Система терморегулирования космического аппарата



Система терморегулирования космического аппарата
Система терморегулирования космического аппарата
Система терморегулирования космического аппарата

 


Владельцы патента RU 2541597:

Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" (RU)

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР содержит два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, которые размещены рядом друг с другом в сотовых панелях (или на них). Каждый из трактов содержит входной и выходной гидроразъемы для соединения с гидроразъемами съемного блока СТР. В последнем установлен жидкостно-жидкостный теплообменник с хладопроизводительностью, превышающей ее требуемую величину для одного тракта не менее чем в 2,1-2,2 раза. При электрических испытаниях КА съемный блок подключен к одному из циркуляционных трактов согласно программе испытаний КА. Одновременно другой тракт закольцован жидкостным трактом, имеющим такое же гидравлическое сопротивление, как у жидкостного тракта съемного блока. Технический результат изобретения состоит в упрощении конструкции съемного блока СТР, уменьшении его габаритов и массы, что упрощает монтаж и демонтаж съемного блока на борту КА. 3 ил.

 

Предлагаемое изобретение относится к космической технике и может быть использовано при разработке систем терморегулирования (СТР) телекоммуникационных спутников.

Известная СТР согласно патенту RU 2386572 содержит (см. фиг.1) два независимых, одинаковых по составу бортовых циркуляционных тракта с одинаковым теплоносителем (поз.1 и 2; поз.3, 4, 5 - сотовые панели). При этом каждый из трактов имеет входной и выходной гидроразъемы (поз.1.1 и 2.1; 1.2 и 2.2) для соединения с соответствующими гидроразъемами (поз.8.4 и 10.4; 8.3 и 10.3) съемного блока СТР (поз.11), также содержащего два одинаковых жидкостных тракта (поз.8 и 10), каждый из которых включает в себя по два жидкостно-жидкостных теплообменника (поз.8.1 и 8.2; 10.1 и 10.2). Каждый теплообменник содержит первую жидкостную полость и вторую жидкостную полость: через первые жидкостные полости циркулирует бортовой теплоноситель первого и второго бортового циркуляционного тракта, а через вторые жидкостные полости циркулирует теплоноситель наземной системы обеспечения теплового режима (поз.9).

Проведенный авторами анализ конструкции и данных наземных испытаний известных СТР различных по мощности космических аппаратов (КА) и опытные данные показали, что температура теплоносителя в поперечных сечениях рядом расположенных коллекторов (с dy=12 мм) бортовых циркуляционных трактов СТР с теплоносителем (см. фиг.2, где: 3 (4, 5) - сотовая панель; 3.1, 3.2 - встроенные коллекторы; 6, 7 - приборы, установленные на сотовой панели 3) по всему циркуляционному тракту как при одновременной работе обоих трактов съемного блока, так и при работе только одного тракта съемного блока при условии сохранения одинаковой суммарной хладопроизводительности съемного блока в обоих случаях взаимно отличается менее чем на 0,75°C (в настоящее время для обеспечения оптимально комфортной температуры приборов технические требования к КА телекоммуникационных спутников допускают отличия не более 1°C, что приемлемо с точки зрения допустимого диапазона рабочих температур для коллекторов в пределах от минус 25 до плюс 55°C) - это обусловлено тем, что между бортовыми циркуляционными трактами, как показали опытные исследования, обеспечивается достаточный для достижения этой цели интенсивный теплообмен.

Таким образом, на основе опытных данных можно существенно упростить конструкцию съемного блока - исключить из его состава один жидкостный тракт с двумя теплообменниками.

Целью предлагаемого изобретения является упрощение конструкции СТР КА.

Поставленная цель достигается тем, что в предложенной СТР КА, содержащей два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, размещенных рядом друг с другом в (на) сотовых панелях, каждый из которых включает в себя входной и выходной гидроразъемы для соединения с гидроразъемами съемного блока системы, включающего жидкостно-жидкостный теплообменник, выполнена таким образом, что в съемном блоке установлен жидкостно-жидкостный теплообменник с хладопроизводительностью, превышающей требуемую хладопроизводительность одного контура не менее чем в 2,1-2,2 раза (установлено опытными данными), и при электрических испытаниях космического аппарата съемный блок подключен к одному из циркуляционных трактов согласно программе испытаний космического аппарата, а другой циркуляционный тракт закольцован жидкостным трактом, имеющим гидравлическое сопротивление, равное гидравлическому сопротивлению жидкостного тракта съемного блока, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате проведенного авторами анализа известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого изобретения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой системе терморегулирования космического аппарата.

На фиг.3 изображена принципиальная схема предложенной СТР КА, где: 1 и 2 - два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, размещенных рядом друг с другом в (на) сотовых панелях 3, 4, 5, каждый из которых включает в себя входной и выходной гидроразъемы 1.1 и 2.1; 1.2 и 2.2 для соединения с гидроразъемами 8.4 и 10.4; 8.3 и 10.3 съемного блока 11 системы; в съемном блоке 11 установлен жидкостно-жидкостный теплообменник 8.1 с хладопроизводительностью, превышающей требуемую хладопроизводительность одного контура не менее чем в 2,1-2,2 раза, и при электрических испытаниях космического аппарата съемный блок 11 с теплообменником 8.1 подключен, например, к первому 1 из циркуляционных трактов СТР согласно программе испытаний космического аппарата, а другой циркуляционный тракт 2 закольцован жидкостным трактом 10, имеющим гидравлическое сопротивление 12, равное гидравлическому сопротивлению жидкостного тракта съемного блока 11 (от гидроразъема 8.3 до гидроразъема 8.4).

Работа предложенной СТР КА при наземных испытаниях происходит следующим образом.

Когда подтверждают работоспособность КА при работе (функционировании) одного из двух циркуляционных бортовых жидкостных трактов, к данному тракту, например к первому тракту 1, подключают съемный блок 11 и включают в работу указанный жидкостный тракт 1, наземную систему обеспечения теплового режима 9, обеспечивая хладопроизводительность теплообменника 8.1 не менее чем в 2,1-2,2 раза больше требуемой хладопроизводительности одного тракта, а во втором бортовом жидкостном тракте 2 отсутствует циркуляция теплоносителя.

Далее согласно программе испытаний КА включают в работу оба бортовых циркуляционных тракта (в обоих трактах работают гидронасосы с одинаковой производительностью), увеличивают хладопроизводительность жидкостно-жидкостного теплообменника 8.1 в 2,1-2,2 раза путем увеличения перепада температур между теплоносителем борта и наземной системы обеспечения теплового режима: при этом в обоих бортовых трактах ввиду одинаковости гидравлических сопротивлений трактов, где течет бортовой теплоноситель, расходы в трактах будут одинаковыми, и на входных участках 4.1 и 4.2 встроенных коллекторов сотовой панели 4 (длиной по 0,7-1,2 м до участка сотовой панели 4, где установлены приборы) произойдет интенсивный теплообмен между теплоносителями на этих начальных участках, направленных к бортовым коллекторам, а при дальнейшей циркуляции их по трактам коллекторов сотовых панелей 4, 5, 3 будет практически одинаковый отвод избыточного тепла от приборов к циркулирующим в параллельно расположенных трактах теплоносителем (с разницей температур теплоносителей в любых поперечных сечениях параллельных коллекторов менее чем на 0,75°C). Далее согласно программе испытаний съемный блок 11 подключают ко второму бортовому циркуляционному тракту, а первый циркуляционный тракт закольцовывают закольцовкой, использованной для закольковки второго контура, и вышеуказанные испытания КА повторяют.

Как видно из вышеизложенного, в результате выполнения СТР КА согласно предложенному техническому решению упрощается конструкция его съемного блока, уменьшаются его габариты и масса, что упрощает монтаж-демонтаж съемного блока на борту КА, т.е. таким образом достигаются цели изобретения.

Система терморегулирования космического аппарата, содержащая два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, размещенных рядом друг с другом в (на) сотовых панелях, каждый из которых включает в себя входной и выходной гидроразъемы для соединения с гидроразъемами съемного блока системы, включающего жидкостно-жидкостный теплообменник, отличающаяся тем, что в съемном блоке установлен жидкостно-жидкостный теплообменник с хладопроизводительностью, превышающей требуемую хладопроизводительность одного тракта не менее чем в 2,1-2,2 раза, и при электрических испытаниях космического аппарата съемный блок подключен к одному из циркуляционных трактов согласно программе испытаний космического аппарата, а другой циркуляционный тракт закольцован жидкостным трактом, имеющим гидравлическое сопротивление, равное гидравлическому сопротивлению жидкостного тракта съемного блока.



 

Похожие патенты:

Изобретение относится к электропитанию космических аппаратов (КА), в частности телекоммуникационных КА. Способ включает сборку КА, в т.ч.

Изобретение относится к области космической техники и может применяться для тренажерной подготовки экипажей пилотируемых космических аппаратов, а также авиационных и морских комплексов.
Изобретение относится к космической медицине, в частности к способам моделирования эффектов пониженной гравитации в экспериментальных исследованиях. Способ включает перевод человека на период дневного бодрствования в ортостатическое положение с положительным углом наклона тела относительно горизонтальной оси.

Изобретение относится к космонавтике, а именно к способам имитации полета космических аппаратов (КА). Подготавливают аппаратные средства, моделируют орбитальное движение КА по предварительно заданному алгоритму и/или при приеме управляющих команд в режиме реального времени, моделируют движение небесной сферы в поле зрения каждого звёздного датчика по параметрам текущей ориентации КА с учетом динамики его движения, внешней среды, положения Солнца и Луны в инерциальной системе координат, моделируют появление нештатных ситуаций в работе бортовой аппаратуры ориентации и навигации КА, осуществляют контроль реакции системы управления ориентацией и навигацией при нештатных ситуациях, имитируют солнечное излучение для астроориентации и создания боковой помехи в инфракрасном и видимом диапазонах, имитируют сигналы спутников ГЛОНАСС и/или GPS с учетом параметров орбитального движения КА, моделируют орбитальное движение КА по трем осям вращения.
Изобретение относится к наземной отработке систем терморегулирования аппаратуры изделий авиационной и ракетно-космической техники. Испытания проводят в термокамере в два этапа.

Изобретение относится к разделу пилотируемой космонавтики и предназначено для подготовки космонавтов (астронавтов) экипажей МКС к внекорабельной деятельности. Многофункциональный учебно-тренировочный комплекс состоит из двух основных частей - функционально-моделирующего стенда предтренажерной подготовки и комплексного тренажера внекорабельной деятельности.

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий.

Изобретение относится к космонавтике. Стенд включает сервер моделирования 1, консоль оператора 2, комплект телекамер наблюдения 3, средства отображения информации коллективного пользования 4, пульт контроля и управления 5, который состоит из средства связи 6, панели управления освещением 7, панели ручного управления электроприводами 8, персонального компьютера инструктора 9, персонального компьютера инженера 10, персонального компьютера врача 11 и второго блока цифровой связи 12.

Изобретение относится к наземным имитационным испытаниям космических аппаратов (КА), а именно многозвенных маложестких механических систем изделий космической техники.

Изобретение относится к космическому тренажеростроению. Тренажер включает пульт контроля и управления 1, рабочее место обучаемых 2, первый узел поворота 3, первый датчик положения 4, первую систему управления перемещением 5, второй узел поворота 6, второй датчик положения 7, вторую систему управления перемещением 8, первую механическую часть системы управления перемещением 9, первый электродвигатель 10, вторую механическую часть системы управления перемещением 11, второй электродвигатель 12, первый датчик усилия 13, первый датчик скорости 14, второй датчик усилия 15, второй датчик скорости 16, первый скафандр с обучаемым 17, средства связи 18, второй скафандр с обучаемым 19.

Изобретение относится к системам терморегулирования (СТР) мощных телекоммуникационных спутников, содержащим многочисленные (до 10) вертикально расположенные последовательно соединенные длинноразмерные (~3-6 м) коллекторы.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце.

Изобретение относится преимущественно к системам терморегулирования космических объектов. Побудитель циркуляции содержит электронасосные агрегаты (ЭНА) и соединительные трубопроводы с гидроразъемами (ГР).

Группа изобретений относится к способам отвода низкопотенциального тепла от энергетических систем космических аппаратов (КА). Способ работы капельного холодильника-излучателя (КХИ) включает нагрев теплоносителя, его преобразование в поток капель, охлаждающихся излучением в космическом пространстве, сбор капель и подачу конденсата в энергетическую систему.

Изобретение относится к авиационно-ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков сверх- и гиперзвуковых летательных аппаратов.

Изобретение относится к конструкции и терморегулированию космических аппаратов (КА), преимущественно массой до 100 кг, запускаемых как попутные полезные нагрузки. В негерметичном контейнере КА, выполненном в форме параллелепипеда, на сотопанелях (СП) (3,4,5) установлены приборы (2).

Изобретение относится к космической технике, а именно к компоновке космических аппаратов (КА). Продольные и поперечные силовые сотовые панели компонуют в виде «двутавровой» конструкции, образующей центральную внутреннюю полость и две боковые П-образные полости.

Изобретение относится к системам терморегулирования (СТР), главным образом мощных геостационарных телекоммуникационных спутников с длительным сроком эксплуатации.

Изобретение относится к системам терморегулирования (СТР), главным образом мощных телекоммуникационных спутников. СТР содержит замкнутый циркуляционный контур с теплоносителем.

Изобретение относится к тепловому проектированию преимущественно геостационарных телекоммуникационных спутников с тепловой нагрузкой порядка 4,5-5,5 кВт. Спутник выполняют из двух модулей: модуля полезной нагрузки (ПН) и модуля служебных систем (СС). Приборы модуля СС и часть приборов модуля ПН устанавливают на внутренних поверхностях взаимно противоположных сотовых панелей "+Z" и "-Z". Последние выполняют функции радиаторов и включают в себя тепловые трубы, параллельные осям +Y, -Y спутника. Другие приборы модуля ПН размещают на сотовой панели, перпендикулярной панелям "+Z" и "-Z". Приборы модуля СС с наиболее узким температурным диапазоном устанавливают на внутренних обшивках их панелей радиаторов "-Z" и "+Z". Приборы с большой теплоемкостью и широким температурным диапазоном размещают внутри силовой конструкции корпуса и на нижней панели. Прочие приборы устанавливают на панели "+Х" и внутренней панели с встроенными жидкостными коллекторами. Элементы замкнутых дублированных жидкостных контуров соединяют с электронасосным агрегатом системы терморегулирования по определенной последовательной схеме. Технический результат изобретения направлен на уменьшение массы и упрощение технологии изготовления спутников данного класса. 8 ил.
Наверх