Способ управления движением жидкостной ракеты космического назначения после команды на выключение маршевого двигателя отработавшей ступени

Изобретение относится к ракетно-космической технике и может быть использовано для управления движением жидкостной ракеты космического назначения (РКН). После команды на выключение маршевого двигателя (МД) отработавшей ступени переводят МД на режим пониженной тяги и окончательно выключают МД, управляют движением ракеты по крену с помощью двух пар газовых сопел, осуществляют прогноз момента времени окончательного выключения МД, включают одну из пар газовых сопел до спрогнозированного момента времени окончательного выключения МД для создания управляющего момента по крену, выключают пару газовых сопел в спрогнозированный момент времени, при этом величину промежутка времени работы пары газовых сопел определяют перед началом полета в зависимости от момента инерции вращающейся части турбонасосного агрегата с учетом присоединенной массы компонентов топлива относительно оси вращения, абсолютной величины момента по крену, создаваемого каждой парой газовых сопел при их включении, абсолютной величины угловой скорости вращения ротора турбонасосного агрегата на режиме пониженной тяги, угла между осью вращения ротора турбонасосного агрегата и продольной осью ракеты. Изобретение позволяет повысить безопасность полёта РКН. 1 ил.

 

Изобретение относится к ракетно-космической технике, а именно к способам управления движением жидкостных ракет космического назначения (РКН) на участке полета после команды на выключение установленного в карданном подвесе маршевого двигателя (МД) отработавшей ступени РКН и до отделения этой ступени.

В ракетной технике известен выбранный в качестве прототипа способ управления движением жидкостной РКН после команды на выключение МД отработавшей ступени, заключающийся в переводе МД на режим пониженной тяги и окончательном выключении МД путем прекращения подачи компонентов топлива в его камеру сгорания [1].

Недостатком данного способа является то, что при его реализации на РКН действует возмущающий момент, который может привести к закрутке РКН вокруг продольной оси. Этот момент обусловлен торможением вращающихся частей турбонасосного агрегата (ТНА) и увлекаемой ими массы компонентов топлива.

Для парирования возмущающих моментов по крену на РКН тандемной компоновки с одним маршевым двигателем обычно используются дополнительные рулевые двигатели или выносные газовые сопла крена, газ для которых вырабатывает газогенератор МД. Однако эффективность газовых сопел прямо пропорциональна тяге маршевого двигателя и к моменту времени, когда происходит остановка вращающихся частей ТНА, а РКН набирает свою максимальную угловую скорость по крену, газовые сопла оказываются уже неэффективными и не могут парировать вызванное возмущениями вращение РКН вокруг продольной оси. Поэтому, учитывая систематический характер указанного возмущения, противодействующий ему момент от газовых сопел необходимо создавать заранее.

Задачей предложенного изобретения является разработка способа управления движением РКН после команды на выключение МД отработавшей ступени, обеспечивающего парирование возмущающего момента, обусловленного торможением вращающихся частей ТНА и тем самым предотвращающего нежелательную закрутку РКН по крену, которая в сочетании с другими неблагоприятными условиями может привести к «складыванию» рамок гиростабилизированной платформы и аварийному прекращению полета РКН.

Техническим результатом предлагаемого изобретения является повышение безопасности полета РКН.

Указанный технический результат достигается тем, что в способе управления движением жидкостной РКН после команды на выключение МД отработавшей ступени, включающем перевод МД на режим пониженной тяги и окончательное выключение МД путем прекращения подачи компонентов топлива в его камеру сгорания, в соответствии с изобретением, в случае, когда управление движением РКН по крену осуществляется с помощью двух пар газовых сопел, газ для которых вырабатывает газогенератор МД, вначале осуществляют прогноз момента времени (t0) окончательного выключения МД, заранее, за промежуток времени (Δt) до спрогнозированного момента времени (t0) окончательного выключения МД включают одну из пар газовых сопел, создающую управляющий момент по крену, знак которого противоположен знаку угловой скорости вращения ротора ТНА, затем выключают указанную пару газовых сопел в спрогнозированный момент времени (t0), при этом величину промежутка времени (Δt) работы этой пары газовых сопел определяют перед началом полета ракеты по формуле , где IP - момент инерции вращающейся части ТНА с учетом присоединенной массы компонентов топлива относительно оси вращения,MX - абсолютная величина момента по крену, создаваемого каждой парой газовых сопел при их включении, Ω - абсолютная величина угловой скорости вращения ротора ТНА на режиме пониженной тяги, φ - угол между осью вращения ротора ТНА и продольной осью РКН.

Сущность предлагаемого изобретения иллюстрируется фиг.1.

Фиг.1 - типичные зависимости параметров углового движения РКН от времени после команды на выключение МД.

В качестве примера рассмотрим возможную реализацию предлагаемого способа управления на РКН легкого класса типа корейской ракеты «КСЛВ-I». Камера сгорания маршевого двигателя I ступени этой РКН установлена в карданном подвесе. Управление движением РКН по тангажу и рысканию осуществляется путем отклонения камеры с помощью двух электрогидравлических сервоприводов. Для управления движением по крену используются 4 газовых сопла, которые включаются попарно. В конце работы I ступени система управления подает команду на выключение ее МД, после чего двигатель переводится на режим пониженной тяги (на конечную ступень тяги - КСТ), составляющей 38% от номинальной. На этом режиме еще возможно управление движением РКН по тангажу и рысканию путем отклонения камеры сгорания МД. В канале крена на режиме КСТ используются газовые сопла, хотя и с пониженной эффективностью. Ротор ТНА, подающего компоненты топлива в камеру сгорания, на режиме КСТ вращается с угловой скоростью Ω≈12600 об/мин, угол между осью вращения ротора и продольной осью РКН составляет φ=6°. Вращающиеся части ТНА обладают моментом импульса (кинетическим моментом), проекция которого на продольную ось РКН равна K1=IPΩcosφ, где IP - момент инерции вращающейся части ТНА относительно оси вращения с учетом присоединенной массы компонентов топлива (массы компонентов между лопатками насосов горючего и окислителя), приблизительно равный 0,375 кг·м2.

После окончательного выключения МД прекращается подача компонентов топлива в камеру сгорания. Угловая скорость вращения ротора ТНА приблизительно за 0,9 с падает до нуля. По закону сохранения момента импульса замкнутой системы РКН-ТНА ракета при этом приобретет момент импульса относительно продольной оси, равный K2=IXωХ0, где IX - момент инерции РКН относительно продольной оси, приблизительно равный 16500 кг·м2 в конце работы маршевого двигателя I ступени. При этом K2=K1, т.е. РКН начнет вращаться вокруг продольной оси с угловой скоростью

Для указанных числовых значений параметров угловая скорость вращения составит около 1,7 гр/с. Для погашения этой угловой скорости необходимо включение одной из двух пар газовых сопел, а именно той, которая создает управляющий момент по крену, знак которого противоположен знаку угловой скорости вращения ТНА. Эта пара газовых сопел должна быть включена на время

где MX - абсолютная величина момента по крену, создаваемого каждой парой газовых сопел при их включении (MX≈114 кг·м при работе МД на режиме пониженной тяги). Для указанных значений параметров время включения пары сопел составит Δt≈0,44 с.

Поэтому, в соответствии с предлагаемым способом управления для предотвращения нежелательного вращения РКН по крену, предлагается перед началом полета по формуле (2) определить длительность промежутка времени Δt, в течение которого должна работать пара газовых сопел. В полете, в конце работы I ступени осуществляется прогноз момента времени t0 окончательного выключения двигателя. Такой прогноз может быть выполнен либо на основе информации, поступающей в систему управления от датчиков уровней окислителя и горючего, установленных в баках ракеты и позволяющих определить массу оставшихся компонентов топлива, либо на основе сравнения текущих значений траекторных параметров (скорости, высоты и т.д.) с их программными значениями (способ осуществления прогноза зависит от принятых принципов работы системы наведения ракеты). После того как момент времени t0 окончательного выключения МД спрогнозирован, заранее, за промежуток времени Δt до момента времени t0 в соответствии с предлагаемым способом управления включают одну из пар газовых сопел, создающую управляющий момент необходимого знака (противоположного знаку угловой скорости вращения ТНА). Выключают эту пару газовых сопел в момент времени t0.

На фиг.1 представлены результаты математического моделирования углового движения РКН в канале крена, начиная с момента включения пары сопел крена. Показаны:

- зависимость от времени угловой скорости вращения ротора ТНА Ω·0.001, рад/с;

- зависимость от времени угловой скорости вращения РКН по крену (вокруг продольной оси) ωX, гр/с;

- зависимость от времени угла крена РКН γ, гр;

- зависимость от времени команды на включение одной из пар газовых сопел u (u принимает значения -1, 0, +1. u=-1 означает, что включена пара газовых сопел, создающая отрицательный момент по крену, u=0 означает, что газовые сопла выключены). Из фиг.1 видно, что предлагаемый способ управления уже через 1,4 с после включения газовых сопел сводит угловую скорость ωX практически к 0, при этом абсолютная величина угла крена γ РКН не превосходит 1,1°.

Таким образом, благодаря реализации предложенного в изобретении технического решения, решается задача парирования возмущающего момента, обусловленного торможением вращающихся частей ТНА, и достигается технический результат предлагаемого изобретения - повышение безопасности полета РКН.

Источники информации

1. В.И. Феодосьев. Основы техники ракетного полета. М.: «Наука», 1981 г., с.139.

Способ управления движением жидкостной ракеты космического назначения после команды на выключение маршевого двигателя отработавшей ступени, включающий перевод маршевого двигателя на режим пониженной тяги и окончательное выключение маршевого двигателя путем прекращения подачи компонентов топлива в его камеру сгорания, отличающийся тем, что в случае, когда управление движением ракеты по крену осуществляется с помощью двух пар газовых сопел, газ для которых вырабатывает газогенератор маршевого двигателя, вначале осуществляют прогноз момента времени (t0) окончательного выключения маршевого двигателя, заранее, за промежуток времени (Δt) до спрогнозированного момента времени (t0) окончательного выключения маршевого двигателя включают одну из пар газовых сопел, создающую управляющий момент по крену, знак которого противоположен знаку угловой скорости вращения ротора турбонасосного агрегата, затем выключают указанную пару газовых сопел в спрогнозированный момент времени (t0), при этом величину промежутка времени (Δt) работы этой пары газовых сопел определяют перед началом полета ракеты по формуле , где IP - момент инерции вращающейся части турбонасосного агрегата с учетом присоединенной массы компонентов топлива относительно оси вращения, MX - абсолютная величина момента по крену, создаваемого каждой парой газовых сопел при их включении, Ω - абсолютная величина угловой скорости вращения ротора турбонасосного агрегата на режиме пониженной тяги, φ - угол между осью вращения ротора турбонасосного агрегата и продольной осью ракеты.



 

Похожие патенты:

Группа изобретений относится к межорбитальным, в т.ч. межпланетным, перелетам космических аппаратов (КА) с реактивным двигателем.

Изобретение относится к атомной энергетике и ракетно-космической технике. Технический результат - повышение эффективности и надежности функционирования ядерной энергодвигательной установки космического аппарата.

Изобретение относится к космической технике и может быть использовано в ракетах-носителях. Многоступенчатая ракета-носитель содержит головной блок с полезным грузом, параллельно расположенные разделяемые ракетные блоки ступеней с многокамерными двигательными установками с топливными баками (ТБ) в форме тора, крылья, хвостовую часть конической формы, укороченное центральное тело (УЦТ) на первой ступени, единое тарельчатое сопло (ЕТС) на второй ступени, донную часть в виде внешнего и внутреннего усеченных конусов, образованных внешней поверхностью обечайки УЦТ и внутренней поверхностью обечайки ЕТС.

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Устройство фиксации предметов в невесомости содержит фиксатор в виде проволоки (из материала, обладающего свойством остаточной пластической деформации) в неметаллической оболочке, кольца на концах фиксатора диаметром, соизмеримым с размерами пальцев наддутой перчатки скафандра, рычаг с щелевым отверстием диаметром, соизмеримым с диаметром фиксатора.

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Фиксатор предметов в невесомости содержит проволоку (из материала, обладающего свойством остаточной пластической деформации) в неметаллической оболочке, кольца на концах фиксатора диаметром, соизмеримым с размерами пальцев наддутой перчатки скафандра.

Изобретение относится к ракетно-космической технике и может быть использовано для увода отделяющихся частей ступеней ракет космического назначения. Получают импульс путем выброса газифицированных жидких остатков невыработанных компонентов ракетного топлива (РТ), обеспечивают импульс за счет сгорания невыработанных компонентов РТ в камере газового ракетного двигателя, ограничивают объем невыработанных остатков РТ, разделяют секундный массовый расход теплоносителя (ТН) на 2 части (одну часть подают в объем, ограниченной сеткой, другую - во вторую часть топливного бака), определяют количество подаваемого ТН из условия испарения оставшихся капель компонентов РТ.

Изобретение относится к космической технике и может быть использовано для крепления и разделения ступеней ракеты-носителя пакетной схемы. Устройство для крепления и последующего разделения ступеней ракеты-носителя пакетной схемы содержит пневмотолкатель, узлы крепления, замок.

Изобретение относится к конструкции и терморегулированию космических аппаратов (КА), преимущественно массой до 100 кг, запускаемых как попутные полезные нагрузки. В негерметичном контейнере КА, выполненном в форме параллелепипеда, на сотопанелях (СП) (3,4,5) установлены приборы (2).
Изобретение относится к космонавтике и может быть использовано для обеспечения безопасности Земли от столкновения с опасным космическим телом. Лунный пусковой ракетный комплекс содержит стартовый стол, размещенный непосредственно на поверхности Луны, тепловой кожух, размещенный на стартовом столе, с открывающейся крышкой в верхней части, зеркальной наружной поверхностью и покрытой теплоизоляционным материалом (тефлон, политетрафторэтилен, политрифторхлорэтилен, кристаллический сополимер этилена с тетрафторэтиленом) внутренней поверхностью, систему терморегулирования с тепловыми аккумуляторами и устройством подогрева, источник питания, реактивную твердотопливную ракету с полезным грузом 5-9 тонн и стартовой массой 20-30 тонн.

Изобретение относится к ракетно-космической технике и может быть использовано для повышения радиационной безопасности экипажа космического корабля (КК). КК содержит возвращаемый аппарат, рабочий отсек, двигательную установку с запасами топлива, переходный тоннель.

Изобретение относится к космической технике и может быть использовано в разгонных блоках ракет-носителей (РН). Ракетный криогенный разгонный блок (РБ), выполненный по тандемной схеме, содержит бак горючего с приборным отсеком и переходной системой для крепления космического аппарата, бак окислителя (БО), проставку межбаковую, маршевый двигатель (МД) РБ, промежуточный отсек, систему пожаровзрывопредупреждения, средства обеспечения теплового режима с блоком разъемных соединений связи с наземным оборудованием и разделяемых подводящих трубопроводов, коллекторы продувки застойных зон и обеспеспечения теплового режима зоны и аппаратуры РБ, разделительную мембрану, сбрасываемый головной обтекатель (ГО) с окнами сброса системы пожаровзрывопредупреждения и средств обеспечения теплового режима газов продувки зоны РБ, дополнительной теплоизоляцией зоны РБ, частью разделяемых подводящих труб коллекторов с разъемными стыками и блоком разъемных соединений связи с наземным оборудованием, межбаковой проставкой, сопряженной с межбаковой фермой для крепления БО с МД и сопряженной с верхней проставкой отделяемого промежуточного отсека с узлами соединения и разделения с РН и ГО. Изобретение позволяет повысить пожаровзрывобезопасность РБ. 2 ил.

Изобретение относится к системе доставки различных видов полезной нагрузки в верхние слои атмосферы и выше. Система пуска ракет (1) включает трубчатую тележку пуска ракет (2) с фрикционными приводами кабельного/тросового пути (26), перемещаемую ниже двухосевого шарнира (63), прикрепленного к земле, поднимаемую в коаксиальную переносную трубу (124, 143), ведущую к трем основным привязным кабелям/тросам (27), вес которых компенсируется аэростатами (164). Тележка затем перемещается на стыковочную станцию (166), удерживаемую над землей в стратосфере парой вторичных кабелей/тросов (184), подвешенных под крепежной рамой (162) для натяжения аэростатов. Тележка удерживается концевым захватом тележки (196), направляемым по двум вторичным и двум третичным кабелям/тросам (186), и поднимаемым нижним подъемником (198), направляемым вторичными кабелями. Этот нижний подъемник удерживается верхним подъемником (168), подвешенным на крепежной раме натяжных аэростатов. Тележка, зацепляющаяся за подъемное кольцо (183), направляющееся по двум вторичным кабелям/тросам, поднимается дальше, вращается в необходимом направлении, со сбросом ракеты и практически безоткатным выбросом во время свободного падения тележки вниз и зажиганием двигателя на безопасном расстоянии. В результате создана пусковая установка для частой, безопасной и экологически чистой отправки полезных грузов в космос. 49 з.п. ф-лы, 67 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в последних ступенях ракет-носителей. Ракетно-космическая система (РКС) содержит ракету-носитель с последней ступенью с внешним корпусным отсеком с силовым промежуточным опорным шпангоутом с состыкованными между собой с помощью крепежных элементов наружным и внутренним шпангоутами, космический аппарат с головным обтекателем с торцевым шпангоутом. Внешний диаметр силового промежуточного опорного шпангоута соответствует диаметру торцевого шпангоута головного обтекателя. Изобретение позволяет обеспечить стыковку различных типоразмеров головных обтекателей с ракетами-носителями без увеличения времени сборки подготовки к старту РКС. 2 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в многоразовых ступенях ракет космического назначения (РКН). Система для обеспечения выхода в космическое пространство содержит РКН с двунаправленной поверхностью управления с возможностью разворота, с возможностью принимать информацию о положении конструкции части РКН на поверхности воды для регулирования траектории полета, стартовую площадку, средство для запуска РКН или части РКН со стартовой площадки в первый раз и второй раз соответственно, средство для вертикальной посадки части РКН на конструкцию на водной поверхности, средство для запуска, средство для изменения ориентации РКН с ориентации носом вперед на ориентацию хвостом вперед перед посадкой и повторного входа в атмосферу Земли, средство для отключения ракетных двигателей, средство для первичного и повторного запуска одного или больше ракетных двигателей. Запускают РКН с полезной нагрузкой с Земли, отключают указанный один или больше ракетных двигателей на ступени ускорителя, отделяют верхнюю ступень от ступени ускорителя на заданной высоте, изменяют ориентацию ступени ускорителя, размещают передвижную посадочную платформу на водной поверхности, принимают информацию о положении посадочной платформы и управляют траекторией ступени ускорителя для перемещения к посадочной платформе, выполняют повторный запуск одного или больше ракетных двигателей на ступени ускорителя перед посадкой, выполняют вертикальную посадку части РКН на посадочную платформу, транспортируют часть РКН на передвижной посадочной платформе или на транзитное судно. Изобретение позволяет осуществить вертикальную посадку многоразовой части РКН на передвижную посадочную платформу на поверхности воды. 3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано для удаления нефункционирующего космического аппарата (КА) с геостационарной орбиты. Выводят на геостационарную орбиту КА со средством наблюдения и захвата нефункционирующего КА и дополнительным запасом компонентов топлива, переводят КА после окончания срока активного существования в точку стояния на геостационарной орбите нефункционирующего КА, осуществляют ориентацию относительно нефункционирующего КА, наводят на нефункционирующий КА, захватывают нефункционирующий КА, включают двигатель КА, переводят связку космических аппаратов на орбиту захоронения. Изобретение позволяет повысить эффективность и безопасность работы КА на геостационарной орбите. 10 ил.

Изобретение относится к ракетно-космической технике, а именно к конструкции дренажа криогенного компонента из криогенного бака ракетного разгонного блока в составе ракеты космического назначения. Дренажное устройство криогенного компонента ракетного разгонного блока со съемным отсеком состоит из дренажного клапана, дренажного трубопровода и компенсатора угловых перемещений в составе дренажного трубопровода. Дренажный трубопровод выполнен из двух частей, связанных между собой разделяемым в полете стыком. Первая часть дренажного трубопровода проходит внутри ракетного разгонного блока. В первую часть дренажного трубопровода введены гибкий элемент и дополнительный компенсатор угловых перемещений. Компенсатор угловых перемещений и дополнительный компенсатор угловых перемещений соединены гибким элементом. Вторая часть дренажного трубопровода, снабженная компенсатором линейных перемещений, проходит через съемный отсек и выведена за пределы ракетного разгонного блока. Техническим результатом изобретения является обеспечение надежной эксплуатации дренажной магистрали и пожаровзрывобезопасности ракетного разгонного блока со съемным отсеком. 4 ил.

Изобретение относится к воздушно-космической технике. Летательный аппарат содержит корпус, устройство забора воздуха, блок управления, конусообразную камеру сгорания с выхлопным соплом. Корпус жестко связан с блоком управления и конусообразной камерой сгорания. Камера сгорания имеет две гидравлические связи с блоком управления и жестко связана с выходным соплом. Техническим результатом изобретения является уменьшение габаритов ЛА без уменьшения его ускорения. 1 ил.

Изобретение относится к ракетно-космической технике и предназначено для обеспечения безопасности космонавта при работе на поверхности пилотируемой космической станции в открытом космосе. Индивидуальное средство передвижения космонавта в открытом космосе представляет собой дополнительное устройство, прикрепленное к скафандру космонавта. Устройство состоит из корпуса, в котором размещены панели солнечной батареи в свернутом состоянии, и отсека с размещенным в нем аккумулятором, электрически связанным через блок управления и согласования с солнечной батареей и баллоном с компонентом рабочего тела для электрореактивных двигателей. Техническим результатом изобретения является повышение безопасности работы в открытом космическом пространстве. 9 ил.

Изобретение относится к устройствам и способам защиты летательных объектов при нападении. Целевой объект размещается в космическом аппарате (ложном объекте - оболочке). Космический аппарат содержит радиолокатор, блок команд и управления, панели солнечных батарей, от которых в том числе питается и целевой модуль. Целевой модуль в свою очередь снабжен двигательной установкой, химическим источником тока, соответствующей служебной и специальной аппаратурой и спецсистемой. После отделения целевого модуля питание от солнечных батарей прекращается и целевой модуль переходит на электропитание от химического источника тока. В случае атаки космический аппарат разделяется на ложный объект, имитирующий объект нападения, и целевой модуль. Техническим результатом изобретения является защита целевого модуля от поражения при атаке и обеспечение выполнения им целевых задач. 3 ил.

Кронштейн // 2565427
Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например элементах силовой конструкции (3, 4) космического аппарата, обладающих различными температурными коэффициентами линейного расширения. Обеспечивается компенсация температурных деформаций силовой конструкции. 1 з.п. ф-лы, 2 ил.
Наверх