Двигатель на основе эффекта холла с регулируемой температурой устройства нагрева катода



Двигатель на основе эффекта холла с регулируемой температурой устройства нагрева катода
Двигатель на основе эффекта холла с регулируемой температурой устройства нагрева катода

 


Владельцы патента RU 2564733:

СНЕКМА (FR)

Изобретение относится к реактивному двигателю (1) на основе эффекта Холла. Двигатель содержит разрядный канал (50) с открытым, нижним по потоку концом (52), катод (100), расположенный снаружи разрядного канала (50), инжекционную систему (30) для инжекции атомов газа в разрядный канал (50), которая расположена на верхнем по потоку конце разрядного канала (50) и которая формирует анод, и нагреватель (60) для нагрева катода (100). Реактивный двигатель (1) также содержит измерительные средства (70) для измерения температуры Td нагревателя (60) и цепь регулятора (80) для регулирования температуры Td таким образом, чтобы нагреватель (60) осуществлял нагрев, только пока его температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя, и прекращал нагрев сразу после достижения пороговой температуры Ts. Использование изобретение позволяет повысить срок работы катода и срок эксплуатации ракетного двигателя. 2 н. и 5 з.п. ф-лы, 2 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к реактивному двигателю на основе эффекта Холла, имеющему разрядный канал с открытым нижним по потоку концом, катод, расположенный снаружи разрядного канала, инжекционную систему для инжекции атомов газа в разрядный канал, расположенную на верхнем по потоку конце разрядного канала и образующую анод, и нагреватель для нагрева катода.

Уровень техники

Реактивный двигатель на основе эффекта Холла представляет собой плазменный ракетный двигатель, используемый, например, для создания тяги в космическом пространстве, поскольку он дает возможность объектам перемещаться в космическом вакууме с меньшим потреблением топлива по сравнению с двигателями, использующими принцип сгорания топлива, причем он также обладает более длительным сроком эксплуатации - несколько тысяч часов.

Поскольку реактивный двигатель на основе эффекта Холла относится к известным устройствам, его конструкция и его рабочие принципы кратко приведены ниже.

На фиг.2 показано трехмерное изображение и частичный разрез реактивного двигателя на основе эффекта Холла.

Вокруг центрального сердечника 10, который расположен вдоль продольной оси А, намотана центральная магнитная обмотка 12.

Кольцевая внутренняя стенка 20 окружает центральную магнитную обмотку 12 и центральный сердечник 10.

Внутренняя стенка 20 окружена внешней стенкой 40 кольцевой формы таким образом, что эти стенки образуют кольцевой канал, ориентированный вдоль оси А и называемый разрядным каналом 50.

В приведенном ниже описании термин "внутренний" означает часть, которая расположена ближе к оси А, а термин "внешний" обозначает часть, которая расположена на расстоянии от оси А.

Верхний по потоку конец разрядного канала 50 закрыт инжекционной системой 30, которая инжектирует атомы газа в разрядный канал 50 и которая образует анод. Нижний конец 52 разрядного канала 50 открыт.

Набор периферийных магнитных обмоток 14 расположен вокруг внешней стенки 40.

Центральная магнитная обмотка 12 и периферийные магнитные обмотки 14 служат для генерирования радиального магнитного поля В, напряженность которого максимальна вблизи нижнего по потоку конца 52 разрядного канала 50.

Полый катод 100 расположен снаружи относительно внешней стенки 40. Разность потенциалов устанавливается между катодом 100 и анодом (инжекционная система 30). Полый катод 100 расположен таким образом, чтобы испускать электроны вблизи нижнего по потоку конца 52 разрядного канала 50.

Внутри разрядного канала 50 эти электроны направляются в сторону инжекционной системы 30 под действием электрического поля, которое генерируется разностью потенциалов между катодом 100 и анодом, однако некоторые из этих электронов захватываются магнитным полем вблизи нижнего по потоку открытого конца 52 разрядного канала 50.

Таким образом, в разрядном канале 50 вблизи его нижнего по потоку открытого конца 52 электроны вынуждены описывать круговые траектории.

В результате столкновений с атомами инертного газа (как правило, с ксеноном Xe), который протекает по разрядному каналу 50 в направлении потока, электроны ионизируют атомы, создавая плазму. Кроме того, эти электроны создают осевое электрическое поле Е, которое ускоряет ионы, движущиеся от анода (инжекционная система 30 в нижней части канала 80) к нижнему по потоку открытому концу 52. Поскольку эти ионы выпускаются с очень высокой скоростью из разрядного канала 50 через его открытый конец 52, то создается реактивная тяга двигателя.

Запуск ракетного двигателя требует предварительного разогрева катода 100 нагревателем 60 до пороговой температуры, что позволяет катоду осуществлять эмиссию электронов в количестве, необходимом для того, чтобы создать критический ток разряда Icd в разрядном канале 50, причем этот ток должен быть достаточен, чтобы ионизировать атомы инертного газа в разрядном канале. Установление достаточного тока разряда Icd приводит к запуску ракетного двигателя.

В общем случае, достижение этой пороговой температуры достаточно для установления тока разряда Icd.

При определенных неблагоприятных условиях, чтобы установить ток разряда Icd, на катод необходимо подать один или более импульс(ов) напряжения уже после достижения пороговой температуры.

В действительности пороговая температура зависит от внешних условий за пределами ракетного двигателя и, в частности, от температуры вне ракетного двигателя (которая может, например, лежать в диапазоне от -50°C до +70°C).

Чтобы гарантировать запуск ракетного двигателя в любых условиях, продолжительность предварительного нагрева подбирается достаточно длинной для достижения самой высокой пороговой температуры, то есть температуры, соответствующей самым неблагоприятным внешним условиям.

Таким образом, в большинстве случаев при соответствующих условиях, которые благоприятны или не слишком благоприятны, предварительный нагрев продолжается в течение слишком длительных промежутков времени. Это приводит к бессмысленному разогреву катода до слишком высоких температур и его повреждению вследствие этого, а в итоге к сокращению срока эксплуатации ракетного двигателя.

Раскрытие изобретения

Изобретение имеет целью исправление этих недостатков.

Изобретение представляет собой реактивный двигатель на основе эффекта Холла, в котором оптимизирована продолжительность предварительного нагрева катода таким образом, чтобы избежать непродуктивного перегрева при запуске ракетного двигателя вне зависимости от эксплуатационных условий.

Эта цель достигается за счет того, что реактивный двигатель на основе эффекта Холла имеет измерительные средства для измерения температуры нагревателя Td и цепь регулятора для регулирования температуры Td таким образом, чтобы нагреватель выполнял нагрев, пока температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя, и прекращал нагрев сразу после достижения пороговой температуры Ts.

При выполнении этих условий катод не перегревается в течение длительного периода времени после достижения пороговой температуры Ts, которая соответствует температуре, при которой реактивный двигатель в состоянии выполнить запуск. Таким образом, в любых рабочих условиях ракетного двигателя катод нагревается только в течение периода времени, который необходим, чтобы осуществить запуск ракетного двигателя. Это приводит к минимизации степени повреждения катода и удлинению срока эксплуатации реактивного двигателя на основе эффекта Холла.

Изобретение также представляет способ управления реактивным двигателем на основе эффекта Холла, имеющим разрядный канал с открытым нижним по потоку концом, катод, расположенный снаружи разрядного канала, инжекционную систему для инжекции атомов газа в разрядный канал, при этом инжекционная система расположена на верхнем по потоку конце разрядного канала и образует анод, и нагреватель для нагрева катода.

Согласно изобретению способ содержит следующие шаги:

a) нагрев катода с помощью нагревателя с одновременным измерением температуры Td нагревателя:

b) продолжение нагрева катода до тех пор, пока температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя; и

c) прекращение нагрева сразу после достижения пороговой температуры Ts.

Изобретение можно лучше понять, а его преимущества станут более очевидными после ознакомления с приведенным ниже подробным описанием осуществления, которое приведено в форме примера, не ограничивающего возможности осуществления изобретения.

Краткое описание графических материалов

В описании приведены ссылки на приложенные чертежи:

На фиг.1 показана блок-схема последовательности шагов осуществления способа изобретения.

На фиг.2 показан трехмерный вид с частичным разрезом реактивного двигателя на основе эффекта Холла по изобретению, отображающий его общую структуру.

Осуществление изобретения

Общий принцип работы реактивного двигателя на основе эффекта Холла описан выше со ссылкой на фиг.2.

Реактивный двигатель на основе эффекта Холла по изобретению оптимизирован таким образом, чтобы нагревать катод 100 в течение периода времени, необходимого для запуска ракетного двигателя, как это описано ниже.

Таким образом, реактивный двигатель на основе эффекта Холла содержит измерительные средства 70 для измерения температуры Td нагревателя 60 и регулятор 80 для управления температурой Td нагревателя 60.

Ниже приведено описание работы регулятора 80.

На фиг.1 показана блок-схема последовательности шагов для запуска реактивного (ракетного) двигателя на основе эффекта Холла, эти шаги содержат признаки изобретения для запуска ракетного двигателя на основе эффекта Холла.

Последовательность упрощена и не содержит возможные механизмы безопасности, служащие, например, для идентификации возникновения неисправности в процессе эксплуатации в течение периода времени, начиная с запуска ракетного двигателя до его остановки, если потребность в такого рода механизмах существует.

В прямоугольниках описано действие, ромб указывает на выполнение условия, а овале приводится состояние.

Стрелка после условия, направленная вниз, указывает, что результат теста положителен, а стрелка, направленная влево, указывает, что результат теста отрицателен.

Шаги во время запуска являются следующими:

- Шаг S1: включить нагрев катода.

- Шаг S2: открыть инжекционный газовый клапан, находящийся выше по потоку.

- Шаг S3: достигнута ли пороговая температура Ts?

- Шаг S4: открыть инжекционный газовый клапан, расположенный ниже по потоку, чтобы подавать газ в разрядный канал.

- Шаг S5: достигнуто ли критическое значение тока разряда Icd?

- Шаг S6-1: самозажигание ракетного двигателя.

- Шаг S7: прекращение нагрева катода.

- Шаг S6-2: больше ли газовое давление в разрядном канале критического давления Pc?

- Шаг S6-3: подача импульса напряжения на катод.

- Шаг S6-4: достигнуто ли критическое значение тока разряда Icd?

- Шаг S7: остановить или уменьшить нагрев катода.

В начальном состоянии нагреватель 60 включен, чтобы начать нагрев катода 100 (Шаг S1 = Шаг a)).

После этого открывается газовый инжекционный клапан, который расположен выше по потоку (Шаг S2), чтобы подать газ в камеру (не показана) для дальнейшей инжекции атомов в разрядный канал 50.

В течение всего периода времени, когда нагреватель 60 осуществляет нагрев, температуру катода 100 измеряют непрерывно или регулярно через определенный интервал времени для того, чтобы определить момент, когда эта температура достигнет порогового значения Ts (Шаг S3).

На практике измерение температуры катода осуществляется не напрямую.

Измеряется температура Td нагревателя 60, который нагревает катод, и эта температура сравнивается с пороговой температурой Ts, при этом считается, что температуры нагревателя 60 и катода 100, по существу, равны.

Например, нагреватель 60 может быть встроен внутрь катода 100, как это показано на фиг.2.

Нагреватель может также окружать катод 100.

Температура Td нагревателя 60 определяется измерительными средствами 70.

Например, может быть измерено электрическое удельное сопротивление нагревателя 60.

Тогда в качестве измерительных средств 70 используется средства для измерения электрического удельного сопротивления.

Когда нагреватель 60 содержит нагревательный элемент, обеспечивающий нагрев катода 100, измеряемой величиной является электрическое удельное сопротивление элемента нагревателя.

Возможно использование и других средств измерения, например термопар, используемых для измерения температуры нагревателя.

Когда достигается пороговая температура Ts (Шаг b)), расположенный ниже по потоку инжекционный клапан, который находится между камерой, содержащей газ и разрядным каналом 50, открывается таким образом, чтобы подать газ в разрядный канал 50 (Шаг S4).

При определенных условиях этот находящийся ниже по потоку инжекционный клапан заменяют ограничителем, который позволяет газу автоматически проходить от камеры в разрядный канал с ограниченной скоростью потока, и эта скорость потока будет функцией давления в камере.

При таких условиях, если скорость подачи газа при температуре Td нагревателя 60 известна, то инжекционный клапан, находящийся выше по потоку, открывается в момент времени, рассчитываемый таким способом, что когда температура нагревателя 60 достигает пороговой температуры Ts, скорость потока газа через ограничитель достаточна, чтобы выполнить запуск.

Пороговая температура Ts - это температура, которой, как правило, должен достигать катод 100, чтобы двигатель на основе эффекта Холла был в состоянии выполнить запуск. При наличии благоприятных эксплуатационных режимов для ракетного двигателя, когда достигнута пороговая температура Ts, величина тока разряда (потока электронов), испускаемого катодом 100 равна или больше критической величины тока разряда Icd, при котором атомы инертного газа, инжектированные в разрядный канал 50 ионизируются (Шаг S5), что приводит к автоматическому запуску ракетного двигателя (самозажигание ракетного двигателя - Шаг S6-1).

Этот первый режим запуска показан на фиг.1.

Таким образом, пороговая температура Ts является функцией данного критического значения тока разряда Icd.

Пороговая температура Ts зависит от материала, из которого сделан катод.

Реактивный двигатель запускается, когда катод испускает количество электронов, достаточное для достижения тока разряда Icd, то есть критического потока электронов.

Плотность потока электронов, проходящих через единицу поверхности катода под действием заданного напряжения, зависит от материала, из которого изготовлен катод, а также от его формы.

В случае благоприятных эксплуатационных условий для определенных форм катода, изготовленного из гексаборида лантана (LaB6), пороговая температура Ts будет порядка 1700°C.

Когда катод изготовлен из вольфрамовой губки, пропитанной оксидом бария, пороговая температура Ts будет примерно 1300°C.

При определенных неблагоприятных условиях ток разряда, испускаемый катодом 100, не достигает критической величины Icd, в то время как температура катода 100 становится выше пороговой температуры Ts.

Чтобы инициировать запуск двигателя в этом случае, необходимо подать импульс напряжения (Шаг S6-3) на катод 100. Это нужно, чтобы добиться эмиссии как можно большего количества электронов из катода 100 и достижения критического значения тока разряда Icd (Шаг S6-4), чтобы реактивный двигатель автоматически осуществил запуск (Шаг S6-1).

Если после подачи первого импульса эта величина не достигнута, то следует подать второй импульс и, в случае необходимости, последующие импульсы до тех пор, пока не будет достигнута нужная величина тока разряда.

Тем не менее подача такого импульса эффективна только в том случае, когда давление Pg газа в выпускном канале 50 больше критического давления Pc (Шаг S6-2).

В контексте ракетного двигателя на основе эффекта Холла и известного метода давление газа Pg в разрядном канале находится в соотношении с давлением газа в камере, которая расположена рядом выше по потоку и открывается в разрядный канал 50 (см. выше).

Именно давление газа в камере измеряется напрямую.

Поэтому импульсы напряжения подают на катод 100 (Шаг S6-3) только в тот момент, когда выполняется дополнительное условие, которое касается давления газа в разрядном канале 50.

До тех пор, пока давление Pg газа в разрядном канале 50 остается ниже критического давления Pc катод 100 будет продолжать нагреваться, а в разрядный канал 50 будет продолжена подача газа.

Это состояние прекращается либо при достижении критического значения тока разряда Icd, либо при автоматическом запуске ракетного двигателя (Шаг S6-1), либо из-за того, что давление газа Pg в выпускном канале 50 становится больше критического давления Pc, когда импульсы напряжения начинают подаваться на катод (Шаг S6-2).

Этот второй режим запуска показан на фиг.1.

Во всех случаях (первый или второй режим) как только реактивный двигатель запустился, что происходит сразу же после достижения катодом 100 пороговой температуры Ts, нагрев катода 100 отключается или уменьшается (Шаг S7 = Шаг с)).

Таким образом, катод 100 не нагревается, когда в этом нет необходимости, за счет чего срок его службы увеличивается.

Например, реактивный двигатель запускается через несколько десятков секунд после достижения пороговой температуры Ts.

Нагрев катода 100, таким образом, прекращается через период времени от нескольких секунд до нескольких десятков секунд (например, от 5 до 300 с, но преимущественно от 5 до 60 с) после достижения пороговой температуры Ts.

При некоторых условиях второго режима может потребоваться продолжение нагрева катода 100 в течение нескольких минут после того, как реактивный двигатель 1 был запущен. Это касается ситуации, когда реактивный двигатель был запущен до достижения током разряда его критической величины Icd, а давление газа выше по потоку оставалось низким, поскольку были использованы последние запасы газа. Тогда нагрев катода 100 продолжается в течение нескольких минут после запуска реактивного двигателя 1 при увеличении давления газа для того, чтобы эффективно использовать эти последние запасы газа.

Блок-схема на фиг.1 представляет собой пример того, каким образом можно управлять двигателем на основе эффекта Холла в соответствии с изобретением.

Можно использовать различные вариации в последовательности запуска двигателя в зависимости от его типа, при этом без выхода за пределы рамок изобретения или нарушения его сущности.

1. Реактивный двигатель (1) на основе эффекта Холла, содержащий разрядный канал (50) с открытым нижним по потоку концом (52), катод (100), расположенный снаружи разрядного канала (50), инжекционную систему (30) для инжекции атомов газа в разрядный канал (50), которая расположена на верхнем по потоку конце разрядного канала (50) и которая образует анод, и нагреватель (60) для нагрева катода (100), отличающийся тем, что содержит измерительные средства (70) для измерения температуры Td нагревателя (60) и цепь регулятора (80) для регулирования температуры Td таким образом, чтобы нагреватель (60) осуществлял нагрев, только пока его температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя, и прекращал нагрев сразу после достижения пороговой температуры Ts.

2. Реактивный двигатель по п.1, отличающийся тем, что пороговая температура Ts является функцией критической величины тока разряда Icd, испускаемого катодом (100), причем эта величина соответствует условиям запуска реактивного двигателя.

3. Реактивный двигатель по п.1 или 2, отличающийся тем, что температура Td нагревателя (60) определяется по результату измерения электрического удельного сопротивления нагревателя (60).

4. Способ управления реактивным двигателем (1) на основе эффекта Холла, охарактеризованным в п.1, содержащий следующие шаги:
a) нагревают катод (100) с помощью нагревателя (60) с одновременным измерением температуры Td нагревателя (60);
b) продолжают нагрев катода до тех пор, пока температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя; и
c) прекращают нагрев сразу после достижения пороговой температуры Ts.

5. Способ по п.4, отличающийся тем, что пороговая температура Ts является функцией критической величины тока разряда Icd, испускаемого катодом (100), причем эта величина соответствует условиям запуска реактивного двигателя.

6. Способ по п.5, отличающийся тем, что после достижения пороговой температуры Ts нагревателем (60), и в случае, когда величина тока разряда, испускаемого катодом (100), меньше критической величины тока разряда Icd, a давление газа Pg в разрядном канале (50) меньше критического давления Pc, продолжают нагревать катод (100), и продолжают подачу газа в разрядный канал (50).

7. Способ по п.5, отличающийся тем, что после достижения пороговой температуры Ts нагревателем (60), и в случае, когда величина тока разряда, испускаемого катодом (100), меньше критической величины тока разряда Icd, a давление газа Pg в разрядном канале (50) меньше критического давления Pc, подают по меньшей мере один импульс напряжения на катод (100), пока величина тока разряда не станет равной критической величине тока разряда Icd, чтобы обеспечить возможность запуска реактивного двигателя.



 

Похожие патенты:

Изобретение относится к средствам управления электрическими ракетными двигателями с индукционным возбуждением разряда в газоразрядной камере. Устройство генерации ВЧ энергии содержит микроконтроллер (8), усилитель мощности (3) и источник (6) электропитания усилителя мощности.

Изобретение находит использование в спутнике. Электроракетная двигательная установка содержит, по меньшей мере, один электродвигатель (10), систему питания двигателя (10), содержащую резервуар (1) высокого давления для ионизируемого газа, буферный резервуар (2) низкого давления, связанный с резервуаром (1) высокого давления с помощью клапана (5, 6), и систему трубопроводов для передачи газа от буферного резервуара (2) низкого давления к аноду (26) и катоду (40) двигателя.

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем трубопроводом с клапаном, на днище внутри цилиндрической емкости со стороны трубопровода установлена пористая шайба, контактирующая с кристаллическим иодом, причем цилиндрическая емкость со стороны, противоположной трубопроводу, содержит фланец и подпружиненный относительно него поршень, контактирующий с другой стороны с кристаллическим иодом, при этом нагреватель снабжен электрической изоляцией, контактирующей снаружи с днищем емкости со стороны трубопровода.

Изобретение относится к плазменному реактивному двигателю на основе эффекта Холла. Двигатель содержит окружающий основную ось кольцевой выпускной канал, который имеет открытый нижний по потоку конец и ограничен внутренней стенкой и наружной стенкой, катод, магнитный контур для создания магнитного поля в канале, трубопровод для подачи способного к ионизации газа в канал.

Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру, закрепленную на фланце, подпружиненном относительно магнитопровода, фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры.

Изобретение относится к области создания электрических реактивных двигателей. Предлагается электрический ракетный двигатель небольшой мощности в качестве корректирующего для космического аппарата многолетнего использования с применением вместо газообразной составляющей твердого топлива в виде металла высокой плотности, преобразованного в плазменный сгусток, под действием электрического разряда.

Изобретение относится к космической технике и может быть использовано для коррекции космического аппарата (КА) с помощью электрореактивных плазменных двигателей (ЭРПД).

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться, в частности, в качестве электроракетного двигателя. Катод (1) и два электрически изолированных анода (2, 3) образуют ускорительный канал эрозионного импульсного плазменного ускорителя (ЭИПУ).

Ускоритель плазмы предназначен для получения тяги при перемещении космических объектов и в технологии для получения композитных порошков, напыления и обработки материалов.

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной стенке корпуса и изолированных от него и друг от друга, и катод-нейтрализатор, закрепленный на корпусе, вдоль центральной оси корпус имеет внутреннюю стенку, образующую сквозное отверстие, в котором установлен катод-нейтрализатор. Электроды ионно-оптической системы выполнены в виде колец, внутренние периметры которых закреплены на внутренней стенке корпуса и изолированы друг от друга и от него. Причем газоразрядная камера содержит, по крайней мере, один кольцевой магнитопровод и кольцевую разрядную камеру, узел подачи рабочего тела которой выполнен в виде установленного внутри нее кольцевого анода - газораспределителя. Разрядная камера размещена внутри охватывающего ее кольцевого магнитопровода, полюса которого охватывают кольца разрядной камеры, причем магнитопровод снабжен магнитом, например соленоидальным электромагнитом. Техническим результатом предлагаемого изобретения является то, что источник ионов, выполненный по предложенной схеме с замкнутым дрейфом электронов, имеет коэффициент использования рабочего тела порядка 1. Это практически позволяет избежать обратного тока ионов на ИОС, что приведет к значительному увеличению ресурса ионного двигателя. 2 з.п. ф-лы, 1 ил.

Способ создания электрореактивной тяги может быть применен в электрореактивных двигателях и источниках электроэнергии для аэрокосмических транспортных средств и аппаратов. Способ заключается в формировании потока продуктов сгорания углеводородного, химического или ядерного топлива, движущегося с заданной скоростью в магнитном поле, вектор индукции которого ортогонален вектору скорости потока продуктов сгорания, затем поток продуктов сгорания разделяют на пучок катионов и пучок электронов, причем энергию пучка электронов преобразовывают в дополнительную электрическую мощность, направляемую на ускорение пучка катионов, который создает реактивную тягу, пропорциональную кинетической энергии ускоренного пучка. Заявленный способ повышает КПД системы электропитания, экономит топливо и другие расходные материалы, увеличивает коэффициент полезной загрузки, радиус действия и срок жизни летательного аппарата. 1 ил.

Изобретение относится к двигательным установкам (ДУ) малой тяги для коррекции орбит космических аппаратов (КА). ДУ содержит размещенные друг над другом ускорители плазмы (УП) с ускоряющими электродами: катодом (3) и анодом (4), а также узлами подачи рабочего тела: шашек (7), снабженных пружинными толкателями (8). Для инициирования плазмообразующего разряда служат электроды (9) в отверстии катода (3). Между электродами (3, 4) выполнен торцевой керамический изолятор (ТКИ). С электродами связан через анодную и катодную шины (на панели (15)) блок (13) накопительных конденсаторов (14). Отвод тепла от УП осуществляется тепловыми трубами (ТТ). Испарительная часть (22) ТТ примыкает к электродам (3, 4) и ТКИ, а конденсационная часть (23) ТТ закреплена на раме крепления ДУ к корпусу КА. В окне этой рамы размещена теплонапряженная плоская стенка блока питания и управления. Техническим результатом изобретения является повышение надежности и тяговой эффективности ДУ за счет улучшенной системы теплоотвода. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетных двигателей, в частности к ракетным двигателям с центральным телом с вихревым процессом горения, и может быть использовано в ракетно-космической технике. Способ формирования тяги двигателя с центральным телом, включающий подачу горючего и окислителя в камеру сгорания с созданием за центральным телом вихревой зоны, при этом в вихревую зону под давлением тангенциально подают мелкодисперсную фракцию воды или воды с добавлением органического вещества, создавая осевую закрутку смеси газов горения и, как следствие, вихревой поток холодной неравновесной пульсирующей плазмы, создавая дополнительную тягу двигателя. Предложен также двигатель с центральным телом для реализации способа, содержащий камеру сгорания и сопло, при этом на центральном теле выполнены винтовые канавки, введена емкость с водой или водой с добавлением органического вещества, сообщенная с помощью трубопровода с насосом, расположенным внутри центрального тела, который в свою очередь с помощью распределительных патрубков сообщен через коллектор с винтовыми канавками с помощью форсунок, открытые торцы которых расположены на внешней поверхности центрального тела, на торцевой плоскости которого установлены игольчатые термокатоды, обеспечивающие термоэмиссию. Изобретение обеспечивает увеличение тяги. 2 н.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Способ запуска стационарного плазменного двигателя, при котором подачу напряжения разряда на катод и анод двигателя выполняют не до подачи поджигных импульсов, а после завершения нагрева катода, открытия клапанов двигателя и подачи поджигных импульсов. При этом достигается уменьшение, вплоть до полного устранения, броска тока в разрядной цепи двигателя и, соответственно, на первичной шине питания систем преобразования и управления стационарными плазменными двигателями. Изобретение позволяет снизить нагрузку на функциональные элементы системы электропитания и систем преобразования и управления стационарными плазменными двигателями. 2 табл., 9 ил.

Изобретение относится к космической технике, к классу электрореактивных двигателей. Двигатель содержит автономный источник низкотемпературной плазмы, систему улавливания нейтральных частиц и регенерации ионов, разделитель потоков электронов и ионов, плазменный ускоритель. Плазменный ускоритель представляет собой асинхронный циклотрон, разделенный вдоль на дуанты двумя соосными парами параллельных сеток с зазорами, создающими однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности, имеющий выходные газовые каналы плазменного ускорителя - основные переходники-ферромагнетики с соленоидами; выходные прямые газовые диэлектрические каналы двигателя, соединенные с основными переходниками через пропускные электроклапаны, а между собой - переходниками-ферромагнетиками с соленоидами. Магнитное поле внутри плазменного ускорителя создается группой соленоидов, размещенных внутри цилиндрического ферромагнетика, частью своей являющегося цилиндрической стенкой плазменного ускорителя. Техническим результатом изобретения является увеличение удельного импульса тяги с сохранением и возможным уменьшением массогабаритных характеристик двигательных установок при относительно невысокой мощности энергопотребления. 2 з.п. ф-лы, 3 ил.

Изобретение относится к высокочастотным ионным двигателям (ВЧИД) с индукционным возбуждением разряда в газоразрядной камере. Газоразрядный узел ВЧИД включает в свой состав газоразрядную камеру (1), выполненную из электротехнического корунда. Камера (1) содержит участок в форме сегмента сферы, расположенный со стороны патрубка (2) подачи рабочего газа, и сопряженный с ним участок цилиндрической формы, расположенный со стороны крепления электродов ионно-оптической системы (3). Индуктор (4) выполнен в виде спирали, охватывающей внешнюю поверхность камеры. Спираль индуктора образована медной трубкой. Трубчатые токоподводы (5 и 6) спирали индуктора соединены с ВЧ генератором. На внешней поверхности камеры выполнены четыре выступа (7), симметрично расположенные относительно оси симметрии камеры. На поверхность выступов (7) нанесено металлизационное покрытие. Витки спирали индуктора (4) соединены с внешней поверхностью камеры методом пайки в точках контакта с металлизированными поверхностями выступов (7). Эмиссионный и ускоряющий перфорированные электроды (8 и 9) изготовлены из сплава молибдена и соединены с металлизированными контактными поверхностями камеры (1) и промежуточных изоляторов (11 и 12) методом пайки. Технический результат заключается в повышении надежности и ресурса ВЧИД, при этом уменьшаются габаритные размеры и масса газоразрядного узла и ВЧИД в целом. 10 з.п. ф-лы, 2 ил.

Изобретение относится к области электроракетных двигательных установок с электромагнитным ускорением плазмы. Электроракетная двигательная установка содержит энергетическую установку, систему хранения и подачи рабочего тела и электроракетный двигатель. Электроракетный двигатель содержит соосно установленные катод, сопло-анод и соленоид, размещенный снаружи сопла-анода. Энергетическая установка и соленоид соединены через тоководы с электродвигателем-генератором. На валу электродвигателя-генератора соосно закреплены маховик и электроракетный двигатель. Электроракетный двигатель связан с системой хранения и подачи рабочего тела через изолирующую проставку и канал, выполненный внутри вала электродвигателя-генератора. Техническим результатом изобретения является снижение массы энергетической установки и повышение тяги электроракетной двигательной установки. 1 ил.
Наверх