Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава



Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава
Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

 


Владельцы патента RU 2561567:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия, 4,5…5,9 молибдена, 2,0…3,6 хрома, 0…5 циркония, 0…6 олова, 0…0,5 кремния, титан и неизбежные примеси - остальное, включает охлаждение со скоростью V1<3°С/мин из однофазной β-области до температуры T1<370°С и последующее старение при температуре Т2=370…600°С в течение 1…12 часов. После старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов. Обеспечивается повышение прочности и ударной вязкости. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Настоящее изобретение относится к областям металлургии сплавов на основе титана и машиностроения, а именно описывает способы термической обработки высоколегированных псевдо-β титановых сплавов. Данное изобретение может быть использовано для повышения комплекса механических свойств высоколегированных псевдо-β титановых сплавов.

Сплавы на основе титана являются одним из важнейших конструкционных материалов и с каждым годом расширяются области их использования. Ответственные сферы применения этих (аэрокосмическая техника, судостроение и т.д.) сплавов требуют улучшения механических и эксплуатационных свойств за счет оптимизации их фазового и структурного состояния методами термического и термомеханического воздействия.

В настоящее время известен способ термической обработки крупногабаритных изделий из титановых сплавов Ti-5Al-5Mo-5V-3Cr [1] и Ti-5Al-5Mo-5V-3Cr-Zr [2], который заключается в нагреве до температуры (Тβ-(30…70))°C, выдержке при этой температуре в течение 2…5 ч, последующем охлаждении на воздухе или в воде и старении при температуре 540…600°C в течение 8…16 ч. Недостатком данном способа является недостаточный уровень прочности и энергоемкости разрушения, по сравнению с другими техническими решениями.

Также известен способ термической обработки псевдо-β-титановых сплавов BASCA (англ. «Beta Annealing, Slow Cooling, Aging») [4, 5], включающий охлаждение со скоростью менее 3°C/мин из однофазной β-области до температуры ниже 370°C и последующее старение при температуре 370…600°C в течение 1…12 часов. Указанное техническое решение, как наиболее близкое к заявленному техническому решению, принято в качестве прототипа.

Технической задачей предлагаемого изобретения является повышение уровня прочности и энергоемкости разрушения высоколегированного псевдо-β сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное.

Для решения указанной технической задачи предложен способ термической обработки крупногабаритных изделий и полуфабрикатов:

1. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное, включающий охлаждение со скоростью V1<3°C/мин из однофазной β-области до температуры T1<370°C и последующее старение при температуре Т2=370…600°C в течение 1…12 часов, отличающийся тем, что после старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов, где V1 - скорость первого охлаждения, V1 - скорость второго охлаждения, T1 - температура окончания замедленного охлаждения, Т2 - температурный интервал старения, Т3 - температурный интервал высокотемпературного отжига, Тβ - температура полного полиморфного превращения.

2. Способ по п. 1. отличающийся тем, что обработку в интервале температур Т32…Тβ проводят в две стадии, при температурах Т5 и Т6, причем температуру Т5 выбирают из диапазона 750…770°C, а температуру назначают из соотношения Т65+10…20°C, где Т5 - температура первой стадии высокотемпературного отжига, Т6 - температура второй стадии высокотемпературного отжига.

Пример.

Это техническое решение подтверждено исследованиями сплава VST5553, содержащего 4,98 мас.% Al, 5,41 мас.% Мо, 5,45 мас.% V, 2,94 мас.% Cr, титан и примеси - остальное. Температура полного полиморфного превращения Тβ исследуемой плавки сплава, определенная методом пробных закалок, составляла 848°C.

Обрабатываемый образец сплава нагревался в термической печи в однофазную β-область и выдерживался при температуре нагрева в течение 1 ч для полного перехода структуры в однофазное состояние. После изотермической выдержки в однофазной области образец охлаждался с печью до комнатной температуры, после чего нагревался до температуры Т2=600°C и выдерживался при данной температуре в течение 6 ч. После выдержки образец нагревался до температуры Т5β-90°C=770°C и выдерживался при этой температуре в течение 3 ч с последующим нагревом до температуры Т65+20°C=790°C и выдержкой в течение 3 ч. После выдержки при температуре Тб исследуемый образец охлаждался на воздухе до температуры Т2=600°C и осуществлялось его старение в течение 6 ч с последующим неконтролируемым охлаждением на воздухе.

После проведения термической обработки по описанному режиму проводилось механическое удаление газонасыщенного слоя толщиной 2,5…3,5 мм, подготовка образцов для механических испытаний на ударный изгиб (с U-образным надрезом) и испытаний на замедленное разрушение (образец с V-образным надрезом, скорость деформации в режиме 3-точечного изгиба 1…1,5 мм/мин).

Технический результат: заметное повышение энергоемкости разрушения (ударной вязкости) KCU и пластичности сплава γ, а также некоторое возрастание уровня прочности σ при испытаниях на замедленное разрушение в режиме 3-точечного изгиба (фиг. 1, табл. 1).

Источники информации:

1. Тетюхин В.В., Захаров Ю.И., Левин И.В. Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплав. Патент РФ №2169782, 2000.

2. Тетюхин В.В., Захаров Ю.И., Левин И.В. Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплав. Патент РФ №2169204, 2000.

3. Briggs R.D. Tough, high-strength titanium alloys; methods of heat treating titanium alloys. Патент США №7785429, 2010.

4. Briggs R.D. Tough, high-strength titanium alloys; methods of heat treating titanium alloys. Патент США №8262819, 2012.

1. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное, включающий охлаждение со скоростью V1<3°С/мин из однофазной β-области до температуры T1<370°С и последующее старение при температуре Т2=370…600°С в течение 1…12 часов, отличающийся тем, что после старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов, где V1 - скорость первого охлаждения, V2 - скорость второго охлаждения, T1 - температура окончания замедленного охлаждения, Т2 - температурный интервал старения, Т3 - температурный интервал высокотемпературного отжига, Тβ - температура полного полиморфного превращения.

2. Способ по п. 1, отличающийся тем, что обработку в интервале температур Т32…Тβ проводят в две стадии, при температурах Т5 и Т6, причем температуру Т5 выбирают из диапазона 750…770°С, а температуру Т6 назначают из соотношения Т65+10…20°С, где Т5 - температура первой стадии высокотемпературного отжига, Т6 - температура второй стадии высокотемпературного отжига.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к способу изготовления тонких листов из двухфазного титанового сплава с микрокристаллической структурой, которая, в частности, пригодна для сверхпластической деформации при нагреве.

Изобретение относится к области металлургии, в частности к вакуумной химико-термической обработке деталей. Способ получения износостойких покрытий на поверхности изделий из титана и его сплавов включает предварительную подготовку изделий путем их отжига и механической обработки и альфирование изделий.

Изобретение относится к прокатному производству и может быть использовано при изготовлении броневых листов из (α+β)-титанового сплава. Способ изготовления броневых листов из (α+β)-титанового сплава включает подготовку шихты, выплавку слитка состава, мас.%: 3,0-6,0 Al; 2,8-4,5 V; 1,0-2,2 Fe; 0,3-0,7 Mo; 0,2-0,6 Cr; 0,12-0,3 О; 0,010-0,045 С; <0,05 N; <0,05 Н;<0,15 Si; <0,8 Ni; остальное - титан.

Изобретение относится к области металлургии, в частности к сплавам на основе титана, обладающим улучшенными баллистическими и механическими свойствами. Сплав на основе титана состоит по существу из, вес.%: 4,2-5,4 алюминия, 2,5-3,5 ванадия, 0,5-0,7 железа, 0,15-0,19 кислорода и титана до 100.

Изобретение относится к области обработки давлением и может быть использовано при изготовления осесимметричных деталей типа дисков из труднодеформируемых жаропрочных сплавов.

Изобретение относится к обработке металлов давлением и может быть использовано для получения интенсивной пластической деформации (ИПД) заготовки. Способ включает осадку и последующее кручение заготовки с обеспечением деформации сдвига.

Изобретение относится к области металлургии, в частности к титановым материалам с высокой прочностью и обрабатываемостью. Титановый материал содержит железо 0,60 мас.% или менее и кислород 0,15 мас.% или менее, титан и неизбежные примеси - остальное.

Изобретение относится к трубному производству, а именно к холодной прокатке труб из α- и псевдо-α-сплавов на основе титана. Способ изготовления холоднодеформированных труб из α- и псевдо-α-сплавов на основе титана включает выплавку слитка, ковку слитка в β- и α+β-области с окончанием ковки в α+β-области в промежуточную заготовку с уковом от 2 до 3, прошивку осуществляют при температуре на 30-50°C выше Тпп, многоконусными валками и оправкой с заданной геометрией с подачей воды в зону деформации, раскатку заготовки производят при температуре на 10-90°C ниже Тпп, правку трубной заготовки - при температуре 350-400°C, холодную прокатку производят с коэффициентом вытяжки 1,5-4,5 за несколько этапов, чередуя с проведением промежуточных отжигов при температуре, равной 600-750°C, и последующую термообработку на готовом размере при температуре 580÷650°C.

Изобретение относится к области металлургии, в частности к способу получения нанодвойникованного технически чистого титанового материала. Способ получения нанодвойникованного технически чистого титанового материала включает литье технически чистого титанового материала, содержащего не более чем 0,05 мас.% N, не более чем 0,08 мас.% С, не более чем 0,015 мас.% Н, не более чем 0,50 мас.% Fe, не более чем 0,40 мас.% О и не более чем 0,40 мас.% остальных, доводят литой материал до температуры на уровне или ниже 0°С и проводят пластическую деформацию при этой температуре в такой степени, что в материале образуются нанодвойники.

Изобретение относится к производству удлиненных изделий из титана, или титанового сплава, или заготовок таких изделий. Для повышения качества изделий и упрощения их производства заявлен способ, который заключается в подготовке массы титана или титанового сплава (10), плавке этой массы посредством электрической дуги и способом гарнисажной плавки (20), литье одного или нескольких слитков преимущественно цилиндрической формы и диаметра менее 300 мм из расплавленной массы (30), а затем волочении одного или нескольких из этих слитков при температуре 800°С-1200°С посредством волочильного стана (40) для применения, например, в области авиации.
Изобретение относится к области металлургии, в частности к сплавам для обратимого поглощения водорода, и может быть использовано в транспортных и энергетических устройствах.
Изобретение относится к области металлургии, в частности к сплавам на основе титана, используемым для абсорбции и десорбции водорода, и может быть использовано в транспортных и энергетических устройствах.

Изобретение относится к области металлургии цветных металлов, в частности к производству слитков жаропрочных сплавов на основе титана. Лигатура содержит, мас.%: вольфрам 28-32, алюминий 28-32, титан остальное.

Изобретение относится к области металлургии, в частности к титановому сплаву с высокой коррозионной стойкостью. Титановый сплав содержит, в мас.%: металл платиновой группы 0,01-0,15, редкоземельный металл 0,001-0,10 и Ti и примеси - остальное.

Изобретение относится к области порошковой металлургии. Готовят смесь, содержащую не более 65 мас.% порошка, полученного методом плазменного распыления титанового сплава ВТ-22, не менее 30 мас.% смеси технических порошков титана ПТМ и никеля ПНК, взятых в соотношении 1:1, и 3-5 мас.% полученного электролизом порошка меди ПМС-1 фракции менее 50 мкм.

Изобретение относится к прокатному производству и может быть использовано при изготовлении броневых листов из (α+β)-титанового сплава. Способ изготовления броневых листов из (α+β)-титанового сплава включает подготовку шихты, выплавку слитка состава, мас.%: 3,0-6,0 Al; 2,8-4,5 V; 1,0-2,2 Fe; 0,3-0,7 Mo; 0,2-0,6 Cr; 0,12-0,3 О; 0,010-0,045 С; <0,05 N; <0,05 Н;<0,15 Si; <0,8 Ni; остальное - титан.

Изобретение относится к области металлургии, в частности к сплавам на основе титана, обладающим улучшенными баллистическими и механическими свойствами. Сплав на основе титана состоит по существу из, вес.%: 4,2-5,4 алюминия, 2,5-3,5 ванадия, 0,5-0,7 железа, 0,15-0,19 кислорода и титана до 100.
Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок арматуры, насосов, корпусов, используемым в судостроении, химической и других отраслях промышленности.

Изобретение относится к области металлургии, в частности к титановым материалам с высокой прочностью и обрабатываемостью. Титановый материал содержит железо 0,60 мас.% или менее и кислород 0,15 мас.% или менее, титан и неизбежные примеси - остальное.

Изобретение относится к производству удлиненных изделий из титана, или титанового сплава, или заготовок таких изделий. Для повышения качества изделий и упрощения их производства заявлен способ, который заключается в подготовке массы титана или титанового сплава (10), плавке этой массы посредством электрической дуги и способом гарнисажной плавки (20), литье одного или нескольких слитков преимущественно цилиндрической формы и диаметра менее 300 мм из расплавленной массы (30), а затем волочении одного или нескольких из этих слитков при температуре 800°С-1200°С посредством волочильного стана (40) для применения, например, в области авиации.
Изобретение относится к порошковой металлургии, в частности к интерметаллидному сплаву на основе системы алюминий-титан , который может быть использован при производстве изделий и покрытий, в частности в производстве лопаток газотурбинных двигателей, клапанов моторов, вентиляторов для горячих газов. Предварительно производят механическую активацию порошка алюминия в количестве 25 мас.% и порошка титана в количестве 75 мас.%. Полученную смесь уплотняют, осуществляют ее нагрев высокочастотным электромагнитным полем до температуры 1200-1400°C и последующую выдержку. Обеспечивается получение монофазного интерметаллидного сплава заданного состава с однородным распределением структурных составляющих. 1пр.
Наверх