Способ и устройство для эффективной утилизации органических компонентов городских и промышленных отходов

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации городских и промышленных отходов органического происхождения. Техническим результатом является повышение надежности, экономической и экологической эффективности утилизации органических компонентов городских и промышленных отходов. Способ включает измельчение и смешивание органических компонентов городского и промышленного мусора с добавкой торфа или древесных отходов; нагревание шихты в шнековом подогревателе через стенку дымовыми газами, поступающими из тепловой рубашки реактора, в результате чего шихта приобретает вид пасты, в которой распределены нерасплавленные твердые частицы и газовые пузырьки; дегазацию шихты в дегазаторе с выделением первичного газа, диспергацию дегазированной шихты в экструдере с образованием гранул и их охлаждение в охладителе-грануляторе наружным воздухом; непрерывную подачу шнековым питателем гранулированной шихты в кожухотрубчатый реактор для проведения непрерывного процесса пиролиза, с одновременной подачей на горение в горелку камеры сгорания реактора очищенного пиролизного газа, первичного газа и горячего воздуха, в результате горения которых получают горячие дымовые газы, которые омывают тепловую рубашку реактора, после чего подаются в котел-утилизатор, а столб гранулированной шихты в пиролизной трубе реактора медленно перемещается сверху вниз, подвергаясь деструкции, в результате чего образуются пиролизный газ и полукокс, которые выводятся из пиролизной трубы снизу в сборник продуктов пиролиза, откуда пиролизный газ подается на охлаждение и очистку, а полукокс удаляется через разгрузочно-охладительный шнек, охлаждаемый сетевой водой; охлаждение и очистку горячего пиролизного газа в вертикальном холодильнике и ротационном адсорбере, заполненном адсорбентом - гранулами металлургического шлака, после чего очищенный и охлажденный пиролизный газ подается на сжигание в камеру сгорания, его избыток направляют к потребителю или в газгольдер, из конического поддона ротационного адсорбера и отстойника воду, содержащую водорастворимые примеси и смолу, подают на дальнейшую переработку, а дымовые газы из шнекового подогревателя подают в подогреватель сетевой воды. 2 н.п. ф-лы, 4 ил.

 

Предлагаемое изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации городских и промышленных отходов органического происхождения.

Известен способ утилизации твердых отходов, включающий измельчение твердых отходов (древесные отходы, использованные автопокрышки и пр.), периодическую подачу твердых отходов в полость вращающейся пиролизной камеры (реактора), проведение процесса пиролиза (швелевания) в ней, вывод пиролизного газа и периодическое удаление твердых остатков пиролиза (полукокса) из зоны реакции с одновременным их охлаждением в устройстве, состоящем из дробилки (измельчителя), днище которой соединено шнековым питателем с загрузочным отверстием вращающегося цилиндрического барабана (поворотной камеры), внутри которого устроены нагревательные трубы, соединенные с впускными и выпускными камерами топочных газов, снабженных соответствующими патрубками, и охладительной камеры с рубашкой (сборник продуктов пиролиза), снабженной шлюзовым узлом выгрузки твердых продуктов (полукокса) и патрубком удаления пиролизного газа [Патент РФ №2367848, М.Кл. F23G 5/027, М.Кл. С10В 53/02, 2009].

Основными недостатками известного способа являются периодичность загрузки и выгрузки отходов, невозможность очистки пиролизного газа, утилизации его тепла и его составляющих компонентов, что снижает надежность, экономическую и экологическую эффективность известного способа.

Основными недостатками известного устройства являются сложность конструкции, отсутствие оборудования для очистки пиролизного газа и утилизации его тепла и составляющих компонентов, что снижает надежность, экономическую и экологическую эффективность известного устройства.

Более близким к предлагаемому изобретению является способ и устройство для утилизации органических компонентов городских и промышленных отходов, включающий: измельчение и смешивание органических компонентов городских и промышленных отходов с добавкой торфа или древесных отходов; нагревание полученной шихты при ее медленном перемещении сверху вниз по шнековому подогревателю через стенку горячей водой, в результате чего в шихте происходит испарение воды, деаэрация и выделение легкокипящих углеводородов, а сама шихта приобретает вид пасты; дегазацию шихты в дегазаторе с выделением первичного газа, который отводится в горелку камеры сгорания кожухотрубчатого реактора, диспергацию дегазированной шихты в экструдере с образованием гранул и их охлаждение в охладителе-грануляторе наружным воздухом, нагрев воздуха и обогащение его парами воды и горючими компонентами, выделившимися из шихты; непрерывную подачу шнековым питателем гранулированной шихты в кожухотрубчатый реактор для проведения непрерывного процесса пиролиза с одновременной подачей на горение в горелку камеры сгорания реактора очищенного пиролизного газа из абсорбера, первичного газа из дегазатора и горячего воздуха из охладителя-гранулятора, в результате горения которых получают горячие дымовые газы, которые тангенциально поступают в тепловую рубашку реактора, после чего подаются в котел-утилизатор, а столб гранулированной шихты в пиролизной трубе реактора медленно перемещается сверху вниз за счет своего веса и давления, создаваемого вращающимся потоком шихты в шнековом питателе, подвергаясь деструкции при нагреве за счет теплопередачи через стенку с горячими дымовыми газами, в результате чего происходит интенсивное образование пиролизного газа и полукокса, которые удаляются из пиролизной трубы через живое сечение створчатого отсекателя в сборник продуктов пиролиза; сбор полученного пиролизного газа в газовой полости сборника продуктов пиролиза, откуда он выводится в систему газоочистки, а полукокса в коническом бункере сборника продуктов пиролиза, откуда он удаляется разгрузочно-охладительным шнеком, одновременно охлаждаясь питательной водой, проходящей через его тепловую рубашку, которая нагревается при этом и подается в котел-утилизатор; охлаждение и очистку горячего пиролизного газа в вертикальном трехступенчатом холодильнике, в котором он последовательно проходит три ступени охлаждения, где охлаждается до конечной температуры 50-60°С, в результате чего в нем происходит конденсация значительной части тяжелокипящих углеводородов, паров воды и других компонентов, образующих газовый конденсат, стекающий вниз, после чего охлажденный пиролизный газ подается в абсорбер, причем каждая ступень охлаждения трехступенчатого холодильника имеет свои циклы воды, соединенные по охлаждающей воде с тепловой рубашкой шнекового подогревателя, тепловой сетью и оборотной водой, соответственно; абсорбцию охлажденного пиролизного газа в полом абсорбере водой, которая поглощает водорастворимые компоненты (кислоты, соли, аммиак и пр.), присутствующие в нем, с охлаждением газа при этом до температуры 25-30°С, после чего дополнительно очищенный и охлажденный пиролизный (топливный) газ подается на сжигание в камеру сгорания, его избыток направляют к потребителю или в газгольдер, а из конического поддона абсорбера воду, содержащую водорастворимые примеси (кислоты, соли, аммиак и пр.), подают на дальнейшую переработку; отстаивание газового конденсата в отстойнике, в котором происходит его деление на две фракции: смолу, состоящую из тяжелокипящих углеводородов и твердых примесей, опускающуюся вниз, и воду (надсмольную воду), содержащую водорастворимые примеси, находящуюся в верхней зоне отстойника, которые выводятся из отстойника на дальнейшую переработку; подачу дымовых газов из кожухотрубчато реактора с температурой 400-500°С в котел-утилизатор для получения пара или горячей воды, где они охлаждаются до температуры 140-150°С, после чего направляются на газоочистку и очищенные от вредных примесей, выбрасываются в атмосферу.

Устройство для реализации предлагаемого способа утилизации органических компонентов городского и промышленного мусора включает в себя соединенные между собой по выходу и входу перерабатываемых отходов (исходной шихты) измельчитель, усреднитель, представляющий собой аппарат с мешалкой, установленные друг над другом по вертикали шнековый подогреватель, представляющий собой шнековый питатель, помещенный в тепловую рубашку, дегазатор, представляющий собой цилиндрическую обечайку, экструдер, охладитель-гранулятор, представляющий собой полый цилиндрический аппарат с коническим поддоном, шнековый питатель, кожухотрубчатый реактор, состоящий из пиролизной трубы, снабженной в своей нижней кромке створчатым отсекателем, покрытой тепловой рубашкой, снабженной сверху патрубком выхода дымовых газов и соединенной снизу тангенциально с выхлопным окном камеры сгорания, сборник продуктов пиролиза, состоящий из газовой полости и конического бункера для полукокса, снабженный выходным газовым патрубком с сепарационной решеткой, соединенный с разгрузочно-охладительным шнеком, представляющим собой шнековый питатель, помещенный в тепловую рубашку, при этом сборник продуктов пиролиза через выходной газовый патрубок соединен последовательно по газу с вертикальным трехступенчатым холодильником с коническим поддоном, абсорбером, представляющим собой цилиндрическую полую колонну с коническим поддоном, в верхней части которого помещен ороситель, и горелкой камеры сгорания кожухотрубчатого реактора, соединенной также по первичному газу с дегазатором, по горячему воздуху с охладителем-гранулятором, дымовые газы из кожухотрубчатого реактора поступают в котел-утилизатор, соединенный по питательной воде с тепловой рубашкой разгрузочно-охладительного шнека, поддон трехступенчатого холодильника соединен по газовому конденсату с отстойником, I ступень охлаждения соединена по охлаждающей воде с тепловой рубашкой шнекового подогревателя, II ступень охлаждения соединена по охлаждающей воде с тепловой сетью, III ступень охлаждения по охлаждающей воде соединена с оборотной водой [Патент РФ №2473841, МПК F23G 5/027, 2013].

Основными недостатками известного способа являются невозможность нагрева горячей водой из III ступени холодильника до равномерного пластического состояния шихты в шнековом подогревателе, необходимость цикла оборотной воды для осуществления процесса очистки пиролизного газа, утилизации его тепла и его составляющих компонентов, что снижает надежность, экономическую и экологическую эффективность известного способа.

Основными недостатками известного устройства являются сложность конструкции трехступенчатоого холодильника, необходимость оборудования для цикла оборотной воды (насосной станции, градирен и т.п.), что также снижает надежность, экономическую и экологическую эффективность известного устройства

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение надежности и эффективности способа и устройства для эффективной утилизации органических компонентов городских и промышленных отходов.

Технический результат достигается тем, что способ эффективной утилизации органических компонентов городских и промышленных отходов включает: измельчение и смешивание органических компонентов городских и промышленных отходов с добавкой торфа или древесных отходов; нагревание полученной шихты при ее медленном перемещении сверху вниз по шнековому подогревателю через стенку дымовыми газами, в результате чего в шихте происходит испарение воды, деаэрация и выделение легкокипящих углеводородов, а сама шихта приобретает вид пасты; дегазацию шихты в дегазаторе с выделением первичного газа, который отводится в горелку камеры сгорания кожухотрубчатого реактора, диспергацию дегазированной шихты в экструдере с образованием гранул и их охлаждение в охладителе-грануляторе наружным воздухом, нагрев воздуха и обогащение его парами воды и горючими компонентами, выделившимися из шихты; непрерывную подачу шнековым питателем гранулированной шихты в кожухотрубчатый реактор для проведения непрерывного процесса пиролиза с одновременной подачей на горение в горелку камеры сгорания реактора очищенного пиролизного газа из абсорбера, первичного газа из дегазатора и горячего воздуха из охладителя-гранулятора, в результате горения которых получают горячие дымовые газы, которые тангенциально поступают в тепловую рубашку реактора, после чего подаются в тепловую рубашку шнекового подогревателя, а столб гранулированной шихты в пиролизной трубе реактора медленно перемещается сверху вниз за счет своего веса и давления, создаваемого вращающимся потоком шихты в шнековом питателе, подвергаясь деструкции при нагреве за счет теплопередачи через стенку с горячими дымовыми газами, в результате чего происходит интенсивное образование пиролизного газа и полукокса, которые удаляются из пиролизной трубы через живое сечение створчатого отсекателя в сборник продуктов пиролиза; сбор полученного пиролизного газа в газовой полости сборника продуктов пиролиза, откуда он выводится в систему газоочистки, а полученного полукокса в коническом бункере сборника продуктов пиролиза, откуда он удаляется разгрузочно-охладительным шнеком, одновременно охлаждаясь сетевой водой, проходящей через его тепловую рубашку, которая нагревается при этом и подается в тепловую сеть; охлаждение и очистку горячего пиролизного газа в вертикальном холодильнике, где охлаждается до температуры 90-100°С сетевой водой, которая нагревается до промежуточной температуры 50-60°С, в результате чего в нем происходит конденсация значительной части тяжелокипящих углеводородов, паров воды и других компонентов, образующих газовый конденсат, стекающий вниз в отстойник; адсорбцию из охлажденного пиролизного газа водорастворимых компонентов (кислот, солей, аммиака и пр.) гранулами пемзы диаметром от 20 до 40 мм, изготовленной из основных металлургических шлаков, в радиальных ячейках ротационного адсорбера, где происходит одновременная промывка гранул насыщенного шлака водой, которая поглощает адсорбированные компоненты, с охлаждением газа при этом до температуры 40-50°С, после чего дополнительно очищенный и охлажденный пиролизный (топливный) газ подается на сжигание в камеру сгорания, его избыток направляют к потребителю или в газгольдер, а из призматического днища ротационного адсорбера воду, содержащую водорастворимые примеси (кислоты, соли, аммиак и пр.), подают на дальнейшую переработку; отстаивание газового конденсата в отстойнике, в котором происходит его деление на две фракции: смолу, состоящую из тяжелокипящих углеводородов и твердых примесей, опускающуюся вниз, и воду (надсмольную воду), содержащую водорастворимые примеси, находящуюся в верхней зоне отстойника, которые выводятся из отстойника на дальнейшую переработку; подачу дымовых газов из тепловой рубашки шнекового подогревателя с температурой 200-250°С в подогреватель сетевой воды, где они охлаждаются до температуры 140-150°С, после чего направляются на газоочистку и очищенные от вредных примесей, выбрасываются в атмосферу.

Устройство для реализации способа эффективной утилизации органических компонентов городских и промышленных отходов включает в себя соединенные между собой по выходу и входу перерабатываемых отходов (исходной шихты) измельчитель, усреднитель, представляющий собой аппарат с мешалкой, установленные друг над другом по вертикали, шнековый подогреватель, представляющий собой шнековый питатель, помещенный в тепловую рубашку, дегазатор, представляющий собой цилиндрическую обечайку, экструдер, охладитель-гранулятор, представляющий собой полый цилиндрический аппарат с коническим поддоном, шнековый питатель, кожухотрубчатый реактор, состоящая из пиролизной трубы, снабженной в своей нижней кромке створчатым отсекателем, покрытой тепловой рубашкой, снабженной сверху патрубком выхода дымовых газов и соединенной снизу тангенциально с камерой сгорания, сборник продуктов пиролиза, состоящий из газосборника и конического бункера для полукокса, снабженный выходным газовым патрубком с сепарационной решеткой, соединенный с разгрузочно-охладительным шнеком, представляющим собой шнековый питатель, помещенный в тепловую рубашку, причем сборник продуктов пиролиза через выходной газовый патрубок соединен последовательно по газу с вертикальным холодильником с коническим поддоном, ротационным адсорбером, состоящим из цилиндрического корпуса, плоская крышка которого снабжена призматическими крышками с патрубками входа промывочной воды и выхода очищенного пиролизного газа, соответственно, плоское днище снабжено призматическими днищами с патрубками выхода промывочной воды и входа охлажденного пиролизного газа, в корпусе ротационного адсорбера помещен ротор с радиальными ячейками, каждая из которых заполнена адсорбентом, представляющим собой гранулы пемзы металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, причем патрубок выхода очищенного пиролизного газа ротационного адсорбера соединен с горелкой камеры сгорания кожухотрубчатого реактора, соединенной также по первичному газу с дегазатором, по горячему воздуху с охладителем-гранулятором, а патрубок выхода дымовых газов кожухотрубчатого реактора соединен с тепловой рубашкой шнекового подогревателя, соединенного по дымовым газам с подогревателем сетевой воды, поступающей из вертикального холодильника, конический поддон которого соединен по газовому конденсату с отстойником.

Устройство для реализации предлагаемого способа эффективной утилизации органических компонентов городских и промышленных отходов приведено на фиг.1-4 (на фиг.1 - технологическая схема, на фиг.2-4 - ротационный адсорбер и его разрезы).

Устройство для реализации предлагаемого способа утилизации органических компонентов городских и промышленных отходов включает в себя соединенные между собой по выходу и входу перерабатываемых отходов (исходной шихты), соответственно, измельчитель 1, усреднитель 2, представляющий собой аппарат с мешалкой, установленные друг над другом по вертикали, шнековый подогреватель 3, представляющий собой шнековый питатель 3а, помещенный в тепловую рубашку 3б, дегазатор 4, представляющий собой цилиндрическую обечайку, экструдер 5, охладитель-гранулятор 6, представляющий собой полый цилиндрический аппарат с коническим поддоном, шнековый питатель 7, кожухотрубчатый реактор 8, состоящая из пиролизной трубы 8а, снабженной в своей нижней кромке створчатым отсекателем 8б, покрытой тепловой рубашкой 8в, снабженной сверху патрубком выхода дымовых газов 8г и соединенной снизу тангенциально с камерой сгорания 8д, сборник продуктов пиролиза 9, состоящий из газосборника 9а и конического бункера для полукокса 9б, снабженный выходным газовым патрубком 9в с сепарационной решеткой 9г, соединенный с разгрузочно-охладительным шнеком 10, представляющим собой шнековый питатель 10а, помещенный в тепловую рубашку 10б, причем сборник продуктов пиролиза 9 через выходной газовый патрубок 9в соединен последовательно по газу с вертикальным холодильником 11 с коническим поддоном, ротационным адсорбером 12 (привод на показан), состоящим из цилиндрического корпуса 12а, плоская крышка которого снабжена призматическими крышками 12б и 12в с патрубками входа промывочной воды 12г и выхода очищенного пиролизного газа 12д, соответственно, плоское днище снабжено призматическими днищами 12е и 12ж с патрубками выхода промывочной воды 12з и входа охлажденного пиролизного газа 12и, в корпусе 12а ротационного адсорбера 12 помещен ротор 12и с радиальными ячейками 12к, каждая из которых заполнена адсорбентом 12л, представляющим собой гранулы пемзы металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, причем патрубок выхода очищенного пиролизного газа 12д ротационного адсорбера 12 соединен с горелкой камеры сгорания 8д кожухотрубчатого реактора 8, соединенной также по первичному газу с дегазатором 4, по горячему воздуху с охладителем-гранулятором 6, а патрубок выхода дымовых газов 8г кожухотрубчатого реактора 8 соединен с тепловой рубашкой 3б шнекового подогревателя 3, соединенного по дымовым газам с подогревателем сетевой воды 13, поступающей из вертикального холодильника 11, конический поддон которого соединен по газовому конденсату с отстойником 14,

Предлагаемый способ эффективной утилизации органических компонентов городских и промышленных отходов осуществляется в предлагаемом устройстве следующим образом. Предварительно отсортированные органические компоненты городских и промышленных отходов (остатки пластмассовых изделий полиэтиленовая пленка, резина, древесные стружки, опилки и т.п.) загружаются в измельчитель 1, куда может также добавляться торф или древесные отходы для поддерживания постоянного (стабильного) состава шихты, в котором происходит измельчение не только древесных, резиновых и пластмассовых отходов, но и полиэтиленовой пленки, после чего полученная неоднородная шихта подается в усреднитель 2, где в результате перемешивания образуется однородная шихта, которая поступает в приемный патрубок (на фиг.1-4 не показан) шнекового подогревателя 3. В шнековом подогревателе 3, при медленном перемещении шихты сверху вниз по шнековому питателю 3а, происходит ее нагревание через стенку питателя 3а до температуры 100-120°С дымовыми газами с температурой 300-400°С, поступающими из патрубка выхода дымовых газов 8г реактора 8 в тепловую рубашку 3б и охлаждающимися в ней до температуры 200-250°С, в результате чего в шихте происходит испарение воды, деаэрация и выделение легкокипящих углеводородов, значительная часть твердых органических компонентов (пластмасс и полиэтиленовой пленки) становится пластичной, а сама шихта приобретает вид пасты, в которой распределены нерасплавленные твердые частицы и газовые пузырьки, и в таком состоянии поступает в дегазатор 4. В дегазаторе 4, в результате увеличения объема, из шихты выделяется первичный газ с температурой 100-120°С, представляющий собой смесь паров воды, азота, двуокиси углерода, легкокипящих углеводородов и незначительного количества кислорода, точный состав первичного газа определяется количеством подаваемого воздуха в охладитель-гранулятор 6, составом шихты и температурой ее нагрева в шнековом подогревателе 3, который отводится в горелку камеры сгорания 8д кожухотрубчатого реактора 8, а дегазированная шихта под действием силы тяжести поступает в экструдер 5, непосредственно соединенный с поддоном дегазатора 4. В экструдере 5 происходит диспергирование пастообразной шихты на цилиндрические отрезки (гранулы), которые под действием силы тяжести поступают в охладитель-гранулятор 6, непосредственно соединенный верхней кромкой своего корпуса с диспергатором экструдера 5. В охладитель-гранулятор 6 снизу подают наружный воздух, в результате контакта с которым в нем происходит охлаждение и затвердевание гранул шихты, обогащение горючими компонентами, выделяющимися из шихты, и нагрев воздуха до температуры 80-90°С, который затем удаляется из верхней части охладителя-гранулятора 6. Гранулированная шихта под действием силы тяжести ссыпается в конический поддон охладителя-гранулятора 6, откуда шнековым питателем 7 непрерывно подается в верхнее отверстие пиролизной трубы 8а реактора 8, непосредственно соединенной с ним. Одновременно в горелку камеры сгорания 8д подается очищенный и охлажденный пиролизный газ из ротационного адсорбера 12, первичный газ из дегазатора 4 и горячий воздух из верхней части охладителя-гранулятора 6, полученная газовоздушная смесь сгорает и горячие дымовые газы тангенциально поступают в тепловую рубашку 8в реактора 8, омывают ее, двигаясь винтообразно, и удаляются через патрубок выхода дымовых газов 8г с температурой 300-400°С. Столб гранулированной шихты в пиролизной трубе 8а медленно перемещается сверху вниз за счет своего веса и давления, создаваемого вращающимся потоком шихты в шнековом питателе 6, который выполняет функцию коксовыталкивателя, нагревается при этом за счет теплопередачи через стенку горячими дымовыми газами, движущимися в тепловой рубашке 8в, до температуры 500-600°С, при которой происходит интенсивное образование пиролизного газа и полукокса из гранулированной шихты, которые удаляются из пиролизной трубы 8а через живое сечение створчатого отсекателя 8б в сборник продуктов пиролиза 9. Полученный пиролизный газ (состав полученного газа определяется составом шихты, температурным режимом и скоростью ее перемещения в кожухотрубчатом реакторе 8) собирается в газовой полости 9а, откуда выводится через выходной газовый патрубок 9в и сепарационную решетку 9г, предотвращающую унос твердых частиц в холодильник 11, а полукокс ссыпается в конический бункер 96, откуда удаляется разгрузочно-охладительным шнеком 10. В разгрузочно-охладительном шнеке 10 при перемещении полукокса по шнеку 10а кокс охлаждается от температуры 400-500°С до 120-140°С сетевой водой, проходящей через тепловую рубашку 10б, которая нагревается при этом от температуры 40-50°С до температуры 80-90°С. Горячий пиролизный газ из газосборника 9а с температурой 400-500°С поступает в вертикальный холодильник 11, охлаждается сетевой водой до конечной температуры 90-100°С, в результате чего в нем происходит конденсация значительной части тяжелокипящих углеводородов, паров воды и других компонентов, которые образуют газовый конденсат, стекающий вниз, после чего охлажденный пиролизный газ подается в ротационный адсорбер 12. При этом в холодильнике 11 сетевая вода нагревается от 40-50°С до промежуточной температуры 60-70°С, после чего поступает в подогреватель сетевой воды 13, где нагревается дымовыми газами до конечной температуры 80-90°С. В ротационном адсорбере 12 охлажденный пиролизный газ из призматического днища 12ж по мере вращения ротора 12к распределяется по ячейкам 12л, заполненным гранулами пемзы 8 диаметром от 20 до 40 мм, изготовленной из основных металлургических шлаков (диаметр гранул назначен из условий обеспечения минимального аэродинамического сопротивления ячеек 12 л и номенклатуры размеров гранул металлургической пемзы). Основная металлургическая пемза представляет собой материал с высокопористой механически прочной структурой (прочность на сдавливание до 2,7 МПа), состоящий из окиси кальция, окиси кремния, окиси алюминия и частично из окиси магния (СаО, SiO2, Al2O3, MnO) с модулем основности М>1 и высоким значением коэффициента теплоемкости [Строительные материалы. Справочник. Под ред. Болдырева А.С. и др. - М.: Стройизд.,1989, с.423; Домокеев А. К. Строительные материалы. - М.: Высш. школа, 1989, с.163]. Высокое значение модуля основности придает гранулам металлургической пемзы основные свойства, позволяющие сорбировать на их поверхности вещества, обладающие кислыми свойствами, к которым относятся и многие примеси в пиролизном газе (кислоты, соли, аммиак, NOx, SOx, CO и пр.). Кроме того, исходя из своего состава, металлургические шлаки устойчивы к коррозионному воздействию кислых компонентов пиролизного газа, широко доступны и относительно дешевы. Пиролизный газ, двигаясь снизу верх через гранулы шлака, которые способны аккумулировать тепло, одновременно охлаждается до температуры 40-50°С с конденсацией водяных паров с образованием конденсата, проникающего в поры гранул адсорбента, в которых за счет предыдущего цикла остаются капли кислого конденсата. Адсорбированные компоненты (например, оксиды азота и серы в порах гранул, обладают повышенной реакционной способностью, обусловленной их взаимодействием с поверхностью адсорбента - гранул шлаковой пемзы [Неницеску К. Общая химия. - М.: Мир, 1968, с.298], поэтому окисляются кислородом со скоростью большей, чем в газовой фазе, с образованием легко растворимых в воде NO2 и SO3, которые, в свою очередь, взаимодействуют с каплями воды с образованием соответствующих кислот HNO3 и H2SO4, которые накапливаются в порах адсорбента - гранулированного шлака, после чего дополнительно очищенный и охлажденный (топливный) пиролизный газ с температурой 40-50°С через призматическую крышку 12в и патрубок 12д подается на сжигание в камеру сгорания 8д реактора 8, а его избыток направляют к потребителю или в газгольдер (на фиг.1-4 не показан). Одновременно ячейки 12л с насыщенным адсорбентом в результате вращения ротора 12к поступают в отсек призматической крышки 12б, где из патрубка 12г ячейки 12л орошаются промывочной водой 12а, которая поглощает водорастворимые компоненты (кислоты, соли, аммиак и пр.), присутствующие в нем. Одновременно из конического поддона холодильника 11 газовый конденсат стекает в отстойник 14, в котором происходит его отстаивание и деление на две фракции: смолу, состоящую из тяжелокипящих углеводородов и твердых примесей, опускающуюся вниз, и воду (надсмольную воду), содержащую некоторое количество водорастворимых примесей, находящуюся в верхней зоне отстойника 14, которые удаляются из него на дальнейшую переработку. Аналогично из призматического днища 12е ротационного адсорбера 12 удаляют раствор промывочной воды, содержащей водорастворимые примеси (кислоты, соли, аммиак и пр.), уловленные из очищенного пиролизного газа после холодильника 11, который отправляют на дальнейшую переработку. В тоже время дымовые газы удаляются из кожухотрубчато реактора 8 через выходной патрубок 8г реактора 8 в тепловую рубашку 3б шнекового питателя 3, охлаждаются в ней до температуры 200-250°С, после чего поступают в подогреватель сетевой воды 13, которая нагревается до конечной температуры 80-90°С, охлаждаются там до температуры 150-200°С, после чего направляются на газоочистку и очищенные от вредных примесей (оксидов серы, оксидов азота и пр.) выбрасываются в атмосферу.

Использование в качестве греющего агента дымовых газов после реактора 8 с температурой 200-250°С для нагрева шихты в шнековом подогревателе 3 позволяет лучше прогреть шихту до пастообразного состояния и, соответственно, получить более равномерный состав шихты, что в конечном итоге повышает эффективность всего процесса пиролиза.

Использование процесса адсорбции примесей из пиролизного газа гранулированным доменным шлаком в ротационном адсорбере 12 и удаление этих примесей промывкой гранулированного шлака водой позволяет упростить технологию процесса, обойтись без оборотного водоснабжения и, таким образом, повысить надежность, экономическую и экологическую эффективность предлагаемого способа и устройства.

Так как в шихте присутствует значительное количество пластмасс, полиэтиленовой пленки, резины, то в составе полученного пиролизного газа содержится повышенное количество различных углеводородов (парафиновых, ароматических, предельных, непредельных, и пр.), поэтому он представляет собой ценный полупродукт не только для получения топлива, но и других востребованных химических продуктов (бензол, уксусная кислота, аммиак и др.).

Таким образом, предлагаемый способ и устройство для эффективной утилизации органических компонентов городских и промышленных отходов, наряду с улучшением экологической ситуации в местах обезвреживания отходов, обеспечивает полную утилизацию их наиболее опасной (органической) части с одновременным получением топливного газа, обеспечивающего собственные нужды утилизации и посторонних потребителей полукокса, горячей воды (для отопления и горячего водоснабжения), а также некоторых продуктов химической промышленности.

1. Способ для эффективной утилизации органических компонентов городских и промышленных отходов, включающий: измельчение и смешивание органических компонентов городских и промышленных отходов с добавкой торфа или древесных отходов; нагревание полученной шихты при ее медленном перемещении сверху вниз по шнековому подогревателю через стенку, в результате чего в шихте происходит испарение воды, деаэрация и выделение легкокипящих углеводородов, а сама шихта приобретает вид пасты; дегазацию шихты в дегазаторе с выделением первичного газа, который отводится в горелку камеры сгорания кожухотрубчатого реактора, диспергацию дегазированной шихты в экструдере с образованием гранул и их охлаждение в охладителе-грануляторе наружным воздухом, нагрев воздуха и обогащение его парами воды и горючими компонентами, выделившимися из шихты; непрерывную подачу шнековым питателем гранулированной шихты в кожухотрубчатый реактор для проведения непрерывного процесса пиролиза с одновременной подачей на горение в горелку камеры сгорания реактора очищенного пиролизного газа из абсорбера, первичного газа из дегазатора и горячего воздуха из охладителя-гранулятора, в результате горения которых получают горячие дымовые газы, которые тангенциально поступают в тепловую рубашку реактора, а столб гранулированной шихты в пиролизной трубе реактора медленно перемещается сверху вниз за счет своего веса и давления, создаваемого вращающимся потоком шихты в шнековом питателе, подвергаясь деструкции при нагреве за счет теплопередачи через стенку с горячими дымовыми газами, в результате чего происходит интенсивное образование пиролизного газа и полукокса, которые удаляются из пиролизной трубы через живое сечение створчатого отсекателя в сборник продуктов пиролиза; сбор полученного пиролизного газа в газовой полости сборника продуктов пиролиза, откуда он выводится в систему газоочистки, а полукокса в коническом бункере сборника продуктов пиролиза, откуда он удаляется разгрузочно-охладительным шнеком, одновременно охлаждаясь водой, проходящей через его тепловую рубашку; охлаждение и очистку горячего пиролизного газа в вертикальном холодильнике, где охлаждается до температуры 90-100°C сетевой водой, которая нагревается до промежуточной температуры 50-60°C, в результате чего в нем происходит конденсация значительной части тяжелокипящих углеводородов, паров воды и других компонентов, образующих газовый конденсат, стекающий вниз в отстойник; подачу очищенного и охлажденного пиролизного (топливного) газа на сжигание в камеру сгорания, а его избытка потребителю или в газгольдер, отвод воды, содержащей водорастворимые примеси (кислоты, соли, аммиак и пр.), на дальнейшую переработку; отстаивание газового конденсата в отстойнике, в котором происходит его деление на две фракции: смолу, состоящую из тяжелокипящих углеводородов и твердых примесей, опускающуюся вниз, и воду (надсмольную воду), содержащую водорастворимые примеси, находящуюся в верхней зоне отстойника, которые выводятся из отстойника на дальнейшую переработку; утилизацию тепла дымовых газов до температуры 140-150°С, после чего направляются на газоочистку и очищенные от вредных примесей выбрасываются в атмосферу, отличающийся тем, что:
нагревание шихты в шнековом подогревателе осуществляется дымовыми газами после реактора, которые затем с температурой 200-250°C подаются на окончательный нагрев сетевой воды в подогревателе сетевой воды, где они охлаждаются до температуры 140-150°C, после чего направляются на газоочистку, а поступающая из холодильника вода с температурой 60-70°C нагревается до конечной температуры 80-90°C;
разгрузочно-охладительный шнек охлаждается сетевой водой, проходящей через его тепловую рубашку, которая нагревается при этом до конечной температуры 80-90°C и подается в тепловую сеть;
конечную очистку и охлаждение пиролизного газа осуществляют путем адсорбции из него водорастворимых компонентов (кислот, солей, аммиака и пр.) гранулами пемзы диаметром от 20 до 40 мм, изготовленной из основных металлургических шлаков, в радиальных ячейках ротационного адсорбера, где происходит одновременная промывка гранул насыщенного шлака водой, которая поглощает адсорбированные компоненты, с охлаждением газа при этом до температуры 40-50°C, а из призматического днища ротационного адсорбера воду, содержащую водорастворимые примеси (кислоты, соли, аммиак и пр.), подают на дальнейшую переработку;

2. Устройство для реализации способа по п.1, включающее в себя соединенные между собой по выходу и входу перерабатываемых отходов (исходной шихты) измельчитель, усреднитель, представляющий собой аппарат с мешалкой, установленные друг над другом по вертикали, шнековый подогреватель, представляющий собой шнековый питатель, помещенный в тепловую рубашку, дегазатор, представляющий собой цилиндрическую обечайку, экструдер, охладитель-гранулятор, представляющий собой полый цилиндрический аппарат с коническим поддоном, шнековый питатель, кожухотрубчатый реактор, состоящий из пиролизной трубы, снабженной в своей нижней кромке створчатым отсекателем, покрытой тепловой рубашкой, снабженной сверху патрубком выхода дымовых газов и соединенной снизу тангенциально с камерой сгорания, сборник продуктов пиролиза, состоящий из газосборника и конического бункера для полукокса, снабженный выходным газовым патрубком с сепарационной решеткой, соединенный с разгрузочно-охладительным шнеком, представляющим собой шнековый питатель, помещенный в тепловую рубашку, сборник продуктов пиролиза через выходной газовый патрубок соединен последовательно по газу с вертикальным холодильником с коническим поддоном, соединенным по газовому конденсату с отстойником, отличающееся тем, что:
вертикальный холодильник соединен по пиролизному газу с ротационным адсорбером, состоящим из цилиндрического корпуса, плоская крышка которого снабжена призматическими крышками с патрубками входа промывочной воды и выхода очищенного пиролизного газа соответственно, плоское днище снабжено призматическими днищами с патрубками выхода промывочной воды и входа охлажденного пиролизного газа, в корпусе ротационного адсорбера помещен вращающийся ротор с радиальными ячейками, каждая из которых заполнена адсорбентом, представляющим собой гранулы пемзы металлургических шлаков с модулем основности М>1 диаметром от 20 до 40 мм, патрубок выхода очищенного пиролизного газа ротационного адсорбера соединен с горелкой камеры сгорания кожухотрубчатого реактора;
патрубок выхода дымовых газов кожухотрубчатого реактора соединен с тепловой рубашкой шнекового подогревателя, соединенного по дымовым газам с подогревателем сетевой воды, поступающей из вертикального холодильника.



 

Похожие патенты:

Изобретение относится к способу обработки отходов, особенно городских отходов. Техническим результатом является уменьшение количества твердых отходов, которые получаются в результате процесса обработки отходов, а также уменьшение количества опасных материалов в обработанных отходах.

Изобретение раскрывает способ переработки конденсированного органического топлива путем газификации с последующей конвертацией его в высококалорийный газ, предусматривающий загрузку указанного топлива в газогенератор, подачу в зону накопления и вывода твердых продуктов переработки топлива газифицирующего агента.

Изобретение относится к технологиям утилизации твердых бытовых отходов, ряда других органических бытовых и производственных отходов, а также низкосортных твердых топлив, в частности торфяного и каменноугольного сырья.

Изобретение относится к горному делу, в частности к комплексному освоению месторождения полезных ископаемых, и может быть использовано при освоении месторождения горючих сланцев, содержащих ценные химические элементы, например магний.

Изобретение относится к области переработки органосодержащих отходов, в том числе илистых отходов бытовых сточных вод, животноводческих комплексов и птицефабрик для получения горючих продуктов, сырья для производства строительных материалов и удобрений для мелиорации почв, и может использоваться, в частности, на станциях очистки сточных вод в коммунальном хозяйстве и на животноводческих комплексах.

Изобретение относится к области переработки твердых бытовых, промышленных, медицинских и других отходов и может быть использовано в народно-хозяйственном комплексе при обезвреживании и уничтожении отходов.

Изобретение относится к устройствам для переработки твердого спекающегося топлива, преимущественно твердых бытовых отходов, а также может быть использовано для переработки торфа, низкосортного угля, отходов деревообработки.

Изобретения могут быть использованы в области промышленной переработки горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов включает последовательную послойную переработку шихты в реакторе в присутствии катализатора.

Изобретение относится к области энергетики и может быть использовано в котельных агрегатах для утилизации птичьего помета, в том числе непосредственно на птицефабриках с целью выработки тепловой и электрической энергии, а также получения золы как ценного минерального удобрения.
Изобретение относится к области переработки, обезвреживания и утилизации твердых бытовых отходов. Для термической утилизации отходов бурят скважину, проводят газификацию органических компонентов отходов при помощи контролируемого нагрева и подачи топлива с получением синтез-газа и его последующим выводом.

Изобретение относится к способу и устройству для переработки отходов. Техническим результатом является упрощение и повышение надежности. Устройство включает узел подачи отходов, узел нагрева отходов и узел вывода шлаковых продуктов. Устройство содержит узел газификации углерода, при этом упомянутые узлы расположены в виде горизонтального расширяющегося канала в следующей последовательности: узел подачи отходов, узел нагрева отходов, узел газификации углерода и узел вывода шлаковых продуктов. Причем узел нагрева отходов и узел газификации углерода расположены внутри газопроницаемой засыпки, канал содержит в зоне нагрева отверстия в верхней и нижней части для прохода газов, упомянутые отверстия связаны с каналом для отсоса газа, содержащим дымосос, упомянутый канал соединен с каналом сгорания и дожигания газа, выполненным с возможностью реверсивного перемещения газа и содержащим дымосос и переключатель направления потока газа. При этом канал сгорания и дожигания газа выполнен с возможностью передачи тепла в узел нагрева отходов и узел газификации углерода через ограничивающие засыпку стенки. При этом узел газификации содержит две части, соединенные кольцевым сборником газов, связанным с дымососом, а узел вывода твердых продуктов газификации содержит устройство для орошения продуктов и устройство для сбора рассола. Заявлен также способ термической переработки несортированных отходов. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в нефтехимической и энергетической промышленности. Способ переработки нефтяных отходов включает подачу отходов в реактор, обогреваемый высокотемпературными дымовыми газами. Высокотемпературные дымовые газы для обогрева реактора получают путем совместного сжигания генераторного газа, полученного газификацией твердого остатка из реактора, а также жидких углеводородов и воды, подвергнутых кавитационному воздействию путем наложения ультразвука с частотой в пределах 20-200 кГц и интенсивностью колебаний 1,0-5,0 Вт/см2. Часть полученных высокотемпературных газов смешивают с водяным паром при массовом соотношении (0,1÷0,5):1 и также используют для обогрева реактора. Охлаждение смеси горючих газов, жидких углеводородов и водяного пара осуществляют в конденсаторе до 20-100°С путем теплообмена с теплоносителем, который далее используют для сушки исходных отходов, причем осуществляют частичное разделение жидких углеводородов и воды и устанавливают их массовое соотношение в пределах 1:(1,0÷4,0). Изобретение позволяет уменьшить энергетические затраты, повысить количественный выход и качество продуктов переработки отходов, а также снизить вредные выбросы в окружающую среду. 1 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к устройствам для переработки твердого углеродсодержащего сырья, в том числе отходов сельскохозяйственного производства и бытовых отходов, с получением метансодержащего топливного газа. Устройство для газификации углеродсодержащего сырья включает вертикальный корпус 1 с зонами высокотемпературной, среднетемпературной и низкотемпературной газификации. В зоне 8 высокотемпературной газификации установлены плазменные горелки 9 и средства ввода газифицирующего агента 10. В зоне 6 низкотемпературной газификации размещен пакет чередующихся лопастных узлов 14, 15 и решеток 16, 17, выполненных с расположенными по кругу разными по размерам отверстиями в форме секторов или радиальных щелей с величиной их проходного сечения, постепенно увеличивающейся от зоны загрузки сырья в направлении вращения вала. Под нижней решеткой вышеуказанного пакета размещены форсунки 7 для подачи воды и катализаторов. Изобретение позволяет повысить производительность процесса газификации с одновременным обеспечением эффективности переработки углеродсодержащего сырья и увеличением выхода топливного газа. 10 з.п. ф-лы, 7 ил.

Изобретение относится к области пиролизной очистки технологической оснастки от производственных загрязнений, содержащих органические и углеводородные вещества, образующиеся в результате технологических процессов. Техническим результатом является снижение трудоемкости очистки технологической оснастки, повышение производительности процесса переработки. Способ включает загрузку технологической оснастки в камеру термического разложения, в которой осуществляют нагрев и разложение загрязнений - пиролиз с образованием газообразных и твердых фракций и с последующей выгрузкой твердых фракций. При этом нагрев загрязнений в камере термического разложения осуществляют посредством радиационного теплообмена с источниками инфракрасного радиационного излучения. Причем спектр источников инфракрасного радиационного излучения совпадает со спектром радиационного поглощения загрязнений, при этом газообразные фракции направляют на дожигание и очистку. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в угольной промышленности и лесохимическом производстве. Углевыжигательная печь включает теплоизолированную камеру пиролиза (1), сообщающуюся посредством снабженного теплоизоляцией трубопровода (30) с системой конденсации, включающей охладитель (3) и сборник конденсата (31). Охладитель (3) выполнен в виде кожухотрубчатого теплообменника, межтрубное пространство которого соединено с калориферами (42) теплоизолированной сушильной камеры (4). Углевыжигательная печь содержит топку (2), выполненную в виде последовательно соединенных газогенератора (15) и камеры сгорания (16) с горелкой дожига несконденсированных пирогазов (23) и газоход (8), снабженный шибером (11). Камера сгорания (16) дополнительно снабжена горелкой дожига отстойной части конденсата (52). Газоход (8) также снабжен редукционным клапаном (64), патрубком (35), расположенным до шибера (11) со стороны камеры сгорания (16), и через гидрозатвор (58) соединен с рекуперативным теплообменником (51). Сборник конденсата (31) выполнен в виде отстойника и соединен через патрубок (59), расположенный на его боковой стенке в средней части, с емкостью для сбора водорастворимой части конденсата (56), а через патрубок (60), расположенный на его боковой стенке в нижней части, через подогреватель (62) и насос (53) - с горелкой дожига отстойной части конденсата (52). Изобретение позволяет повысить экологическую безопасность и эффективность работы углевыжигательной печи при высоком качестве древесного угля. 1 ил.

Группа изобретений относится к переработке твердых и жидких отходов производства и потребления в термической плазме. Техническим результатом является повышение эффективности газификации отходов за счет снижения содержания примесей в отводимом пирогазе. Способ переработки твердых и жидких отходов производства и потребления в термической плазме в реакционном объеме, имеющем несколько зон, в том числе камеру газификации, зону формирования стеклоподобного шлакового компаунда и плавильную камеру, с подачей отходов в верхнюю часть реакционного объема, последующим нагреванием отходов плазменными струями электродуговых плазматронов, использующих рабочий газ, расположенных, по крайней мере, в одной из зон, с получением пирогаза и стеклоподобного шлакового компаунда, газоотводом пирогаза и сливом стеклоподобного шлакового компаунда из нижней части плавильной камеры, отличающийся тем, что процесс в зоне формирования стеклоподобного шлакового компаунда проводят таким образом, что плазменные струи, образуемые плазматронами, фокусируют с возможностью создания теплового ядра в одной области, находящейся в центре зоны формирования стеклоподобного шлакового компаунда, с образованием слоя возгонной пыли, состоящей из минеральных частиц, и расположенной между камерой газификации и зоной формирования стеклоподобного шлакового компаунда, исходные отходы направляют в область теплового ядра, а газоотвод пирогаза осуществляют сначала путем сужения потока газа с последующим его расширением до скорости осаждения возгонных пылевых микрочастиц, имеющих эффективный диаметр менее 100 мкм. 2 н. и 19 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к области энергетики, предназначено для утилизации отходов на предприятиях аграрно-промышленного комплекса, преимущественно для сжигания пометно-подстилочной массы (ППМ), и может быть использовано для сжигания ППМ как в товарном виде, так и с добавками других видов мелкофракционных и пылевидных топлив. Техническим результатом является предотвращение подсоса холодного воздуха, предварительная подсушка ППМ и полный дожиг, что позволяет обеспечить более эффективное сжигание подстилочно-пометной массы. Способ включает аэродинамическую напорную подачу горячим воздухом ППМ в нижнюю камеру скоростного сжигания сверху вниз через топливную трубу с организацией в камере одновременно: подсушки, газогенерации и факельно-слоевого сжигания ППМ с противоточно-обращенным дутьем на беспровальной колосниковой решетке шурующей планкой, дожиг выноса коксовых остатков и продуктов газификации с деструкцией супертоксикантов в верхней камере с организацией устойчивого горения факела в диапазоне температур 800-950°C и длительностью более 2 с с турбулизацией факела и дымовых газов путем управляемой подачи горячего вторичного воздуха в нижнюю часть верхней камеры тангенциально, с организацией спиралеобразного движения продуктов горения вверх. 2 н.п. ф-лы, 4 ил.

Изобретение относится к вихревой газогенерации и/или сжиганию твердых ископаемых топлив, биомассы и может быть использовано, главным образом, в малой и промышленной энергетике, преимущественно для утилизации горючих органических отходов, биомассы, местных топлив, таких как некондиционные угли или торф, а также иных твердых веществ, содержащих углерод и водород, например бытовых и промышленных отходов, для получения горючих газов разного качества с целью их сжигания или переработки. Способ переработки топлива для получения горючих газов в едином управляемом потоке, образующем четыре последовательные области, в первой из которых реализуется пиролиз топлива и начало газификации твердого остатка, во второй области завершается газификация повышением интенсивности процесса и вихревой поток газовзвеси переходит в область кондиционирования, в которой временной выдержкой и корректирующей подачей воздуха достигаются нужные свойства газовзвеси, после чего газовзвесь переходит особым образом в область стабилизации, которая обеспечивает постоянство значений параметров газовзвеси взаимной компенсацией пульсаций газовзвеси в третьей и четвертой областях, выдержкой во времени и корректирующей подачей воздуха и/или пара в первую и четвертую области вихревого потока. При этом осуществляют циркуляцию золы через весь вихревой поток из области стабилизации в первую область пиролиза и далее через все области вихревого потока. Реактор для переработки топлива, формирующий вихревой поток в первой камере и трансформирующий его в трех последующих камерах и реализующий в полной мере предложенный способ вместе с использованием теплоты стенок реактора для подогрева воздуха, вводимого в реактор, который оснащен устройствами транспорта золы из четвертой камеры в специальную форкамеру первой камеры с возможностью отвода всей или части золы из этих камер через сбор в специальном накопителе. Изобретение позволяет управлять пиролизом и газификацией топлива и/или его сжиганием, а также способствует более полной утилизации теплоты процесса и выгоранию горючих веществ в золе, а также стабилизации нужных параметров получаемого газа и золы топлива на выходе из реактора. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к сельскому хозяйству и может быть использовано для переработки органосодержащего сырья, а также в лесопромышленном комплексе. Влажное исходное сырье 14 подают в трубу 9 и перемещают поршнем 3 в камеру сушки 4, далее в камеры пиролиза 5 и конденсации 6 газообразных продуктов. Из камеры 5 отбирают часть газообразных продуктов и по воздуховоду 11 через клапан 12 направляют в топку 13 для сжигания. Продукты сжигания направляют на смешение с топочными газами 15. Несконденсированные газы и жидкую фазу отводят из камеры 6. Твердую фазу 19 охлаждают водой и разгружают. Изобретение позволяет повысить эффективность процесса пиролиза и утилизировать низкопотенциальные источники теплоты. 1 ил., 1 пр.

Изобретение относится к устройствам для газификации твердых органических топлив и может быть использовано для производства горючего генераторного газа. Техническим результатом является интенсификация процесса газификации при обеспечении высокой теплоты сгорания получаемого генераторного газа и повышение надежности газогенератора. Газогенератор твердого топлива содержит оболочку, внутри которой размещены корпус, патрубки для сбора газа, подачи в газификационную камеру сырья и газифицирующего агента и бункер. В стенке оболочки установлен патрубок для подачи газифицирующего агента в полость оболочки. В корпусе установлена горизонтальная центробежная газификационная камера с последовательно размещенными от центра к периферии зонами сушки, пиролиза, горения, восстановления твердого топлива. Боковая перфорированная стенка газификационной камеры расположена в зоне восстановления твердого топлива. Полость корпуса сообщена с патрубком для сбора газа. В торце газификационной камеры установлены патрубки для подачи в газификационную камеру сырья и газифицирующего агента. Бункер соединен с патрубком для подачи сырья в газификационную камеру. 1 ил.
Наверх