Ультразвуковой пьезопреобразователь



Ультразвуковой пьезопреобразователь
Ультразвуковой пьезопреобразователь
Ультразвуковой пьезопреобразователь
Ультразвуковой пьезопреобразователь

 


Владельцы патента RU 2554700:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)

Использование: для неразрушающего контроля напряженно-деформированного состояния конструкционного материала. Сущность изобретения заключается в том, что ультразвуковой пьезопреобразователь содержит корпус с нанесенным на его внутреннюю поверхность демпфирующим слоем и расположенную в корпусе призму, демпфер, соединенный с корпусом, и соединенный с демпфером пьезоэлемент, установленный на призме, при этом в основании призмы дополнительно установлены плоскопараллельные прямоугольные металлические пластины с прокладками между ними, причем металлические пластины имеют разные высоты и образуют ступенчатую пирамиду, а размеры плоскопараллельных прямоугольных металлических пластин выбирают исходя из определенных условий. Технический результат: обеспечение возможности ввода продольных ультразвуковых волн в элемент металлической конструкции под углами, близкими к 90°, без применения сложной схемы управления линиями временных задержек импульсов напряжения. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к неразрушающему контролю напряженно-деформированного состояния конструкционного материала.

Известен призматический ультразвуковой пьезоэлектрический преобразователь, содержащий пьезоэлемент, установленный на призме, снабженный коническими звукопоглощающими волноводами, установленными на внешней торцевой поверхности пьезоэлемента под заданным углом к ней, и цилиндрическими съемными звукопоглощающими насадками по числу конических волноводов, в которых с торцевой поверхности выполнены конические полости, размеры конических полостей соответствуют размерам конических волноводов, каждая из насадок конической полостью сопряжена с волноводом, материал насадок выбран из условия распространения в них трансформированных на границе раздела поперечных волн [Патент РФ №2055359, МПК G01N 29/24, 1996 г.].

Недостаток известного призматического ультразвукового пьезоэлектрического преобразователя заключается в том, что он позволяет вводить только поперечные волны в элемент металлической конструкции под углом α вплоть до его второго критического значения ~70°. Однако данное устройство не позволяет вводить продольные ультразвуковые волны в элемент металлической конструкции под углами, близкими к 30°.

Наиболее близким к предлагаемому изобретению является ультразвуковой наклонный пьезопреобразователь, содержащий корпус, расположенную в нем призму, размещенный внутри призмы, соединенный с корпусом демпфер и соединенный с демпфером пьезоэлемент, причем на внутреннюю поверхность корпуса нанесен демпфирующий слой, наружная поверхность призмы образована вращением усеченной гиперболы, а пьезоэлемент размещен в части призмы, предназначенной для установки на контролируемое изделие [Авт. св. РФ №1099274, МПК G01N 29/24, 1984 г.].

Недостаток данного ультразвукового наклонного пьезопреобразователя заключается в том, что он не позволяет получить многоканальный пьезопреобразователь с помощью которого можно вводить продольные ультразвуковые волны в элемент металлической конструкции под определенными углами, близкими к 90°, без применения сложной схемы управления линиями временных задержек импульсов напряжения.

Задачей изобретения является создание одного многоканального пьезопреобразователя, с помощью которого можно вводить продольные ультразвуковые волны в элемент металлической конструкции под определенными углами, близкими к 90°, без применения сложной схемы управления линиями временных задержек импульсов напряжения.

Достигается это тем, что ультразвуковой пьезопреобразователь, содержащий корпус, с нанесенным на его внутреннюю поверхность демпфирующего слоя, и расположенную в корпусе призму, соединенный с корпусом демпфер и соединенный с демпфером пъезоэлемент, установленный на призме, при этом в основании призмы дополнительно установлены плоскопараллельные, прямоугольные металлические пластины, с прокладками между ними, причем металлические пластины имеют разные высоты и образуют ступенчатую пирамиду, при этом толщина плоскопараллельных прямоугольных металлических пластин соответствует условию: а≤λ3/2

где: λ3 - длина ультразвуковой волны в элементе металлической конструкции, мм, а толщина прокладок соответствует условию: b≤λ3/10,

где: λ3 - длина ультразвуковой волны в элементе металлической конструкции, мм, при этом разность высот двух соседних металлических пластин соответствует условию: Δ L = d c 1 c 2 sin α c 3 ( c 2 c 1 ) ,

где: d - расстояние между центрами двух соседних металлических пластин мм; α - угол ввода продольной ультразвуковой волны в элемент металлической конструкции, град., c1 - скорость ультразвука в призме, м/с, c2 и c3 - скорости ультразвука, соответственно, в металлической пластине и элементе металлической конструкции, м/с, а минимальная высота металлической пластины соответствует условию: L 1 = d c 1 c 2 sin α c 3 ( c 2 c 1 ) n ,

где n - количество металлических пластин, c1 - скорость ультразвука в призме, м/с, c2 и c3 - скорости ультразвука, соответственно, в металлической пластине и элементе металлической конструкции м/с;

d - расстояние между центрами двух соседних металлических пластин, мм;

α - угол ввода продольной ультразвуковой волны в элемент металлической конструкции, град.

В качестве материала призмы используют, например, органическое стекло или пластические материалы.

Прокладки металлических пластин выполнены из фторопласта.

Наличие плоскопараллельных прямоугольных металлических пластин, имеющих разные высоты и образующих ступенчатую пирамиду, разделенных фторопластовыми прокладками, позволяет получить фазированную решетку, что, в свою очередь, увеличивает угол ввода продольной волны в элемент конструкции, что дает возможность вводить продольные ультразвуковые волны в элемент металлической конструкции под определенными углами, близкими к 90°, без применения сложной схемы управления линиями временных задержек импульсов напряжения.

Сущность изобретения поясняется графически.

На фиг.1 изображен разрез многоканального ультразвукового пьезопреобразователя; на фиг.2 показана схема прохождения плоских ультразвуковых волн через металлические пластины и формирования плоского волнового фронта в элементе металлической конструкции.

Многоканальный ультразвуковой пьезопреобразователь содержит прямоугольный корпус 1 (фиг.1), в котором расположены плоскопараллельный прямоугольный пьезоэлемент 2, проводник 3, присоединенный к верхней плоскости пьезоэлемента 2, демпфер 4, призму 5, изготовленную из органического стекла или из полистирола, капролона, плоскопараллельные прямоугольные металлические пластины 6, разделенные фторопластовыми прокладками 7, причем металлические пластины имеют разные высоты и образуют ступенчатую пирамиду.

Многоканальный ультразвуковой пьезопреобразователь работает следующим образом. На пьезоэлемент 2 посредством проводника 3 подается переменное электрическое напряжение от генератора высокой частоты f и генерируется продольная ультразвуковая волна в призме 5. Волновой фронт последовательно достигает верхних торцов n металлических пластин 6, служащих каналами ультразвуковых волн. Продольные волны распространяются независимо друг от друга в каждой металлической пластине 6 и доходят до поверхности элемента металлической конструкции 8 (фиг.2). При этом разности фаз волн, исходящих от двух соседних металлических пластин 6, одинаковы. Эти волны индуцируют продольные волны в цилиндрическом элементе металлической конструкции 8. Огибающая поверхность волн, распространяющихся в элементе металлической конструкции 8 под углом α к нормали поверхности этого элемента, является плоским волновым фронтом Pn, перпендикулярным направлению распространения этих волн.

В зоне Френеля продольная ультразвуковая волна, генерируемая прямоугольным пьезоэлементом 2 (фиг.1), является плоской. Граница этой зоны определяется формулой

где Sp - площадь рабочей плоскости прямоугольного пьезоэлемента; λ1 - длина ультразвуковой волны в призме 5.

При условии, что

где L1 - высота самой малой металлической пластины, плоский волновой фронт проходит через все металлические пластины 6. В момент t1 волновой фронт доходит до верхнего торца самой малой металлической пластины. При дальнейшем продвижении волновой фронт последовательно достигает верхние торцы металлических пластин 6, служащих каналами ультразвуковых волн. Эти металлические пластины разделены фторопластовыми прокладками 7, имеющими большой коэффициент затухания ультразвука. При этом отсутствуют механические связи между этими прокладками и металлическими пластинами ввиду малого коэффициента трения между фторопластом и металлом.

Согласно методу зон Френеля толщина металлических пластин a должна быть равна или меньше λ3/2, где λ3 - длина ультразвуковой волны в элементе металлической конструкции 8. Толщину фторопластовых прокладок b следует выбрать минимальной: равной или меньшей λ3/10. Расстояние между центрами металлических пластин d (фиг.2). Количество металлических пластин - n.

При прохождении ультразвуковых волн через металлические пластины нижние торцы этих пластин, соприкасающиеся с элементом металлической конструкции 8, индуцируют цилиндрические продольные волны в этом элементе при условии, что толщина металлических пластин a намного меньше их длины. Огибающая поверхность волн, распространяющихся в элементе металлической конструкции под углом α к нормали поверхности этого элемента, является плоским волновым фронтом Pn, перпендикулярным направлению распространения этих волн, в момент времени tn.

В момент времени ti плоский фронт Pi волны, распространяющейся в призме 5, доходит до верхнего торца i-й металлической пластины (фиг.2). Промежуток времени Δti=tn-ti, в течение которого волна, проходящая через i-ю металлическую пластину, достигает плоскости Pn в элементе металлической конструкции 8, равен

где c2 и c3 - скорости ультразвука, соответственно, в металлической пластине и элементе металлической конструкции; Li - высота i-й металлической пластины; Si=d(n-i-1)sinα - геометрический путь волны от поверхности элемента металлической конструкции до плоскости Pn.

Промежуток времени Δti-1=tn-ti, в течение которого волна проходит от плоскости Pi по участку призмы ΔL, через (i-1)-ю металлическую пластину и достигает плоскости Pn, равен

где c1 - скорость ультразвука в призме; Li-1 - высота (i-1)-й металлической пластины; Si-1=d(n-i-2)sinα - геометрический путь волны от поверхности элемента металлической конструкции до плоскости Pn; ΔL=Li-1.

Поскольку Δti-=Δti-1, то, приравнивая выражения (3) и (4), получаем для разности высот i-й и (1-1)-й металлических пластин

которая не зависит от номеров двух соседних металлических пластин. Минимальная высота металлической пластины определяется выражением

где n - количество металлических пластин.

Общая толщина металлических пластин и фторопластовых прокладок

Пример. Расчет элементов конструкции многоканального пьезопреобразователя для введения плоской продольной волны с частотой f=5 МГц под углом α=85° в элемент металлической конструкции, изготовленной из стали марки 20 или марки 3.

В призме, изготовленной из органического стекла, скорость ультразвука c1=2700 м/с и длина волны λ 1 = c 1 f = 0,54  мм .

В металлической пластине, изготовленной из нержавеющей стали, скорость ультразвука c2=5740 м/с.

В элементе металлической конструкции скорость ультразвука c3=5900 м/с и длина волны λ 3 = c 3 f = 1,18  мм .

Приняв, что α = λ 3 2 = 0,59  мм и b = λ 3 10 = 0,118  мм , получаем d=0,708 мм.

Для количества металлических пластин n=50 общая толщина металлических пластин и фторопластовых прокладок l≈35,5 мм.

Предположим, что поперечное сечение многоканального пьезопреобразователя является квадратным. Тогда площадь рабочей плоскости прямоугольного пьезоэлемента Sp=l2≈1260 мм2 и граница зоны Френеля SF≈743 мм.

Разность высот двух соседних металлических пластин ΔL≈0,61 мм. Минимальная высота металлической пластины L1≈30,5 мм.

Поскольку LF>>L1, то плоская продольная волна, индуцируемая пьезоэлементом, проходит через призму и все металлические пластины, служащие каналами ультразвуковых волн.

Таким образом, проведенный расчет элементов конструкции многоканального ультразвукового пьезопреобразователя показывает возможность введения продольных ультразвуковых волн в элемент металлической конструкции под углами, близкими к 90°.

1. Ультразвуковой пьезопреобразователь, содержащий корпус, с нанесенным на его внутреннюю поверхность демпфирующим слоем, и расположенную в корпусе призму, соединенный с корпусом демпфер и соединенный с демпфером пьезоэлемент, установленный на призме, отличающийся тем, что в основании призмы дополнительно установлены плоскопараллельные, прямоугольные металлические пластины, с прокладками между ними, причем металлические пластины имеют разные высоты и образуют ступенчатую пирамиду, при этом толщина плоскопараллельных прямоугольных металлических пластин соответствует условию: а≤λ3/2,
где: λ3 - длина ультразвуковой волны в элементе металлической конструкции, мм,
толщина прокладок соответствует условию: b≤λ3/10,
где: λ3 - длина ультразвуковой волны в элементе металлической конструкции, мм, при этом разность высот двух соседних металлических пластин соответствует условию:

где: d - расстояние между центрами двух соседних металлических пластин, мм;
α - угол ввода продольной ультразвуковой волны в элемент металлической конструкции, град, с1 - скорость ультразвука в призме, м/с, с2 и с3 - скорости ультразвука, соответственно, в металлической пластине и элементе металлической конструкции, м/с;
минимальная высота металлической пластины соответствует условию:
,
где n - количество металлических пластин, с1 - скорость ультразвука в призме, м/с, с2 и с3 - скорости ультразвука, соответственно, в металлической пластине и элементе металлической конструкции, м/с.
d - расстояние между центрами двух соседних металлических пластин, мм.

2. Ультразвуковой пьезопреобразователь по п.1, отличающийся тем, что в качестве материала призмы используют, например, органическое стекло или пластические материалы.
3 Ультразвуковой пьезопреобразователь по п.1, отличающийся тем, что прокладки металлических пластин выполнены из фторопласта.



 

Похожие патенты:

Изобретение относится к пьезоэлектронике. Сущность: рабочее тело высоковольтного генератора представляет собой инерционную массу и пакет из пластин поляризованных композиционных сегнетоэлектрических материалов с высокими значениями пьезоэлектрического коэффициента напряжения и заданной для каждой пластины прочностью на сжатие.

Изобретение относится к пьезоэлектрическим датчикам и может быть использовано, в частности, в системах диагностики автомобиля и системах автосигнализации. Сущность: датчик включает пьезоэлектрическое рабочее тело и систему регистрации.

Изобретение относится к электронной технике, а именно: к области создания магнитоэлектрических преобразователей, применяемых в качестве основы для датчиков магнитных полей, устройств СВЧ-электроники, основы для технологии магнитоэлектрической записи информации и для накопителей электромагнитной энергии и энергии вибраций.

Изобретение относится к способу изготовления акустооптических модуляторов. .

Изобретение относится к устройствам для преобразования энергии переменного электрического поля посредством обратного пьезоэффекта в механическую энергию упругих резонансных колебаний ультразвуковой частоты.

Изобретение относится к пьезоэлектрическому приводу, может найти применение при работе с двигателями высокоэкономичными, экологически чистыми, холодными. .

Изобретение относится к ультразвуковым неразрушающим испытаниям материалов и изделий и может быть, в частности, использовано в прокатном и трубном производстве при дефектоскопии проката и труб.

Изобретение относится к электротехнике, а именно к пьезоэлектрическому генератору достаточной мощности в виде прозрачной полимерной пьезопленки, которая может быть встроена в экран мобильного устройства и подзаряжать аккумулятор во время эксплуатации мобильного устройства при касании экрана. Пьезоэлектрогенератор выполнен в виде двух идентичных модулей, каждый из которых содержит подложку, с прозрачным электропроводящим покрытием в качестве электрода, на поверхности электрода сформирован пьезоэлектрический слой из цирконата титаната свинца, в виде вертикальных микропьезоэлементов шириной от 50 до 100 мкм, расположенных в виде узлов решетки со стороной от 200 до 500 мкм, оба идентичных модуля соединены между собой пьезоэлектрическими слоями через металлическую решетку, и изоляционный слой. Слоистую пленочную структуру прозрачного пьезоэлектрогенератора изготавливают методом магнетронного напыления прозрачных пленок требуемого свойства. Мобильное устройство типа смартфона содержит указанный пьезоэлектрогенератор, встроенный в экран. Выполнение пьезоэлектрического генератора в виде тонкой гибкой пленки в соответствии с заданной геометрией с расположением в узлах металлической решетки из фольги, обеспечивает прозрачность конструкции и повышает мощность аккумулятора, что является техническим результатом изобретения. 3 н. и 11 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в робототехнике, биомеханических протезах и в различного рода приводах. Способ получения механической энергии с помощью электроактивных полимеров заключается в использовании полимеров в виде волокон (1), которые под воздействием электричества начинают сворачиваться в спираль. После отключения электрического напряжения полимерные волокна распрямляются. Волокна (1) объединены в пучки и находятся в защитной эластичной оболочке (3). Изобретение направлено на увеличение степени деформации электроактивных полимеров, расширение сферы их применения, упрощение способа, уменьшение веса и габаритов устройства, используемого в способе. 6 ил.
Наверх