Способ тепловакуумных испытаний космического аппарата


 


Владельцы патента RU 2564056:

Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") (RU)

Изобретение относится к области космической техники, а именно к наземной отработке теплового режима космических аппаратов. Способ тепловакуумных испытаний космического аппарата заключается в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, и воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков. На КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете. Температуру определяют тепловым расчетом без учета внутреннего теплового нагружения КА. Одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры. Техническим результатом изобретения является снижение трудо- и энергозатрат с одновременным получением результатов с необходимой степенью достоверности. 1 ил.

 

Техническое решение относится к области космической техники, а более конкретно к наземной отработке теплового режима космических аппаратов преимущественно микро- и малого класса, корпус которых образован тепловыми сотопанелями.

Накопленный за последние несколько десятилетий опыт определения внешних тепловых потоков, расчетов теплового режима КА, результаты которых показывают хорошую сходимость с данными летных испытаний, дает основание предложить новый подход к проведению тепловакуумных испытаний (ТВИ), отличающийся от традиционного существенным снижением трудо- и энергозатрат.

Широко известны способы тепловакуумных испытаний КА в вакуумной камере с криоэкранами с имитацией внешних воздействий, заключающиеся в вакуумировании камеры до давления, исключающего конвективный теплообмен в камере, захолаживании криоэкранов для имитации холода окружающего космического пространства и облучении наружных поверхностей КА тепловым потоком от имитатора солнечного излучения. Указанные способы испытаний и устройства для их осуществления описаны как в научно-технической литературе (см. Моделирование тепловых режимов КА и окружающей его среды. Под ред. академика Петрова Г.И., 1971 г.; О.Б. Андрейчук, Н.Н. Малахов. Тепловые испытания космических аппаратов. Машиностроение, 1982), так и в источниках патентной информации (см. патент РФ 2208564, B64G 7/00, 2003 г. Способ тепловакуумных испытаний и устройство для его реализации; патент РФ 2302984, B64G 7/00, 2007 г. Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов).

Известные способы ТВИ решают задачу повышения достоверности имитации внешних тепловых потоков при наземной отработке теплового режима КА, а следовательно, и увеличения точности тепловакуумных испытаний.

К недостаткам способов испытаний следует отнести большие трудозатраты и энергозатраты, обусловленные:

- большим расходом дорогостоящего жидкого азота при захолаживании криоэкранов;

- длительным временем выхода вакуумной камеры на низкий температурный режим;

- высокой стоимостью имитатора солнечного излучения и его значительным энергопотреблением.

Целью предложенного технического решения является устранение указанных недостатков, а именно снижение трудо- и энергозатрат при обеспечении необходимой степени достоверности ТВИ.

Поставленная цель достигнута тем, что в способе тепловакуумных испытаний космического аппарата, заключающемся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков, размещенного в вакуумной камере, на КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете, причем температура определена тепловым расчетом без учета внутреннего теплового нагружения КА, при этом одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры.

Сущность предложенного технического решения заключается в следующем.

Перед проведением ТВИ поверочным расчетом теплового режима КА определяют среднерадиационное значение равновесных температур внешних поверхностей КА на условия воздействия натурных внешних тепловых потоков для экстремальных в тепловом отношении режимов эксплуатации - «переохлаждения» и «перегрева». Указанный расчет проводится без учета внутреннего теплового нагружения КА, т.е. тепловыделение бортовой аппаратуры принимается равным нулю.

Начальный этап испытаний по предложенному способу не отличается от традиционного - изделие (КА) помещают в камеру, которую начинают вакуумировать до давления, исключающего конвективный теплообмен (например, до давления 10-5 Па).

При этом в камере размещен имитатор внешних тепловых потоков, представляющий собой экран, внутри которого устанавливают испытываемый КА. На указанном экране поддерживают предварительно определенное среднерадиационное значение равновесных температур КА для одного из режимов эксплуатации - «переохлаждения» или «перегрева».

Среднерадиационная равновесная температура для большинства КА, совершающих орбитальный околоземный полет, находится в пределах от 0 до ~ минус 50°C, что существенно выше, чем температура охлаждаемых жидким азотом криоэкранов - минус 160 - минус 180°C, используемых в известных способах испытаний. В предложенном способе ТВИ экран (имитатор внешних тепловых потоков) охлаждается широко применяемыми в наземных холодильных установках холодоносителями - фреонами, антифризами, аммиаком и т.п.

На внешней поверхности экрана устанавливают экранно-вакуумную теплоизоляцию, которая уменьшает тепловые потери и обеспечивает стабильное значение необходимой температуры.

Одновременно с вакуумированием камеры и захолаживанием экрана включают с помощью наземной контрольно-проверочной аппаратуры бортовые приборы КА, энергопотребление (тепловыделение) которых соответствует одному из режимов эксплуатации, а также и испытаний - «переохлаждения» или «перегрева».

Функционирование приборов обуславливает нагрев конструкции КА, в том числе и внешних поверхностей, с которых тепловой поток излучением сбрасывается на экран - имитатор внешних тепловых потоков. При этом между экраном и поверхностью КА устанавливается равновесное состояние, обеспечиваемое работой холодильной установки, которая поддерживает на экране рассчитанную ранее равновесную температуру (т.е. отводит тепловыделение приборов КА).

Каждый из режимов испытаний проводят до стационарного состояния, характеризуемого неизменностью контролируемых в определенных зонах КА значений температур. По полученным в процессе ТВИ данным делается вывод об обеспечении теплового режима КА и допуске его к натурным испытаниям.

Следует отметить, что, по мнению авторов, предложенный способ тепловакуумных испытаний наиболее приемлем для КА микро- и малого класса массой до 102 кг и энергопотреблением до 102 Вт. Конструкция КА предпочтительно должна быть образована тепловыми сотопанелями с хорошей тепловой связью между ними, а наружные поверхности КА, кроме радиационного теплообменника и необходимых поверхностей внешних агрегатов (антенн, приемопередающих устройств), теплоизолированы.

Предложенное техническое решение поясняется схемой стенда для тепловакуумных испытаний КА, на которой введены обозначения:

1 - вакуумная камера;

2 - экран-имитатор внешних тепловых потоков;

3 - космический аппарат;

4 - система вакуумирования камеры;

5 - холодильная установка;

6 - контрольно-проверочная аппаратура с системой измерений;

7 - теплоизоляция экрана.

Таким образом, предложенным способом тепловакуумных испытаний осуществлено моделирование теплового режима КА, по внешнему воздействию эквивалентное воздействию на КА натурных тепловых потоков, с помощью имитатора внешних тепловых потоков, который воспроизводит среднюю равновесную температуру внешних поверхностей КА в орбитальном полете, предварительно определенную тепловым расчетом.

Положительный эффект предложенного способа тепловакуумных испытаний заключается в существенном снижении материальных, трудо- и энергозатрат с одновременным получением результатов с необходимой достоверностью.

Способ тепловакуумных испытаний космического аппарата (КА), заключающийся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков, размещенного в вакуумной камере, отличающийся тем, что на КА воздействуют созданной имитатором внешних тепловых потоков температурой, эквивалентной среднерадиационному значению равновесных температур внешних поверхностей КА в орбитальном полете, причем температура определена тепловым расчетом без учета внутреннего теплового нагружения КА, при этом одновременно воспроизводят внутреннее тепловое нагружение КА, соответствующее штатной циклограмме энергопотребления КА в орбитальном полете, которое осуществляют включением приборов КА с помощью наземной контрольно-проверочной аппаратуры.



 

Похожие патенты:

Изобретение относится к экспериментальной технике и может быть использовано для теплопрочностных статических испытаний конструкций летательных аппаратов, в частности к средствам, обеспечивающим воспроизведение нестационарных температурных полей в испытываемых конструкциях воздушно-космических самолетов (ВКС).

Изобретение относится к наземным испытаниям, в т.ч. при изготовлении космических аппаратов (КА).

Изобретение относится к тепловым имитационным стендам для испытаний аппаратуры космических аппаратов, выводимых на околоземную орбиту. Стенд содержит малогабаритную вакуумную камеру (ВК) с криогенным и соосным ему дополнительным экранами.

Изобретение относится к учебным пособиям для наглядной имитации движения природных и искусственных небесных тел. Устройство содержит стальной шар (1), имитирующий астероид, круговой желоб (2) и подвижное основание (4), имитирующее космический аппарат (КА).

Изобретение относится преимущественно к наземным испытаниям и отработке системы терморегулирования (СТР) космического аппарата. Согласно изобретению, заблаговременно определяют недостающее количество теплоносителя в системе, состоящей из имитатора СТР и модуля полезной нагрузки (ПН).

Изобретение относится к космической технике и может быть использовано для изготовления космического аппарата (КА). Изготавливают комплектующие, собирают КА из системы электропитания с солнечными и аккумуляторными батареями (САБ), стабилизированным преобразователем с зарядным и разрядным преобразователями, модуля служебных систем, полезной нагрузки, проводят электрические испытания КА на функционирование, термовакуумные, заключительные с применением имитаторов САБ, подключенных к промышленной сети через систему гарантированного электроснабжения с блокированием работы зарядных преобразователей стабилизированного преобразователя напряжения системы электропитания наземными средствами либо работающих по зарядному интерфейсу без рекуперации энергии заряда в промышленную сеть, проводят испытания на воздействие механических нагрузок и на контроль стыковки солнечных и аккумуляторных батарей с применением штатных аккумуляторных и солнечных батарей.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР содержит два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, которые размещены рядом друг с другом в сотовых панелях (или на них).

Изобретение относится к электропитанию космических аппаратов (КА), в частности телекоммуникационных КА. Способ включает сборку КА, в т.ч.

Изобретение относится к области космической техники и может применяться для тренажерной подготовки экипажей пилотируемых космических аппаратов, а также авиационных и морских комплексов.
Изобретение относится к космической медицине, в частности к способам моделирования эффектов пониженной гравитации в экспериментальных исследованиях. Способ включает перевод человека на период дневного бодрствования в ортостатическое положение с положительным углом наклона тела относительно горизонтальной оси.

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации. Способ тепловакуумных испытаний характеризуется наличием дистанционно перемещаемого ППКЭ с пространственно изменяемой геометрией формы. ППКЭ обеспечивает вариантное, дифференцированное криостатирование отдельных элементов и узлов КА. Техническим результатом изобретения является повышение скорости выхода испытательной установки на режим, достижение более низких температур для локальных участков испытываемого аппарата. 2 н.п. ф-лы, 3 ил.

Изобретение относится к космической технике и может быть использовано при проектировании стендов для наземных испытаний трансформируемых конструкций космических аппаратов, раскрывающихся в двух плоскостях, типа батареи солнечной (БС), с максимальным приближением к условиям невесомости. Панель БС и технологическая рама связаны между собой с обеспечением свободы перемещения в продольном направлении относительно друг друга в месте связи. Центр масс сборки «технологическая рама с балансировочным грузом + панель БС без подкосов» совпадает с осью вращения технологической рамы с балансировочным грузом. Вторые звенья подкосов панели БС шарнирно закреплены на вертикальной ферме стенда. Компенсатор выполнен в виде груза, вес которого должен быть таким, чтобы создать вращающий момент, компенсирующий работу сил тяжести звеньев раскладывающихся подкосов. Техническим результатом изобретения является упрощение конструкции стенда и создание условий максимального приближения процесса раскрытия панелей БС в наземных условиях к условиям невесомости. 2 ил.
Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции содержит рабочее место оператора, средства имитации и визуализации реальных условий проведения исследований, графическую станцию, джойстики интерактивного управления объектами, соединенные определенным образом. Графическая станция содержит по меньшей мере два монитора отображения закабинной обстановки, нашлемную систему отображения с очками с OLED матрицей и магнитным датчиком позиционирования. Обеспечивается повышение уровня и качества обучения. 2 з.п. ф-лы.

Изобретение относится к области испытаний оптико-электронных и оптико-механических устройств и касается вакуумно-криогенного стенда. Стенд включает в себя вакуумно-криогенную камеру, охлаждаемые радиационные экраны, универсальный и динамический источники излучения, коллиматор, поворотное и ломающие зеркала, спектрорадиометр, систему криогенного обеспечения, систему вакуумирования, модуль канала оптического фона и интерферометр сдвига. При этом охлаждаемые внутрикамерные функциональные оптико-механические устройства выполнены в виде отдельных модулей, установленных в собственных секциях вакуумно-криогенной камеры, имеющих свои охлаждаемые экраны и собирающихся по мере необходимости в единый функционирующий имитационно-испытательный блок. Технический результат заключается в уменьшении габаритов, сокращении пускового периода и уменьшении энергопотребления устройства. 2 ил.
Наверх