Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8. Изобретение позволяет утилизировать тепло и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).

Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электроэнергии.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.

Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов первой паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, согласно настоящему изобретению в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе первой паровой турбины, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе второй паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара из второй паровой турбины, которые осуществляют путем последовательного нагрева соответственно в конденсаторе первой паровой турбины, теплообменнике-охладителе сетевой воды и конденсаторе второй паровой турбины низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, теплообменник-охладитель и конденсационную установку.

На чертеже цифрами обозначены:

1 - первая паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-охладитель сетевой воды,

15 - конденсационная установка,

16 - вторая паровая турбина,

17 - электрогенератор второй паровой турбины,

18 - конденсатор второй паровой турбины,

19 - конденсатный насос конденсатора второй паровой турбины,

20 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные первую паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды.

В тепловую электрическую станцию введены теплообменник-охладитель 14 сетевой воды, конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Вход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.

Конденсационная установка 15 содержит последовательно соединенные вторую паровую турбину 16, имеющую электрогенератор 17, конденсатор 18 второй паровой турбины и конденсатный насос 19 конденсатора второй паровой турбины.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 20, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 20, который соединен по нагреваемой среде с входом конденсатора 2 первой паровой турбины, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, выход теплообменника-охладителя 14 по нагреваемой среде соединен с входом конденсатора 18 второй паровой турбины, выход конденсатора 18 второй паровой турбины соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 20, выход теплообменника-рекуператора 20 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ работы тепловой электрической станции осуществляют следующим образом.

Пар отопительных параметров из отборов паровой турбины 1 поступает в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей. Сетевая вода поступает от потребителей по обратному трубопроводу 13 сетевой воды в нижний сетевой подогреватель 11 и верхний сетевой подогреватель 10. Далее сетевую воду направляют в подающий трубопровод 12 сетевой воды.

Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости.

В тепловой электрической станции используют теплообменник-охладитель 14 сетевой воды, который устанавливают на обратном трубопроводе 13 сетевой воды, а также конденсационную установку 15, имеющую конденсатор 18 второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине 1 пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в теплообменнике-рекуператоре 20 теплового двигателя, нагревают в конденсаторе 2 первой паровой турбины, нагревают в теплообменнике-охладителе 14 сетевой воды, нагревают и испаряют в конденсаторе 18 второй паровой турбины, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 20 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.

Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара второй паровой турбины 16 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты из паровой турбины 16 осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины, теплообменнике-охладителе 14 сетевой воды и конденсаторе 18 второй паровой турбины низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в теплообменник-рекуператор 20, куда поступает перегретый газообразный пропан С3Н8 из турбодетандера 6, а затем в конденсатор 2 первой паровой турбины, куда поступает отработавший в турбине 1 пар, и в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. Температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена перегретого газообразного пропана С3Н8 с сжиженным пропаном С3Н8 в теплообменнике-рекуператоре 20, а также в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и в процессе теплообмена обратной сетевой воды с сжиженным пропаном С3Н8 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного пропана С3Н8 в пределах критической температуры в интервале от 300 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на нагрев и испарение в конденсатор 18 второй паровой турбины, куда поступает из второй паровой турбины 16 при температуре около 573 К.

Пар, поступающий из второй паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора второй паровой турбины направляют в систему регенерации.

В процессе конденсации пара в конденсаторе 18 второй паровой турбины происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 20 для снижения температуры.

В теплообменнике-рекуператоре 20 в процессе отвода теплоты на нагрев сжиженного пропана С3Н8 снижается нагрузка на теплообменник-конденсатор 8 и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара второй паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.

1. Способ работы тепловой электрической станции, по которому пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора первой паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара при помощи охлаждающей жидкости, отличающийся тем, что в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую вторую паровую турбину с выходом пара при температуре около 573 К и конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара, поступающего из второй паровой турбины при температуре около 573 К, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего впервой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе первой паровой турбины, нагревают в теплообменнике-охладителе сетевой воды, испаряют в конденсаторе второй паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

2. Способ работы тепловой электрической станции по п.1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

3. Способ работы тепловой электрической станции по п.1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.



 

Похожие патенты:

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к энергетике. Паротурбинная электростанция содержит некоторое количество парциальных турбин, соответственно с возможностью прохождения через них пара, перепускной трубопровод, расположенный между первой парциальной турбиной и второй парциальной турбиной, и промежуточный пароперегреватель в перепускном трубопроводе.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция, содержащая турбину с отопительными отборами пара, подключенными к нижнему и верхнему сетевым подогревателям, включенным по нагреваемой среде между обратным и подающим сетевыми трубопроводами, вакуумный деаэратор с трубопроводом исходной воды, в который включен подогреватель исходной воды, бак-аккумулятор, подключенный трубопроводом деаэрированной воды к вакуумному деаэратору и трубопроводом подпиточной воды через подпиточный насос к обратному сетевому трубопроводу перед нижним сетевым подогревателем.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая паровой котел, теплофикационную турбину с отборами пара, подключенными к регенеративным подогревателям, деаэратор добавочной питательной воды с подключенными к нему трубопроводом исходной воды и патрубками подвода и отвода десорбирующего агента, бак-аккумулятор деаэратора, связанный трубопроводом деаэрированной добавочной питательной воды с трубопроводом основного конденсата турбины, патрубки подвода и отвода десорбирующего агента деаэратора добавочной питательной воды включены в газопровод, подключенный к горелкам котла, а трубопровод деаэрированной добавочной питательной воды подключен к трубопроводу основного конденсата турбины перед охладителем основных эжекторов и охладителем пара уплотнений турбины.

Изобретение относится к энергетике. Способ работы тепловой электрической станции, по которому в котле вырабатывают пар, подают его в турбину, пар отборов турбины используют для нагрева сетевой воды в нижнем и верхнем сетевых подогревателях, подпиточную воду деаэрируют в деаэраторе, для чего в деаэратор подают десорбирующий агент, который с выделившимися газами удаляют из деаэратора, а деаэрированную подпиточную воду направляют в обратный сетевой трубопровод перед нижним сетевым подогревателем, в качестве десорбирующего агента в деаэраторе используют газ, подаваемый в горелки котла.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, причём ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб, а разбрызгивающие сопла вытяжной башни градирни выполнены в виде форсунки с распылительным диском.

Изобретение относится к энергетике. Способ дооборудования энергоустановки, работающей на ископаемом топливе, содержащей многокорпусную паровую турбину и конденсатор, устройством отделения диоксида углерода, при котором поглощающая способность паровой турбины согласуется с технологическим паром, отбираемым для работы устройства отделения диоксида углерода, и устройство отделения диоксида углерода посредством паропровода присоединяется к соединяющему два корпуса паровой турбины перепускному трубопроводу.

Изобретение относится к энергетике. Энергетическая установка, работающая на органическом топливе, включает в себя котельный агрегат, установленную следом за котельным агрегатом через горячий трубопровод промежуточного перегрева паровую турбину и устройство для отделения диоксида углерода, причем устройство для отделения диоксида углерода через трубопровод технологического пара соединено с горячим трубопроводом промежуточного перегрева котельного агрегата.

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных энергоресурсов и низкопотенциальной энергии природных источников. Технический результат достигается в теплотрубном винтовом нагнетателе, включающем испарительную, рабочую и конденсационную камеры, расположенные в одном цилиндрическом корпусе, внутренние поверхности верхней и нижней торцевых стенок которого соприкасаются фитилем, проходящим по центральной оси корпуса, покрытым обечайкой с образованием зазоров у верхней и нижней торцевых стенок.

Изобретение относится к энергетике. Система теплоснабжения включает теплогенератор, утилизационную установку, потребителя, прямую магистраль, по которой нагретая в теплогенераторе вода подается потребителю, обратную магистраль, по которой охлажденная вода транспортируется к теплогенератору, обратный клапан, мембранный насос, мембранный нагнетатель и ударный узел.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2. Изобретение позволяет повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит паровой котел, турбогенератор, связанный с электрическими сетями через трансформатор, и распределительное устройство с элегазовыми высоковольтными выключателями. При этом станция снабжена вытяжным вентилятором с всасывающим воздуховодом, воздухозаборное устройство которого установлено ниже уровня упомянутых выключателей с возможностью удаления элегаза от упомянутого распределительного устройства посредством напорного воздуховода, связанного с топкой парового котла, для полного обезвреживания элегаза. Использование изобретения позволяет повысить экологическую безопасность тепловой электрической станции путем исключения возможности выбросов элегаза в атмосферу. 1 ил.

Изобретение относится к системе и способу теплоснабжения промышленных объектов. Система теплоснабжения содержит теплогенератор, потребителя, прямую магистраль для подачи нагретой в теплогенераторе воды упомянутому объекту, обратную магистраль, для транспортирования охлажденной воды к теплогенератору, обратный клапан, испаритель с рабочим телом, установленный в дымоходе теплогенератора, сбросной клапан, трубопровод высокого давления, трубопровод возврата конденсата, дополнительные обратные клапаны, установленные на обратной магистрали, при этом она снабжена закрепленным на испарителе расширительным баком со сбросным клапаном, соединенным трубопроводом высокого давления с обратной магистралью на участке между дополнительными обратными клапанами, соединенным трубопроводом возврата конденсата через обратный клапан с испарителем. Раскрыт способ теплоснабжения промышленных объектов с использованием упомянутой системы, включающий нагрев охлажденной воды из обратной магистрали теплом, выработанным теплогенератором, предварительно подогретой сбросным низкотемпературным теплом уходящих газов в дымоходе теплогенератора, испарение рабочего тела в испарителе до заданного давления при утилизации низкотемпературного тепла уходящих газов в дымоходе теплогенератора, импульсную подачу через сбросной клапан образовавшегося пара, расширение пара с совершением работы по перекачиванию воды, конденсацию пара с отдачей тепла воде из обратной магистрали и возвращение конденсата рабочего тела в испаритель, в котором рабочее тело находится под избыточным давлением, превышающим давление конденсации, при этом в качестве рабочего тела используют воду, пар которой аккумулируют в расширительном баке и подают в обратную магистраль с обеспечением вытеснения воды в теплогенератор и далее к потребителю, конденсацию пара осуществляют при непосредственном контакте его с водой с обеспечением разрежения в обратной магистрали и подсоса воды от потребителя и возвращают конденсат за счет гидростатических сил с перекачиванием воды. Обеспечивается сокращение количества используемого оборудования и соответственно уменьшение тепловых потерь. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Тепловая электрическая станция содержит теплофикационную турбину с отопительными отборами пара, соединенными паропроводами с нижним и верхним сетевыми подогревателями, включенными по нагреваемой среде в сетевой трубопровод, вакуумный деаэратор подпиточной воды теплосети с трубопроводами исходной и деаэрированной воды, включенный в трубопровод исходной воды подогреватель исходной воды. Подогреватель исходной воды по греющей среде включен в сетевой трубопровод между нижним и верхним сетевыми подогревателями. Изобретение позволяет повысить экономичность тепловой электрической станции путем использования для подогрева исходной воды перед вакуумным деаэратором подпиточной воды теплосети теплоносителя, подогретого паром низкого потенциала, а также увеличения выработки электроэнергии на тепловом потреблении за счет снижения температуры сетевой воды перед верхним сетевым подогревателем. 1 ил.

Изобретение относится к химической промышленности. Способ включает стадию газификации (1), в качестве агента газификации используют диоксид углерода. Полученный синтез-газ охлаждают при помощи первичного теплообменника (2) и вторичного теплообменника, установленных последовательно. В первичном теплообменнике (2) в качестве охлаждающей среды используют диоксид углерода, который предварительно подогревается, а во вторичном теплообменнике в качестве охлаждающей среды используют воду с получением пара. Охлажденный синтез-газ подают в циклонный сепаратор (4) и газоочиститель (5). Очищенный синтез-газ реагирует с паром так, что часть монооксида углерода превращается в водород и диоксид углерода. После этого проводят обессеривание (8) модифицированного синтез-газа и декарбонизацию (9). Далее синтез-газ подают в колонну синтеза (10), где посредством каталитической реакции его преобразуют в нефтепродукты, а отходящий газ содержит диоксид углерода. Проводят декарбонизацию (11) отходящего газа и полученный диоксид углерода рециркулируют путем подачи в первичный теплообменник (2) в качестве охлаждающей среды и последующей подачи на газификацию (1) в качестве агента газификации. Изобретение позволяет достигнуть нулевого выброса диоксида углерода системой в целом. 2 н. и 11 з.п. ф-лы, 3 ил.
Наверх