Управляемый магнитный подшипник на постоянных магнитах и способ управления им



Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им
Управляемый магнитный подшипник на постоянных магнитах и способ управления им

 


Владельцы патента RU 2563884:

Вавилов Вячеслав Евгеньевич (RU)

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках, и может быть использовано для управления положением ротора в магнитных подшипниках. Технический результат: снижение массогабаритных показателей, повышение надежности. Управляемый магнитный подшипник на постоянных магнитах содержит вал, корпус, подвижный и неподвижный постоянные магниты, страховочные подшипники. Неподвижный постоянный магнит выполнен в виде секторов, формирующих окружность. Между соседними секторами постоянных магнитов установлены теплоизоляционные прокладки. К каждому сектору приложен управляемый источник тепла. Управление параметрами магнитного подшипника на постоянных магнитах осуществляется путем изменения их остаточной индукции и коэрцитивной силы за счеёт воздействия на постоянные магниты регулируемым тепловым потоком. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках, и может быть использовано для управления положением ротора на магнитных подшипниках на постоянных магнитах в тихоходных системах.

Известен механизм с магнитным подвесом ротора (а.с. СССР №1569932, Н02К 7/09, 1990 г.), в котором каждый канал системы содержит датчик положения ротора, пропорционально-интегрально-дифферснциальный регулятор, силовой преобразователь и два электромагнита.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известна конструкция системы управления магнитным подшипником (патент РФ №2181922 C2, H02P 6/16, H02K 7/09, H02K 29/06.2002.04.27), каждый канал управления которой содержит датчик положения ротора, силовой преобразователь, два электромагнита, причем обмотки электромагнитов подключены к силовому преобразователю, каждый канал которого снабжен интегральным регулятором и форсирующим регулятором второго порядка, причем выход интегрального регулятора соединен с прямым входом форсирующего регулятора второго порядка, выход которого соединен с входом силового преобразователя, а выход датчика положения ротора соединен с инверсными входами обоих регуляторов.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известна конструкция магнитного подшипника (патент РФ 2246644 C1 F16C 32/04, 2005.02.20), в которой модуль управления содержит формирователь вектора радиального перемещения ротора, соединенный выходом через блок динамической обработки сигнала радиального отклонения с входом формирователя управляющих токов в обмотках управления радиальной опоры, который выходами подключен ко входам соответствующих усилителей мощности канала стабилизации радиального положения ротора, выходы которых являются первыми управляющими выходами модуля управления, блок контроля процесса управления, выполненный с возможностью передачи управляющей информации в систему автоматического управления машины, выпрямитель напряжения выходами соединен через емкостный фильтр со входами регулятора напряжения и источника вторичного электропитания, выполненного с возможностью подключения к выводам электропитания всех блоков модуля управления, причем один из выходов емкостного фильтра и выход регулятора напряжения являются третьими управляющими выходами модуля управления, при этом входы формирователя вектора радиального перемещения ротора являются первыми информационными входами модуля управления, а формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора по осям в радиальных направлениях.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известен способ управления неустойчивостью в гидродинамических подшипниках (патент РФ №2399803, F16C 17/02, 08.06.2005), по которому управления неустойчивостью гидродинамических подшипников, включающих гидродинамические подшипники, используемые в узлах высокоскоростных роторов или валов, включающий использование магнитного подшипника в комбинации с гидродинамическим подшипником, причем гидродинамический подшипник используют в качестве подшипника, воспринимающего основную нагрузку, а магнитный подшипник используют в качестве средства управления неустойчивостью в гидродинамическом подшипнике.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известен магнитный подшипник (патент РФ №2089761 С1, F16C 32/04, 10.09.1997), содержащий вал, ротор из двух колец из постоянного магнита, намагниченный в осевом направлении, статор, включающий полюсный элемент и две кольцевые катушки. В осевом зазоре между кольцами ротора установлен кольцевой диск из немагнитного материала с высокой электропроводностью.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известен упорный магнитный подшипник с подмагничиванием постоянным магнитным полем смещения (патент РФ №2138706 C1, F16C 32/04, F16C 39/06, 27.09.1999), содержащий вращающийся элемент (или вал) с ободом (или опорным участком) кольцевой формы, находящимся между парой зубцов подковообразного управляющего элемента. Постоянным магнитом создается магнитное поле, распространяющееся через нависающую консоль и порождающее силу притяжения между подмагниченными поверхностью консоли и верхней торцевой поверхностью вала. Эта смещающая сила притяжения поддерживает вал в равновесии так, что обод находится между поверхностями пары зубцов и равноудален от них. Внутри подковообразного управляющего элемента вокруг вала намотаны обмотки.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известна опора (патент РФ №2178243 С2, H05H 1/00, 10.01.2002), содержащая установленный в корпусе цилиндрический аксиально намагниченный магнит, размещенную на роторе соосно ферромагнитную втулку, расположенную напротив нижнего торца магнита, и кольцевую камеру с демпфирующей жидкостью. Камера снабжена внутри радиально подвижным кольцевым элементом, подвешенным на гибких нитях и состоящим из внутреннего ферромагнитного кольца и связанного с ним наружного немагнитного кольца.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Известен способ управления постоянным магнитом (патент РФ 2416835 C2, H01F 7/02, 2010), по которому управляют полем постоянного магнита путем изменяемой магнитной проницаемости зазора между его полюсами, включающий постоянный магнит, к полюсу или обоим полюсам которого приставляют управляющие катушки с замкнутыми ферромагнитными сердечниками и через которые пропускают ток или его импульсы нужной амплитуды и нужной полярности, при этом происходит намагничивание (насыщение) замкнутых ферромагнитных сердечников, изменяющих сопротивление в магнитной цепи постоянного магнита.

Недостатком данного способа являются ограниченные функциональные возможности, обусловленные управлением только внешним магнитным полем, сложность технической реализации и низкая надежность.

Известен способ управления магнитным потоком, создаваемым постоянным магнитом, и устройство для его осуществления (патент РФ 2092922 C1, H01F 007/04), по которому управляющий магнитный поток формируют таким образом, что вектор плотности его перпендикулярен вектору плотности магнитного потока, создаваемого в магнитном шунте постоянным магнитом, магнитный шунт выполняют из изотропного по магнитоэлектрическим параметрам, например по магнитной проницаемости, магнитной индукции насыщения и удельному электрическому сопротивлению материала, и, изменяя величину управляющего магнитного потока путем регулирования магнитного сопротивления магнитного шунта, управляют магнитным потоком.

Недостатком данного способа являются ограниченные функциональные возможности, обусловленные невозможностью управления положением ротора в магнитных подшипниках на постоянных магнитах, сложность технической реализации и низкая надежность.

Известно устройство магнитной левитации и контроля гибридного магнитного подшипника (заявка на патент US 2012/0139375 A1, кл. H02K 7/09, 2012 г.), содержащее ротор, датчики положения ротора, П-образный кольцевой электромагнит, в полюсах которого имеются вставки из двух радиально намагниченных постоянных магнитов прямоугольной формы и одного аксиально намагниченного постоянного магнита прямоугольной формы.

Недостатком данной конструкции являются сложность ее технической реализации, повышенные массогабаритные показатели системы и низкая надежность, вызванная использованием электромагнитов.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является радиальный подшипник на магнитной подвеске (патент РФ 2264565 C2, F16C 32/04, 20.11.2005), содержащий вал, корпус, кольцевые постоянные магниты, страховочные радиальные механические подшипники, торцевой подшипник, наружные и внутренние кольца кольцевых постоянных магнитов.

Недостатками данного устройства являются повышенные массогабаритные показатели электрической машины, вызванные способом установки механических подшипников, и ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Задача изобретения - расширение функциональных возможностей, благодаря введению возможности управления положением ротора в магнитных подшипниках на постоянных магнитах без участия электромагнитов или других типов подшипников, минимизация массогабаритных показателей, повышение надежности и энергоэффективности.

Техническим результатом является энергоэффективный управляемый магнитный подшипник на постоянных магнитах с минимальными массогабаритными показателями и повышенной надежностью.

Поставленная задача решается и указанный результат достигается тем, что в магнитном подшипнике на постоянных магнитах, содержащем вал, корпус, подвижный и неподвижный постоянные магниты, страховочные подшипники, согласно изобретению неподвижный постоянный магнит выполнен в виде секторов, формирующих окружность, при этом между соседними секторами постоянных магнитов установлены теплоизоляционные прокладки, причем к каждому сектору приложен управляемый источник тепла.

Поставленная задача решается и указанный результат также достигается тем что согласно изобретению управление параметрами магнитного подшипника на постоянных магнитах осуществляется путем изменения остаточной индукции и коэрцитивной силы секторов постоянных магнитов благодаря воздействию на постоянные магниты регулируемым тепловым потоком.

Сущность изобретения поясняется чертежами. На фиг.1 изображен вид спереди управляемого магнитного подшипника на постоянных магнитах. На фиг.2 изображен вид сбоку теплоизоляционной втулки. На фиг.3 изображен разрез управляемого магнитного подшипника на постоянных магнитах. На фиг.4 изображена зависимость остаточной индукции от температуры для магнитов марки NdFeB.

Предложенное устройство содержит: корпус 1 (фиг.1), в котором установлен неподвижный постоянный магнит, выполненный в виде секторов, формирующих окружность 2, запрессованных в радиальные окна 3, теплоизоляционной втулки 4 с осевыми окнами 5 (фиг.2), в осевых окнах 5 установлены управляемые источники тепла 6 (фиг.3), электрически соединенные с системой управления 7, электрически соединенной с датчиками положения ротора 8 (фиг.3), вал 9, на котором установлены подвижные постоянные магниты 10 и концентрично валу 9 с зазором расположены страховочные подшипники 11, причем неподвижный постоянный магнит, выполненный в виде секторов, формирующих окружность 2, установлен относительно подвижного постоянного магнита 10 концентрично одноименными полюсами.

Управляемый магнитный подшипник на постоянных магнитах работает следующим образом: при вращении вала 9 возникает эксцентриситет между неподвижным постоянным магнитом, выполненным в виде секторов, формирующих окружность 2, и подвижным постоянным магнитом 10. При эксцентриситете возникает неравномерность магнитной индукции в воздушном зазоре и сил между неподвижным постоянным магнитом, выполненным в виде секторов, формирующих окружность 2, и подвижным постоянным магнитом 10, которые зависят от остаточной индукции постоянных магнитов. Величина эксцентриситета определяется датчиками положения ротора 8 и передается в систему управления 7, которая подает управляющий сигнал на управляемые источники тепла 6, воздействие которых либо снижают, либо повышают остаточную индукцию определенного сектора неподвижного постоянного магнита, выполненного в виде секторов, формирующих окружность 2, благодаря чему вал 9 возвращается в концентричное положение.

Пример конкретной реализации способа

Зависимость остаточной индукции и коэрцитивной силы от температуры описывается выражениями

где Br(Т), HC(T) - действующие значения остаточной индукции и коэрцитивной силы постоянного магнита соответственно;

Br(Т), HC(T) - значения остаточной индукции и коэрцитивной силы постоянного магнита, указанные в технических характеристиках соответственно;

ТВПМ - температура постоянного магнита;

kBr - температурный коэффициент остаточной индукции постоянного магнита;

kHc - температурный коэффициент коэрцитивной силы постоянного магнита.

Силы отталкивания постоянных магнитов зависят от индукции в воздушном зазоре между ними:

где F - силы отталкивания;

Bz - индукция в воздушном зазоре;

µ0 - магнитная проницаемость вакуума;

S - площадь внешней поверхности постоянных магнитов.

Индукция в зазоре между постоянными магнитами определяется выражением

где Br - остаточная индукция постоянных магнитов; x, y, z - соответственно координаты точки, в которой рассчитывается магнитная индукция; l - осевая длина постоянных магнитов; b = π q 1 R 1 180 + π ( 360 q 2 ) R 1 180 - длина дуги постоянного магнита; R1 - радиус окружности постоянного магнита; q1, q2 - дуги сектора.

Таким образом, из выражений (1)-(4) видно, что при повышении температуры остаточная индукция постоянного магнита изменяется, а следовательно, и изменяются силы отталкивания в зазоре между постоянными магнитами.

При смещении вала с подвижным постоянным магнитом марки NdFeB SH38 на 30% силы отталкивания на стороне уменьшения воздушного зазора увеличиваются на 25%. Величина смещения измеряется датчиками положения ротора, например вибродатчиками DS1, производства компании ТИК г. Пермь, и передается в блок управления, который изменяет температуру управляемого источника тепла, выполненного в виде электронагревателя со спиралью на 10 градусов, что приводит к изменению температуры неподвижного постоянного магнита марки NdFeB SH38, при этом остаточная индукция неподвижного постоянного магнита марки NdFeB SH38, фиг.4, снижается на 10%, что приводит к снижению силы отталкивания и стабилизации вала, теплоизоляционная втулка предохраняет соседние постоянные магниты от повышения температуры, и их остаточная индукция остается неизменной.

Таким образом, осуществляется управление положением вала в магнитных подшипниках на постоянных магнитах.

Итак, заявляемое изобретение позволяет расширить функциональные возможности благодаря введению возможности управления положением ротора в магнитных подшипниках на постоянных магнитах без участия электромагнитов или других типов подшипников, минимизировать массогабаритные показатели и повысить надежность и энергоэффективность магнитного подшипника на постоянных магнитах.

В результате повышается энергоэффективность и надежность управляемого магнитного подшипника на постоянных магнитах и минимизируются массогабаритные показатели.

1. Управляемый магнитный подшипник на постоянных магнитах, содержащий вал, корпус, подвижный и неподвижный постоянные магниты, страховочные подшипники, отличающийся тем, что неподвижный постоянный магнит выполнен в виде секторов, формирующих окружность, при этом между соседними секторами постоянных магнитов установлены теплоизоляционные прокладки, причем к каждому сектору приложен управляемый источник тепла.

2. Способ управления управляемым магнитным подшипником на постоянных магнитах, отличающийся тем, что управление параметрами магнитного подшипника на постоянных магнитах осуществляется путем изменения их остаточной индукции и коэрцитивной силы благодаря воздействию на постоянные магниты регулируемым тепловым потоком.



 

Похожие патенты:

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик, повышение надежности работы, повышение ресурса электромашины.

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат: повышение ресурса электромашины, увеличение окружной скорости индуктора, уменьшение трения в подшипниках.

Изобретение относится к области электротехники и может быть использовано для торможения ротора электромеханического преобразователя энергии на магнитных подшипниках.

Изобретение относится к электротехнике. Технический результат состоит в снижении потерь в подшипнике и улучшении эффективности работы осевого канала.

Изобретение относится к области электромашиностроения и может быть использовано в качестве подвеса ротора электрических машин. Технический результат: повышение срока службы, энергоэффективности системы.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик устройства за счет увеличения окружной скорости индуктора, повышение надёжности.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Технический результат: повышение надежности, энергоэффективности, силовых характеристик и жесткости гибридного магнитного подшипника, минимизация нагрузок на гибридные магнитные подшипники.

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках.

Изобретение относится к области электромашиностроения и может быть использовано в качестве источников электрической энергии автономных систем электроснабжения.

Изобретение относится к области электротехники и может быть использовано, например, в шпиндельных узлах металлорежущих станков с высокой частотой вращения. Технический результат заключается в повышении несущей способности и жёсткости подшипниковых узлов, повышении эффективности охлаждения обмотки и сердечника статора, а также улучшении массогабаритных показателей и повышении надёжности.

Изобретение относится к области электромашиностроения и может быть использовано в различных установках с высокоскоростным электрическим приводом рабочего органа, в частности, в условиях вакуума.

Изобретение касается магнитного радиального подшипника и способа управления такого рода магнитным радиальным подшипником. Подшипник включает в себя статор (4), который имеет первую катушку (S1), вторую катушку (S2), третью катушку (S3) и четвертую катушку (S4), из которых первая катушка (S1) и третья катушка (S3) находятся на первой оси (Y), а также вторая (S2) и четвертая (S4) катушки - на второй оси (X) напротив друг друга.

Изобретение относится к устройству магнитного осевого подшипника с повышенным усилием на единицу поверхности и простой конструкцией. Устройство магнитного осевого подшипника включает в себя кольцевую систему листов электротехнической стали, у которой отдельные листы (80, 90, 170) стали выдаются радиально наружу, а соседние листы (80, 90, 170) стали в окружном направлении образуют зазор (20).

Изобретение относится к области магнитных опор на основе объемных высокотемпературных сверхпроводников (ВТСП) для кинетических накопителей энергии. Сверхпроводящий магнитный подвес для кинетического накопителя энергии (КНЭ) установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, и включает в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора.

Изобретение относится к машиностроению, а именно к бесконтактным опорным устройствам с электромагнитными подшипниками для энергетических установок. Магнитная опора ротора турбомашины включает в себя корпус (1) с установленными в нем радиальным активным магнитным подшипником (2) и осевым электромагнитом (3), страховочный шариковый подшипник (4), установленный на валу (5) и закрепленный внешним кольцом (6) в корпусе (7).

Изобретение относится к области электромашиностроения и может быть использовано в качестве подвеса ротора электрических машин. Технический результат: повышение срока службы, энергоэффективности системы.

Изобретения относятся к области машиностроения, в частности к управляемому газомагнитному подшипниковому узлу и способу его работы. Подшипниковый узел содержит соленоид, магниты, полюса и ярма электромагнитов, вкладыш газового подшипника, отверстия для пористых вставок, рубашку, обмотку электромагнитов, камеру для подачи газовой смазки в пористые вставки, крепления для датчиков измерения зазора, отверстие для подачи газовой смазки в камеру.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Технический результат: повышение надежности, энергоэффективности, силовых характеристик и жесткости гибридного магнитного подшипника, минимизация нагрузок на гибридные магнитные подшипники.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Гибридный магнитный подшипник с осевым управлением содержит вал (1), корпус (2), радиальную магнитную опору, статор и ротор осевой электромагнитной опоры, страховочные механические подшипники (15) и четыре датчика перемещения (6, 8, 10, 12).

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок замкнутого цикла большой мощности.

Изобретение относится к области электротехники и может быть использовано в роторных механизмах на электромагнитных опорах. Техническим результатом является повышение быстродействия и динамической точности электромагнитного подвеса ротора. В системе управления электромагнитным подвесом ротора каждый канал содержит датчик (1) положения ротора, интегральный регулятор (2), пропорциональный регулятор (3), дифференцирующее звено (4), пропорционально-дифференциальный регулятор (5), силовой преобразователь (6), два электромагнита (7 и 8), блок (9) задания, пропорциональное звено (10), блоки (11 и 12) вычитания, блок (13) выделения знака, регистр (14), сумматор (15) и мультиплексор (16). 4 ил. .
Наверх