Электромеханическая силовая установка воздушного судна



Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна
Электромеханическая силовая установка воздушного судна

 


Владельцы патента RU 2542842:

Смирнов Евгений Иванович (RU)
Смирнов Андрей Евгеньевич (RU)

Изобретение относится к области авиации, в частности к конструкциям силовых установок комбинированных летательных аппаратов. Электромеханическая силовая установка воздушного судна состоит из группы винтов с приводом каждого во вращательное движение через редуктор от электродвигателей, питающихся от электроэнергетической установки большой мощности с одним приводным двигателем внутреннего сгорания. Силовая установка выполнена с возможностью зарядки аккумуляторов и питания электродвигателей маршевых винтов от генераторов, работающих от вращающихся в режиме авторотации горизонтальных воздушных винтов при набегающем скоростном воздушном потоке. Достигается повышение безопасности полетов, снижение затрат на производство и эксплуатацию авиационной техники. 6 ил.

 

Область техники, к которой относиться изобретение.

Изобретение относиться к силовой двигательной установке воздушных судов с приводом винтов во вращательное движение, создающей тягу движения самолетов, вертолетов.

Уровень техники

Аналогом изобретения является привод винтов самолета ТУ114, вертолета МИ12,26, автожиров.

Раскрытие изобретения

Изобретение экономически выгодно для воздушных судов взлетным весом от 100 тонн и использующих для взлета два и более воздушных винта от электродвигателей для привода во вращательное движение воздушных винтов.

Сущность изобретения состоит в следующем и направлена на решение определенной технической задачи: а) совместном применении для движения вперед, взлета с разбега и посадки маршевых и горизонтальных воздушных винтов, а для вертикального взлета и посадки горизонтальных винтов большого диаметра 28 м, создающих силу тяги вверх, приводимых во вращательное движение электродвигателями большой мощности, питающимися: электроэнергетической установкой ГТУ6, работающей от одного приводного электродвигателя или от бортовых генераторов, ротор каждого из которых установлен на общем валу электродвигателя и вращается от авторотации горизонтальных винтов под воздействием набегающего воздушного потока; б) применении в качестве топлива для приводного двигателя электроэнергетической установки, питающей электродвигатели электромеханических приводов винтов, сжиженного газа, смесь его с водородом (вырабатываемым непосредственно в море бортовыми установками для гидросамолетов); в) уменьшение веса воздушного судна за счет применения электродвигателей для привода винтов, имеющих меньший вес по сравнению с двигателями внутреннего сгорания, и, соответственно, увеличение грузоподъемности; г) создание высокой надежности привода ввиду раздельного вращения осей планетарного редуктора маршевых винтов. Так как при отказе одной линии редуктора другая обеспечит силу тяги для движения д) обеспечение безаварийности полета, посадки и взлета воздушного судна за счет применения при необходимости одновременно маршевых и горизонтальных винтов или маршевых винтов с одновременным свободным вращением горизонтальных винтов в режиме авторотации от набегающего воздушного потока или раскрутки винтов до 200 об/мин перед взлетом.

Вследствие решения данной технической задачи будет существенно: а) уменьшена себестоимость строительства воздушных судов, так как стоимость электродвигателей ниже, чем авиадвигателей (себестоимость вентильных реактивных электродвигателей на 40-60% ниже аналогичных коллекторных или асинхронных электродвигателей); б) уменьшена стоимость перевозок и эксплуатации воздушных судов взлетным весом от 100 тонн, использующих 2 и более винтов, приводимых в движение электродвигателями, ввиду применения электроэнергетической установки ГТУ 4 или ГТУ 6 с одним приводным двигателем Д30 для электропитания электродвигателей или применения бортовых электрогенераторов; в) повышена безопасность движения в режиме полета, так как при разгоне для взлета и посадке будут задействованы маршевая двигательная установка и двигательная установка взлета горизонтальными винтами, а вращающиеся при движении в режиме авторотации от воздушного потока горизонтальные винты обеспечат планирующую посадку при остановке электродвигателей.

Для подтверждения верности возможной замены двигателей внутреннего сгорания электродвигателем в приводе воздушных винтов проводим следующий расчет: определяем крутящий момент двигателя для известной двигательной установки самолета ТУ-114 (взлетный вес 170 тонн) и двигателя вертолета МИ-26 (взлетный вес 56 тонн). По данным крутящим моментам определяем электродвигатель с близким по значению крутящим моментом: 1) в качестве аналога силовой маршевой двигательной установки берем двигательную установку самолета ТУ-114 с четырехлопастным винтом диаметром 5.6 м, с числом оборотов в полете 736 об/мин (вертикальной плоскости вращения),двигателем в 15000 л.с., 8300 об/мин. 2) В качестве силовой двигательной установки вертикального взлета воздушного судна берем двигательную установку от вертолета МИ 26 с восьмилопастным винтом горизонтального вращения диаметром 28 м, мощностью двигателя 8500 кВт, 8300 об/мин. Определение крутящего момента производим из формулы мощности для равномерного вращательного движения (см. приложение).

Расчеты и формулы.

1) Определяем крутящий момент на оси двигателя ТУ114 по формуле Мкр.=N:w (N - мощность, w - угловая скорость, п - число оборотов двигателя в мин), при этом w=(П×п):30, где п=8300 об/мин, тогда w=(3,14×8300):30=868,7 об/с. N=15000 л.c., Mкp.=(15000×75 кг·м/с):868,7 об/с=1295 кг·м. Передний винт двигателя берет 54,4% мощности N, задний 45,6% мощности N, тогда для переднего винта М=8160 л.с., заднего винта N=6840 л.с., тогда для переднего винта Мкр.=(8160×75 кг·м/с):868,7 об/с=704,5 кг·м, для Мкр.=(6840×75 кг·м/с):868,7 об/с=590 кг· м. Приближенно определяем передаточное число редуктора от двигателя в винту ТУ-114, 8300 об/мин: 736 об/мин = 11, Мкр. на выходе от редуктора к винту получаем так умножением Мкр. дв. на передаточное число: 1295 кг·м × 11=14603 кг·м, тогда для переднего винта Мкр.=704,5×11=7749,5 кг·м, для заднего винта Мкр.=590 кг·.м × 11=6490 кг·м. Методом подбора по каталогу выбираем электродвигатель постоянного тока ДА30 4-400, U=6000 В, N=250 кВт, п=600 об/мин, Мкр.=6000 кг·м, который через планетарный редуктор раздельно обеспечит вращение каждого винта. Возможно использование также электродвигателя Мкр.=10000 кг·м с большим крутящим моментом, но данные электродвигатели не подходят по оборотам.

2) Определяем крутящий момент приводного двигателя для редуктора восьмилопастного винта диаметром 28 м вертолета МИ26, по формуле Mкp.=N:w, при этом w=(П×п):30, где п=8300 об/мин, w=(3,14×8300):30=868,7 л.с., N=11400 л.с., тогда Мкр.=(11400×75 кг·м):868,7 р/с=984 кг·м. Передаточное число от эл. двигателя на винт с редуктора составляет 62,5. Тогда на выходе с редуктора Мкр.=984 кг·м × 62,5=61537,5 кг·м. Для замены приводного двигателя МИ-26 на эл. двигатель применим электродвигатель ДА30 4-400, U=6000 В, N=250 кВт, п=500 об/мин, Мкр.=10000 кг·м, передаточное число между моментами равно 61537,5:10000=6, определим Мкр. на выходе с редуктора, Мкр.=0,85 × 10000 кг·м × 7,1=60350 кг·м, число оборотов винта от этого эл. двигателя 500 обмин: 7,1=70 об/мин. По оборотам эл. двигатель не соответствует, но если его напряжение питания увеличить до 10000 В, то его характеристики будут близки к требуемым. Для обеспечения только режима авторотации и Мкр. подходит электродвигатель N=500 кВт, п=1800 об/мин, U=660 В, Мкр.=4807 н.м. Через редуктор с передаточным числом 12,5 определим обороты на оси винта 1800 об/мин:12,5=144 об/мин и Мкр.=0,85×4807×12,5=51074 н.м=5107 кг·м.

Осуществление изобретения.

В качестве электродвигателей маршевых винтов и винтов вертикального взлета целесообразнее применить вентильные реактивные электродвигатели необходимой мощности с числом оборотов до 10000 об/мин (за границей производятся мощностью 250 кВт). Питание электродвигателей обеспечить от газотурбинной электроэнергетической установки ГТУ-4 или ГТУ-6 через преобразователи напряжения в случае необходимости. В этом случае топливо потребуется только для приводного двигателя типа Д-30. Этим обеспечиться экономичность эксплуатации воздушных судов такого типа. Также возможна модернизация отечественных электродвигателей с помощью силовых полупроводников для превращения их в вентильные реактивные электродвигатели. Конструкция воздушного судна позволяет разместить в трубах из композитных материалов объемом до 15000 м3 сжиженный газ. Для хранения сжиженного газа возможно применить емкости газовозов, применяемые на россйских железных дорогах. В качестве топлива необходимо применять и водород, получаемый из воды электролизом, его запасы возможно пополнять непосредственно в море. Для этого в корпусе воздушного судна необходимо установить установки для производства водорода. Тип их и необходимое количество возможно определить при проектировании воздушного судна. После взлета винты горизонтального вращения переводятся в режим авторотации (свободного вращения от набегающего воздушного потока) и от них возможно вращение ротора генератора, изготовленного по типу вентильного реактивного, который будет производить электроэнергию для электродвигателей маршевых винтов и в этом случае не будет потребления топлива приводным двигателем электроэнергетической установки. Режим авторотации винтов обеспечит безопасный полет для посадки в случае отключения приводов маршевых винтов при аварийной ситуации.

Чертежи

Фиг. 1 на трех листах (левый, средний, правый) вид сверху воздушного судна с расположением вертикальных и горизонтальных винтов двигательной установки. 2) Фиг. 2 на трех листах - вид сбоку на воздушное судно с расположением винтов двигательной установки. На фиг. 1, 2 указано: воздушное судно с размерами 96×40×20 м, осадкой 1,5 м, площадь палубы 3240 м2, водоизмещением 1170 тонн, весом 80 тонн, 1 - корпус, 2 - крыло переднее, 3 - крыло заднее, 4 - рули управления воздушные, 5 - двигатели маршевые с вертикальными винтами, 6 - двигатели с горизонтальными винтами (вертикального взлета), 7 - винты авторотации.

Приложение (справочные материалы): 1) Расчет мощности для вращательного движения по справочнику «Техническая механика» Пашкова Н.Н., 2) кинематическая схема одноступенчатого зубчатого редуктора, 3) выписка из каталога на электродвигатели, 4) выписка из каталога на электростанции.

Электромеханическая силовая установка воздушного судна, состоящая из группы винтов с приводом каждого во вращательное движение через редуктор от электродвигателей, питающихся от электроэнергетической установки большой мощности с одним приводным двигателем внутреннего сгорания, отличающаяся тем, что выполнена с возможностью зарядки аккумуляторов и питания электродвигателей маршевых винтов от генераторов, работающих от вращающихся в режиме авторотации горизонтальных воздушных винтов при набегающем скоростном воздушном потоке.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к конструкциям винтокрылых летательных аппаратов. Скоростной винтокрыл содержит фюзеляж с крылом и хвостовой балкой, несущий и рулевой винты с силовой установкой и два дополнительных воздушных винта, установленных на консолях крыла и снабженных каждый своим двигателем.
Изобретение относится к области авиации, в частности к способам управления гибридными вертолетами. Способ регулирования скорости движения гибридного вертолета, содержащего, по меньшей мере, один несущий винт и один движительный воздушный винт, снабженный совокупностью лопастей с изменяемым шагом, приводимые во вращение, по меньшей мере, одним двигателем, включает пилотируемый процесс, в котором выработку команд управления заданным значением среднего шага лопастей движительного воздушного винта генерируют при помощи ручного органа управления в зависимости от мощности, потребляемой этим винтом, и корректирующего процесса, в котором команды пилотирования корректируют с учетом, по меньшей мере, одного ограничительного параметра регулирования, связанного со свойствами прочности гибридного вертолета.

Изобретение относится к области авиации, в частности к конструкциям комбинированных летательных аппаратов. Летательный аппарат (1) содержит фюзеляж (2), двигательную установку (10), вращающуюся несущую поверхность (15), снабженную, по меньшей мере, одним несущим винтом (16), крыло (20), содержащее два полукрыла (21, 22), простирающиеся с одной и другой стороны фюзеляжа (2), два тяговых воздушных винта (30), расположенные с одной и другой стороны фюзеляжа и размещенные каждый на полукрыле (21, 22).

Изобретение относится к области авиационной техники, в частности к конструкциям комбинированных вертолетов. Многовинтовой тяжелый конвертовинтокрыл выполнен в виде высокорасположенного моноплана, имеющего на консолях крыла винты в поворотных кольцевых каналах, фюзеляж с шарнирно установленными двумя силовыми балками ромбовидной в плане качалки, имеющей возможность отклонения ее балок в продольной плоскости и снабженной на противоположных ее вершинах несущими винтами на пилонах.

Изобретение относится к области авиационной техники, в частности к конструкциям беспилотных вертолетов. Скоростной турбоэлектрический вертолет содержит трехвинтовую ярусную схему с двумя винтами в кольцевых каналах на поворотных консолях крыла и над ними на пилоне несущий винт, газотурбинные двигатели, передающие крутящий момент через главный редуктор и валы трансмиссии на несущий и тянущие винты в кольцевых каналах, газовые струйные рули путевого и продольного управления.

Изобретение относится к области авиации, в частности к конструкциям гибридных летательных аппаратов. Летательный аппарат (1) содержит фюзеляж (2), вращающуюся несущую поверхность (10), оснащенную двумя несущими винтами (12) противоположного вращения, расположенными тандемом над упомянутым фюзеляжем (2), по меньшей мере, один движитель (20) и моторную группу (30).

Изобретение относится к области авиации, в частности к системам автоматического управления полетом. Устройство (10) автоматического пилотирования летательного аппарата (1) с несущим винтом, содержащего, по меньшей мере, один толкающий винт (2), при этом упомянутый несущий винт содержит, по меньшей мере, один винт (3), оборудованный множеством лопастей (3'), содержит блок (15) обработки, взаимодействующий, по меньшей мере, с общей цепью (7) управления общим шагом упомянутых лопастей (3').

Изобретение относится к авиационной технике, а именно к летательным аппаратам вертикального взлета и посадки. Скоростной винтокрыл содержит фюзеляж с хвостовой балкой и килем, две консоли крыла и два несущих винта, расположенных на консолях крыла и установленных с перекрытием, при этом несущие винты выполнены жесткими.

Изобретение относится к области авиационной техники и может быть использовано в конструкции беспилотных летательных аппаратов. Беспилотный двухфюзеляжный вертолет-самолет представляет собой моноплан с передним горизонтальным оперением, содержащий двухкилевое оперение, смонтированное к консолям крыла на гондолах, короткий фюзеляж, двигатель, передающий крутящий момент через систему валов трансмиссии на тянущий и толкающий поворотные винты, обеспечивающие горизонтальную и соответствующим отклонением вертикальную тягу.

Изобретение относится к авиационной технике. .

Изобретение относится к области авиации, в частности к способам управления летательными аппаратами. Способ управления летательным аппаратом (1), содержащим фюзеляж (2), несущий винт (3), тяговый винт (4) изменяемого шага, два полукрыла (11, 11'), расположенные с одной и другой стороны фюзеляжа (2), горизонтальное оперение (20), оборудованное подвижной поверхностью (21, 21'), силовую установку (5), приводящую во вращение несущий винт (3) и тяговый винт (4), включает определение заданного общего шага и заданного продольного циклического шага, чтобы привести упомянутый летательный аппарат (1) к точке оптимизированной работы упомянутого несущего винта (3) во время устойчивой фазы полета, сохраняя при этом задачу постоянного вертикального состояния, такого как постоянная вертикальная скорость или постоянный угол атаки, и задачу постоянного продольного пространственного положения, соответствующего упомянутой устойчивой фазе полета, регулируют подъемную силу упомянутых полукрыльев (11, 11'), действуя на аэродинамическое средство упомянутого летательного аппарата (1) таким образом, чтобы общий шаг упомянутых лопастей упомянутого несущего винта (3) был равен заданному общему шагу. Достигается снижение рабочей нагрузки пилота посредством автоматического поддержания положения летательного аппарата в пространстве. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к области авиации, в частности к конструкциям комбинированных летательных аппаратов. Скоростной комбинированный вертолет содержит фюзеляж, состоящий из передней, средней и хвостовой частей, хвостовое оперение, силовую установку, две консоли крыла, несущий винт, рулевой винт, толкающий винт в кольце, трансмиссию, содержащую главный редуктор, редуктор рулевого винта и хвостовой вал. Толкающий винт установлен на хвостовом валу в конце средней части фюзеляжа и его кольцо жестко связано с фюзеляжем. Хвостовая часть фюзеляжа выполнена в виде трубчатого корпуса с опорным силовым кольцом, жестко связанным с кольцом толкающего винта, а сам толкающий винт снабжен автоматом перекоса с управлением общим и циклическим шагом лопастей. Жесткое крепление опорного силового кольца хвостовой части фюзеляжа к кольцу толкающего винта выполнено в виде стержней, а жесткое крепление кольца толкающего винта к средней части фюзеляжа - с помощью обтекаемых крепежных элементов, обеспечивающих спрямление набегающего воздушного потока к толкающему винту. Обеспечивается уменьшение массы скоростного комбинированного вертолета и повышение его маневренных характеристик и скорости полета. 4 з.п. ф-лы, 3 ил.

Вертолет содержит фюзеляж, несущий винт, рулевой винт с управлением общим и циклическим шагом, силовую установку, элементы трансмиссии и систему управления. Вал рулевого винта установлен под постоянным углом в горизонтальной плоскости вертолета в диапазоне 50-70 градусов относительно продольной оси вертолета, а механизм управления циклическим шагом рулевого винта выполнен в виде автомата перекоса с управлением по одному каналу с отклонением его кольца на угол, обеспечивающий дополнительное увеличение или уменьшение пропульсивной составляющей вектора тяги рулевого винта. Способ управления одновинтовым вертолетом с использованием рулевого винта для создания дополнительной пропульсивной силы включает установку винта под постоянным заданным углом в горизонтальной плоскости вертолета, значение которого выбирают в диапазоне 50-70 градусов относительно продольной оси вертолета. Управление циклическим шагом рулевого винта осуществляют с помощью автомата перекоса по одному каналу путем отклонения его кольца в обоих направлениях относительно оси вала рулевого винта, соответствующего дополнительному повороту вектора тяги на углы не более 10 градусов. Достигается упрощение перехода с режима висения или малых скоростей на скоростной режим полета. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к авиационной технике, в частности к конструкциям комбинированных летательных аппаратов. Комбинированный летательный аппарат содержит удлиненный фюзеляж, несущий винт с лопастями для создания подъемной силы и крыльевую часть, выступающую от каждой стороны фюзеляжа. Каждая крыльевая часть установлена на фюзеляже с возможностью поворота вокруг ее продольной оси. Аппарат содержит раскосы, расположенные выше и/или ниже крыльевой части, выполненной стреловидной. Каждый раскос соединен одним концом с фюзеляжем, а другим концом с валом, расположенным на продольной оси поворотного крыла на удалении от фюзеляжа с возможностью поворота вала в этом соединении, условно разделяющим поворотное крыло на внутреннюю и внешнюю части. Внешняя часть поворотного крыла оснащена закрылками, спойлерами и элеронами. Крыльевая часть дополнительно содержит Г-образные консоли, симметрично выступающие от каждой стороны фюзеляжа и расположенные спереди и/или сзади внутренней части поворотного крыла. Каждая Г-образная консоль соединена концевой частью с раскосом и/или с валом, расположенным на продольной оси поворотного крыла, с возможностью поворота вала в этом соединении. Достигается повышение жесткости крепления поворотного крыла. 4 з.п. ф-лы, 2 ил.

Изобретение относится к авиации. Летательный аппарат содержит фюзеляж, горизонтальное и вертикальное хвостовое оперение, силовую установку, предпочтительно из двух двигателей, обтекаемые горизонтальные балки, шасси, воздушный винт горизонтальной тяги, трансмиссию, а также вращающиеся в противоположных направлениях круглые крылья. Крылья имеют возможность притормаживания вращения любого из них. Каждое крыло имеет радиально расположенные по периметру качающиеся лопасти, которые совершают полный цикл колебания в вертикальной плоскости за один оборот крыла. При функционировании лопастей в плоскости колебания лопасти имеют возможность исключать колебания лопастей и устанавливать их неподвижными в плоскости крыла. Достигается повышение эксплуатационных качеств, уменьшение сложности конструкции. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационной техники, в частности к конструкциям конвертируемых скоростных вертолетов. Легкий конвертируемый скоростной вертолет (ЛКСВ) выполнен по двухвинтовой несущей схеме, имеет в кормовой части фюзеляжа силовую установку, включающую два двигателя, передающих крутящий момент на задние толкающие винты и несущие передний и задний винты, смонтированные на соответствующих пилонах. ЛКСВ содержит вертикальное оперение, смонтированное под хвостовой балкой, оснащенное амортизационной стойкой заднего колеса трехопорного шасси, главные боковые опоры с передними неубирающимися колесами в концевых обтекателях низкорасположенного крыла. Вертолет выполнен по дупланной схеме с разновеликими крыльями и концепции распределенной тяги разновеликих винтов (РТРВ) и оснащен продольно-поперечной несущей системой по схеме РТРВ-Х2+2. ЛКВС имеет смонтированные на вертикальных пилонах больший и средний винты, соответственно в передней части фюзеляжа и на конце тонкой хвостовой балки, и два меньших винта на поворотных частях заднего крыла. Достигается увеличение полезной нагрузки, весовой отдачи, повышение скорости, высоты и дальности полета. 1 з.п. ф-лы, 1 ил., 1 табл.
Наверх