Органичитель мощности свч

Использование: для изготовления полупроводниковых изделий. Сущность изобретения заключается в том, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов, при этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор. Технический результат: обеспечение возможности снижении прямых потерь при необходимом уровне ограничения входной мощности и обеспечение необходимого уровня ограничения входной мощности СВЧ. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников.

Известен неуправляемый (пассивный) ограничитель мощности [ГАСАНОВ Л.Г. и др. Твердотельные устройства СВЧ в технике связи. М.,Радио и связь, 1988, с.143], состоящий из отрезка линии передачи, параллельно которому включены pin диоды и диод Шоттки, соединенные встречно-параллельно. Диод Шоттки благодаря малой инерционности и меньшей контактной разности потенциалов открывается раньше при малых уровнях входной мощности и своим током открывает pin диоды, повышая быстродействие ограничителя.

При больших уровнях мощности открытые pin диоды отражают основную часть входной мощности и частично ее рассеивают, а поскольку pin диоды располагаются перед диодом Шоттки, то мощность, дошедшая до диода Шоттки, оказывается значительно ослабленной и безопасной для него. Уровень ограничения проходящей мощности в таком ограничителе соответствует падению прямого напряжения на диоде Шоттки.

Недостатком этого ограничителя является наличие высокой рассеиваемой мощности на pin диодах вследствие их неполного открытия, обусловленного недостаточной величиной тока диода Шоттки из-за наличия отрицательной обратной связи, органически присущей данному ограничителю мощности.

Наиболее близким аналогом является неуправляемый (пассивный) ограничитель СВЧ мощности (патент России №2097877 дата публикации 1997.11.27), содержащий отрезок линии передачи, один из концов которого является входом ограничителя, а другой - его выходом, и шунтирующие эту линию детекторный и переключательный (pin) диоды, соединенные встречно-параллельно, отличающийся наличием со стороны входа ограничителя дополнительного детекторного диода с большой емкостью, включенного последовательно по СВЧ и замкнутого по постоянному току с pin диодом. При входном СВЧ сигнале, мощность которого превышает пороговое значение, pin диод открывается постоянным током детекторного диода, что в свою очередь приводит к резкому возрастанию СВЧ мощности, детектируемой на дополнительном детекторном диоде, постоянный ток которого дополнительно снижает сопротивление pin диода, при этом увеличивается отражение сигнала и снижается мощность, рассеиваемая на pin диоде.

Недостатком этого ограничителя является наличие существенных прямых потерь при малом уровне входного сигнала, обусловленных потерями в дополнительном детекторном диоде, что в конечном итоге приводит к снижению чувствительности приемника, особенно в длинноволновом диапазоне СВЧ.

Задачей настоящего изобретения является устранение вышеуказанных недостатков.

Технический результат изобретения заключается в снижении прямых потерь при необходимом уровне ограничения входной мощности в рабочем управляемом режиме ограничителя, в том числе на контактных соединениях, и обеспечении необходимого уровня ограничения входной мощности СВЧ.

Технический результат обеспечивается тем, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы. Кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов. При этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.

В соответствии с частным случаем осуществления диэлектрик содержит дополнительный слой из оксида алюминия.

Сущность настоящего изобретения поясняется следующими иллюстрациями:

фиг.1 - отображено устройство в разрезе;

фиг.2 - отображена схема настоящего устройства.

На фиг.1 отображены следующие конструктивные элементы:

1 - подложка из слоя сапфира;

2 - буферный слой из AlN;

3 - буферный слой из GaN;

4 - слой из GaN i-типа;

5 - слой твердого раствора AlGaN;

6 - нижняя обкладка конденсаторов, образованная ДЭГ в интерфейсе AlGaN/GaN;

7 - сглаживающий слой из GaN;

8 - диэлектрик, включающий слой из НfO2;

9 - металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсаторов.

Настоящее устройство изготавливают следующим образом.

На подложке из сапфира 1, толщиной 150-200 мкм, последовательно размещают буферный слой из нитрида алюминия 2, толщиной 0,7 нм, эпитаксиальную структуру на основе широкозонных III-нитридов в виде слоев 3-6, состоящих из второго буферного слоя 3 из GaN, толщиной 200 нм, нелегированного слоя 4 из GaN i-типа, толщиной 200 нм, слоя твердого раствора AlGaN 5, толщиной 4,5 нм, а в интерфейсе AlGaN/GaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, образующий нижние обкладки 6 конденсаторов. Поверх твердого раствора 5 AlGaN последовательно размещены: сглаживающий слой из нитрида галлия 7 толщиной 3-8 нм, диэлектрик в виде слоя из двуокиси гафния 8 и слоя из оксида алюминия и слой металлических электродов 9 полосковой формы, которые образуют верхнюю обкладку конденсатора.

Использование слоев из оксидов металлов обусловлено следующим. Двуокись гафния является представителем наиболее перспективных диэлектрических материалов и используется в качестве пассивирующего слоя и подзатворного диэлектрика. Этот материал обладает высокими диэлектрической проницаемостью (К=20-25) и шириной запрещенной зоны Eg=5,8 эВ, а также термодинамически стабилен в диапазоне рабочих температур рассматриваемых устройств. Кроме того, двуокись гафния как диэлектрический материал подходит для устройств с емкостно соединенными контактами, имеет высокую диэлектрическую проницаемость, более сильную емкостную связь и низкую плотность состояний границы раздела.

При необходимости повышения электрической прочности диэлектрика 8, поверх слоя HfO2 размещается слой оксида алюминия. Использование слоев из двуокиси гафния и оксида алюминия позволяет минимизировать утечки тока и увеличить значение напряжения пробоя.

Слой из AlGaN 5 предназначен для образования в гетеропереходе AlGaN/GaN, в его приповерхностном слое проводящего канала (двумерного электронного газа (ДЭГ) с высокой подвижностью носителей заряда), возникающего за счет разрыва зон и поляризационных эффектов при образовании гетероперехода AlGaN/GaN. Основным требованием к этому слою является структурное совершенство, достаточное для обеспечения высокой подвижности электронов, и высокого сопротивления. Поэтому канальный слой не легируется, а в ряде случаев используются специальные приемы для обеспечения необходимого сопротивления. Между буферным слоем из нитрида алюминия 2 и слоем из нитрида галлия 4 i-типа располагается переходная область в виде второго буферного слоя из нитрида галлия 3, которая служит для уменьшения рассогласования параметров решетки и растущих на ней эпитаксиальных слоев. Между слоем твердого раствора AlGaN 5 и диэлектрическим слоем НfO2 размещен дополнительный слой 7 из химически более стабильного по сравнению с AlGaN материала из нитрида галлия (сглаживающий слой).

В процессе изготовления экспериментальных образцов в гетероструктуре кристалла вместо буферного слоя нитрида галлия 3 был опробован дополнительный буферный слой в виде короткопериодной сверхрешетки AlGaN/GaN, что позволило существенно снизить плотность ростовых дефектов и улучшить электрическую изоляцию между каналом переключателя и подложкой.

Таким образом, предлагается конструкция устройства, которое позволяет использовать емкостные соединенные контакты, тем самым устраняя потребность в омических контактах, что уменьшает рассеиваемую мощность. Низкое сопротивление в открытом состоянии возникает в результате чрезвычайно высокой плотности носителей в канале - сверх 1013 см-2, высокой подвижности электронов до 2500 см2/В·с, высоких полей пробоя и широкого диапазона рабочих температур в пределах от криогенного до 300С или даже выше.

Схема устройства приведена на фиг.2. Первый электрод (E1), сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор; второй электрод (E2), сформированный на полупроводниковом канале и полупроводниковый канал образуют второй управляемый напряжением конденсатор. Входной импульс может быть подан между землей E0 и электродом E1, в то время как второй импульс подается между землей E0 и электродом E2.

Устройство подключено в другую схему, если амплитуда входного сигнала (A) не превышает напряжение, необходимое для обеднения одного из конденсаторов (C1) или (C2), импеданс устройства будет очень низким и устройство не будет ограничивать мощность СВЧ. Однако если амплитуда входного сигнала (B) превышает напряжение, конденсаторы (C1) и (C2) выключаются в течение соответствующего положительного и отрицательного полупериодов.

1. Ограничитель мощности СВЧ, включающий электроды и емкостные элементы, отличающийся тем, что емкостные элементы представляют собой конденсаторы, кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов, при этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.

2. Ограничитель по п.1, отличающийся тем, что диэлектрик содержит дополнительный слой из оксида алюминия.



 

Похожие патенты:

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий электропередачи.

Описан сверхпроводящий элемент, включающий жесткую подложку, изготовленную из несверхпроводящего материала, причем указанная подложка включает по меньшей мере одну сверхпроводящую дорожку, образованную канавкой, содержащей сверхпроводящий материал, плотность которого равна по меньшей мере 85% от значения его теоретической плотности, и описан способ изготовления указанного элемента.

Изобретение относится к криогенной технике и может быть использовано при изготовлении сверхпроводящих изделий, в частности высокочастотных объемных резонаторов, волноводов, линий задержки и т.п.

Изобретение относится к медицинской технике и может быть использовано в магнитно-резонансных томографах. .
Изобретение относится к области получения специальных сплавов в виде покрытий или самонесущих изделий и может быть использовано в металлургии, машиностроении, материаловедении и других отраслях.

Изобретение относится к области криоэлектроники и может быть использовано для получения объемов повышенной магнитной чистоты. .
Изобретение относится к области получения сверхпроводников, сверхпроводящих композиций и проводников на их основе. .

Изобретение относится к области измерительной техники, а точнее к способам измерения параметров сверхпроводящих материалов, в частности силы пиннинга. .

Изобретение относится к ядерной физике, а именно к устройствам для регистрации ионизирующих частиц. .

Использование: в области электротехники. Технический результат - обеспечение эффективного охлаждения сверхпроводящего элемента при срабатывании токоограничивающего устройства. Модуль ограничителя тока включает, по меньшей мере, один сверхпроводящий элемент, расположенный в керамической капсуле и находящийся в термическом контакте с материалом капсулы, где капсула выполнена из термостойкой теплопроводной керамики с коэффициентом теплопроводности не менее 1 Вт/м/К, электрическим сопротивлением не менее 105∙Ом·м и электрической прочностью свыше 400 В/мм. 2 н. и 6 з.п. ф-лы, 2 ил.

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с участием двух или более джозефсоновских контактов, элементарные ячейки образуют в своей совокупности двухмерную равномерно распределенную в пространстве решетку, метаповерхность, а магнитное поле усиливаемого сигнала создается близко расположенной низкодобротной линией передачи, которая распределяет сигнал между всеми ячейками метаматериала. Технический результат: обеспечение возможности увеличить мощность насыщения и расширить частотный диапазон усиления. 6 ил.

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде меандра, и сверхпроводящих соединительных проводов для соединения секций через токоограничители с контактными площадками, токоограничители формируют путем нанесения на сформированную структуру защитной резистивной маски, вскрытия в ней окон над отрезками соединительных проводов меандра с контактной площадкой и преобразованием их в несверхпроводящие за счет селективного изменения атомного состава воздействием пучка ускоренных частиц через защитную маску. Технический результат: обеспечение возможности создания нанорезисторов с высокими эксплуатационными характеристиками и меньшим количеством технологических операций. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области бесконтактных магнитных подшипников роторных механизмов, а конкретно к устройствам пассивного (статического) магнитного подвеса маховиков кинетических накопителей энергии (КНЭ). Комбинированный сверхпроводящий магнитный подвес для кинетического накопителя энергии содержит корпус, вакуумную камеру, маховик, опорный статический магнитный подшипник, герметичную стенку, криостат, а также сверхпроводящий магнитный подвес дискового типа, включающий в себя статор с блоком высокотемпературных сверхпроводящих элементов с системой охлаждения и ротор с установленными на его валу кольцевыми постоянными магнитами, при этом напротив торцевых поверхностей ротора, выполненных коническими, концентрично установлены конические втулки с кольцевыми постоянными магнитами, расположенными у торцевой поверхности втулок, при этом втулки выполнены с возможностью перемещения в осевом направлении и вращения вокруг своей оси. Технический результат – расширение функций магнитного подвеса, позволяющих использовать его в качестве элементов арретира, страховочного подшипника и узла начального центрирования маховика. 9 ил.

Использование: для создания устройств, содержащих материал с чрезвычайно низким сопротивлением. Сущность изобретения заключается в том, что устройства содержат компонент, сформированный по меньшей мере частично из модифицированного материала с чрезвычайно низким сопротивлением (ЧНС), при этом модифицированный ЧНС-материал содержит ЧНС-материал с гранью и кристаллической структурой, причем эта грань параллельна a-оси кристаллической структуры, и модифицирующий материал, смежный с этой гранью ЧНС-материала. Технический результат: обеспечение возможности создания устройств, содержащих ЧНС-материалы, которые обеспечивают чрезвычайно низкое сопротивление при более высоких температурах. 3 н.п.ф-лы, 373 ил., 2 табл.

Использование: для создания сверхпроводящего выключателя. Сущность изобретения заключается в том, что сверхпроводящий выключатель содержит отключающий элемент, выполненный из сверхпроводящей ленты, уложенной зигзагообразно в пакет с изоляцией между слоями, внутри сгибов ленты расположены прокладки из материала с высокой относительной магнитной проницаемостью, отделенные от ленты изоляцией. Технический результат: обеспечение возможности повышения рабочего тока. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии, а именно к способам создания острой кубической текстуры в железоникелевых сплавах, и может быть использовано для создания магнитопроводов в электротехнических устройствах, а также в качестве лент-подложек при получении многослойных ленточных сверхпроводников второго поколения. Способ изготовления ленты из железоникелевого сплава Fe-(49-50,5) мас. % Ni, имеющей острую кубическую текстуру, включает выплавку сплава в алундовых тиглях в атмосфере аргона в вакуумной индукционной печи, ковку при температуре 800-1000°С на прутки сечением 7×7 мм, шлифовку, холодную прокатку на полированных валках со степенью холодной деформации 98-99% и рекристаллизационный отжиг. Перед рекристаллизационным отжигом проводят предварительный отжиг прокатанных лент со скоростью нагрева 10°С/мин до температуры 480-520°C с приложением постоянного магнитного поля 28-30 Тл вдоль направления холодной прокатки и выдержкой при этой температуре в течение не менее 20 мин с последующим охлаждением до комнатной температуры, а рекристаллизационный отжиг ведут со скоростью 2°С/мин от температуры 400 до 675°С. Обеспечивается снижение температуры рекристаллизационного отжига при сохранении высокой степени остроты кубической текстуры {100}<001>. 2 ил., 1 табл.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к способу создания интегрированного криогенного адаптера питания на одном чипе. Способ включает нанесение на подложку слоя сверхпроводника и формирование из него методом электронной литографии сверхпроводящих элементов детектора, включая меандр, соединительные провода, контактные площадки и последующее преобразование участков сверхпроводящих проводов в сопротивления требуемого номинала путем воздействия пучка ускоренных частиц. На этой же подложке изготавливают и адаптер смещения, для чего на сформированную структуру сверхпроводящих элементов наносят резист, стойкий к ионному облучению. Вскрывают окно над будущим сопротивлением адаптера, преобразуют находящийся в окне слой сверхпроводника в металл путем воздействия пучка ускоренных частиц и закрывают окно. Вскрывают окно над будущим конденсатором адаптера, преобразуют находящийся в окне слой сверхпроводника в диэлектрик путем воздействия пучка ускоренных частиц и наносят защитное покрытие. Технический результат - обеспечение возможности создания сверхпроводникового однофотонного детектора и адаптера смещения как одного целого в одном технологическом цикле. 6 з.п. ф-лы, 5 ил., 5пр.

Использование: для изготовления полупроводниковых изделий. Сущность изобретения заключается в том, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaNAlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов, при этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор. Технический результат: обеспечение возможности снижении прямых потерь при необходимом уровне ограничения входной мощности и обеспечение необходимого уровня ограничения входной мощности СВЧ. 1 з.п. ф-лы, 2 ил.

Наверх