификации. 1 з.п. ф-лы, 4 ил.

Изобретение относится к энерготехнологическому оборудованию, а именно к устройствам термической переработки твердого топлива в горючий газ, и предназначено для производства генераторного газа из бурого угля, смолистой древесины и торфа. В описании раскрыты конструктивные узлы газогенератора обращенного процесса газификации. Приведены их взаимное расположение, геометрическое выполнение и конструктивные связи между ними. При использовании изобретения обеспечивается повышение производительности генератора. 12 ил.

Изобретение относится к реакторам плазменной газификации или витрификации материалов, которые имеют реакционные слои из углеродсодержащего материала, способу формирования и поддержания углеродсодержащего слоя и исходному материалу для формирования углеродсодержащего изделия для использования среди частиц углеродсодержащего слоя. Реактор содержит реакционный сосуд, содержащий углеродсодержащий слой и имеющий одну или несколько плазменных горелок для создания повышенной температуры внутри слоя, реакционный сосуд, имеющий одно или несколько впускных отверстий для загружаемого материала над слоем для закладки перерабатываемого материала снаружи сосуда на слой, одно или несколько газоотводящих отверстий над слоем для выхода газообразных продуктов из сосуда и одно или несколько отверстий для шлака на дне слоя для выхода расплавленного шлака и металлов из сосуда, и углеродсодержащий слой, содержащий массу частиц, которые содержат углерод и имеют различный размер и форму, оставляющие пустоты между частицами, и с прочностью частиц, достаточной для сохранения пустот между частицами под давлением перерабатываемого материала на слой, и масса частиц, содержащих углерод, имеет по меньшей мере 25% содержания углерода в частицах, отличных от кокса, выбранных из группы, состоящей из деревянных брусков из природной древесины, блоков, содержащих углеродсодержащую пыль и одно или несколько связующих веществ, и их смесей. Способ формирования и поддержания углеродсодержащего слоя с компонентами, заменяющими кокс, включает формирование некоторого числа некоксовых компонентов, формирование первоначального углеродсодержащего слоя количеством частиц кокса, осуществление процесса пиролиза с углеродсодержащим слоем и восполнение углеродного материала в процессе пиролиза. Изобретение обеспечивает минимизацию использования кокса. 5 н. и 26 з.п. ф-лы, 3 табл., 9 ил.
Наверх