Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами



Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами
Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами
Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами

 


Владельцы патента RU 2569391:

Общество с ограниченной ответственностью "ТНГ-Групп" (RU)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (НКТ). В скважину, в зону предполагаемого заколонного перетока жидкости, спускаются термоизолированные НКТ, снаружи которых крепятся датчики температуры. Осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале. После извлечения термоизолированных НКТ из скважины проводится анализ показаний датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, а - температуропроводность среды между насосно-компрессорными трубами и колонной после начала работы скважины. Об интервале заколонного перетока судят по аномалиям температуры. Использование способа повышает достоверность определения интервалов заколонного перетока жидкости в скважинах, перекрытых термоизолированными НКТ. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (далее НКТ).

Известен способ изоляции притока воды в скважину путем закачки в пласт глинистой суспензии и водного раствора частично гидролизованного полиакриламида, при котором, с целью повышения эффективности изоляции за счет увеличения глубины проникновения в пласт изоляционного материала, первоначально в пласт закачивают водный раствор частично гидролизованного полиакриламида 0,001-0,05%-ной концентрации, а затем глинистую суспензию удельного веса 1,02-1,08 г/см3 (а.с. SU №933963, МПК5 E21B 43/37, 07.06.1982 г.).

Известен способ определения интервалов заколонного движения жидкости в скважине, включающий спуск датчика температуры в скважину, регистрацию распределения температуры вдоль ствола скважины в режиме закачки и отбора жидкости с последующим сопоставлением полученных термограмм, в котором с целью повышения точности определения интервалов заколонного движения жидкости вторую термограмму регистрируют в момент подхода температурного возмущения из зоны заколонного движения к датчику температуры и по наличию отрицательного градиента разности первой и второй термограмм в зумпфе скважины судят об интервале заколонного движения (а.с. SU №1476119, МПК4 E21B 47/10, 30.04.1989 г.).

Известен также способ исследования нагнетательных скважин, включающий регистрацию изменения температуры вдоль ее ствола при закачке и в процессе перехода от режима закачки к стационарному режиму отбора жидкости с интервалом во времени и последующее сопоставление полученных термограмм, при этом в каждом выявленном интервале аномалии температуры проводят два дополнительных измерения, причем первое измерение - при квазистационарном распределении температуры в стволе в процессе закачки, после чего останавливают скважину и проводят второе измерение в течение времени, не превышающего 2,5 мин после прекращения закачки. По форме аномалии температуры при первом и втором измерениях или по отсутствию аномалии при первом и по наличию аномалии при втором измерениях судят о нарушении герметичности эксплуатационной колонны скважины в данном интервале (патент RU №2121572, МПК6 E21B 47/10, 10.11.1998 г.).

Недостатком известных способов является неоднозначность в определении интервала заколонного перетока жидкости вследствие неопределенности интервала времени, в течение которого необходимо проводить регистрацию термограмм, а в скважинах, перекрытых НКТ, невозможно решить задачу по определению заколонных перетоков.

Известен также способ определения заколонного движения жидкости в нагнетательной скважине, в котором регистрацию серии термограмм вдоль ствола скважины выполняют в расчетный промежуток времени после прекращения закачки при герметичном устье, а об интервале заколонного движения жидкости судят по замедленному темпу восстановления температуры в системе скважина - пласт. Регистрацию серии термограмм проводят в промежуток времени 4-40 минут после прекращения закачки (патент RU №2171373, МПК7 E21B 47/10, 27.07.2001 г.).

Недостатком способа является то, что промежуток времени 4-40 минут не является оптимальным для точного определения интервала заколонного движения жидкости и замедленный темп восстановления температуры не является достаточным для точного определения нужного интервала заколонного движения. А в скважинах, перекрытых НКТ, данный способ не может решить задачу по определению заколонных движений.

Наиболее близким к изобретению по достигаемому результату является способ определения затрубного движения жидкости в действующей скважине путем регистрации температуры вдоль ее ствола, в котором с целью повышения точности способа и обеспечения возможности его использования в начальной стадии эксплуатации скважины регистрируют серию термограмм непосредственно после пуска скважины в эксплуатацию, а о наличии затрубного движения жидкости судят по увеличенному темпу установления теплового поля (а.с. SU № 665082, МПК5 E21B 47/10, 30.05.1979 г.).

Недостатком способа является то, что при наличии противотока (интервал перекрыт НКТ) определить наличие заколонного перетока на фоне теплового поля работающей скважины не представляется возможным и даже по сопоставлению термограмм, зарегистрированных на различных режимах работы скважины.

Задачей, на решение которой направлено изобретение, является повышение достоверности определения интервалов заколонного перетока жидкости в скважинах, перекрытых НКТ.

Для решения поставленной задачи в способе определения заколонного перетока жидкости в скважине в интервалах, перекрытых НКТ, путем одновременной регистрации температуры по стволу скважины с последующим их анализом, в скважину опускают термоизолированную НКТ с размещенными снаружи датчиками температуры, осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале, после извлечения НКТ анализируют показания датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, a - температуропроводность среды между НКТ и колонной после начала работы скважины, а об интервале заколонного перетока судят по аномалиям температуры.

Насосно-копрессорная труба может быть термоизолирована только на участках размещения датчиков температуры. В интервале заколонного перетока устанавливают не менее 3-х датчиков температуры, выше интервала заколонного перетока устанавливают базовый датчик температуры.

Сложность решения данной задачи геофизическими методами связана с тем, что при заколонных перетоках в скважинах, перекрытых стальными НКТ, встречный поток флюида значительно уменьшает полезный температурный сигнал от температурной аномалии, созданной заколонным перетоком.

Признаками, направленными на решение поставленной задачи, является то, что в скважину в зону предполагаемого заколонного перетока опускаются термоизолированные НКТ с размещенными снаружи датчиками температуры, осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале, после извлечения НКТ анализируют показания датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, a - температуропроводность среды между НКТ и колонной после начала работы скважины, а об интервале заколонного перетока судят по аномалиям температуры.

Датчики устанавливают таким образом, чтобы в зоне предполагаемого заколонного перетока находилось не менее 3-х датчиков температуры. Один датчик устанавливается выше предполагаемого интервала заколонного перетока, показания которого являются базовыми. Показания остальных датчиков характеризуют температурный режим отдельных участков и аномальные изменения температуры по отношению к базовому датчику.

Применение термоизолированных НКТ с низкой теплопроводностью, ограничивает поступление мешающего температурного сигнала к датчикам, расположенным снаружи НКТ, при этом к датчикам температуры из заколонного пространства поступает полезный температурный сигнал.

По показаниям всех датчиков отмечается слабое увеличение температуры относительно фонового замера через определенное время t после запуска скважины в работу, связанное с подъемом по НКТ более теплой жидкости с нижнего интервала. Время t зависит от радиуса колонны и температуропроводности среды между НКТ и колонной.

В совокупности вышеуказанные признаки позволяют повысить достоверность определения интервалов заколонного перетока жидкости в скважинах перекрытых НКТ.

Из научно-технической литературы и патентной документации неизвестны способы повышения достоверности определения интервалов заколонного перетока жидкости в скважинах, перекрытых НКТ, за счет применения термоизолированных НКТ с учетом низкой теплопроводности, ограничивающей поступление температурного мешающего сигнала к датчикам, расположенным снаружи НКТ, при этом к датчикам температуры из заколонного пространства поступает полезный температурный сигнал.

Таким образом, заявляемое техническое решение соответствует критериям «изобретательский уровень» и «новизна».

Осуществление способа показано на прилагаемых графических материалах:

фиг. 1. Схема монтажа оборудования при реализации способа;

фиг. 2. Изменение температуры во времени в точках расположения датчиков в случае отсутствия заколонного перетока;

фиг. 3. Изменение температуры во времени в точках расположения датчиков в случае наличия заколонного перетока.

Способ осуществляют следующим образом.

В скважину 1 спускают компоновку, состоящую из воронки 2, термоизолированных НКТ 3 с размещенными на них снаружи базовым датчиком 4 температуры, контрольными датчиками 5.1, 5.2, 5.3 температуры, пакера 6 и струйного насоса 7 (фиг. 1). Насосно-копрессорные трубы 3 могут быть термоизолированы полностью или только на участках размещения датчиков 4 и 5.1, 5.2, 5.3 температуры.

Проводится замер температуры в неработающей скважине 1.

С помощью струйного насоса 7 скважина 1 запускается в работу и выводится на режим установившегося притока (отбора продукции).

Регистрируется изменение температуры на каждом датчике 4, 5.1, 5.2, 5.3 в течение 3-6 часов после пуска скважины в работу.

Скважина останавливается, компоновка извлекается из скважины, записанные данные скачиваются из памяти упомянутых датчиков.

Проводится анализ изменения температуры на различных режимах работы скважины по каждому датчику. При этом анализируют показания датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, a - температуропроводность среды между НКТ и колонной после начала работы скважины.

По результатам анализа выявляют участки аномального изменения температуры по отношению к базовому датчику 4 и устанавливают факт наличия или отсутствия заколонного перетока в изучаемом интервале.

Пример практической реализации.

Проведен следующий комплекс работ.

В зону предполагаемого заколонного перетока спущены термоизолированные НКТ 3 с размещенными на них снаружи: базовым датчиком 4 температуры, контрольными датчиками 5.1, 5.2, 5.3 температуры, пакером 6 и струйным насосом 7 (фиг. 1). Компоновка спущена таким образом, чтобы пакер 6 был установлен на несколько метров выше интервала предполагаемого заколонного перетока. При этом базовый датчик 4 расположен выше кровли неперфорированного водоносного пласта 8, а три контрольных датчика 5.1, 5.2, 5.3 расположены между подошвой неперфорированного водоносного пласта 8 и кровлей перфорированного нефтеносного пласта 9.

Скважина 1 с помощью струйного насоса 7 запускается в работу и выводится на режим стабильного отбора продукции. В течение всего периода нахождения датчиков 4, 5.1, 5.2, 5.3 в скважине 1 проводится регистрация изменения температуры в точках их расположения.

Затем работа насоса 7 прекращается, вся компоновка извлекается из скважины 1, зарегистрированные данные по температуре скачиваются и расшифровываются.

По результатам сравнения характера изменения температуры во времени по всем датчикам 4, 5.1, 5.2, 5.3 делается вывод о наличии заколонного перетока.

На фиг. 2 показаны изменения температуры во времени в точках расположения датчиков 4, 5.1, 5.2, 5.3 при отсутствии заколонного перетока из вышележащего неперфорированного водоносного пласта 8. По показаниям всех датчиков 4, 5.1, 5.2, 5.3 отмечается слабое увеличение температуры относительно фонового замера через определенное время t после запуска скважины 1 в работу, связанное с подъемом по НКТ 3 более теплой жидкости из перфорированного нефтеносного пласта 9. Время t зависит от радиуса колонны и температуропроводности среды между НКТ 3 и колонной.

На фиг. 3 показаны изменения температуры во времени в точках расположения датчиков 4, 5.1, 5.2, 5.3 при наличии заколонного перетока из вышележащего неперфорированного водоносного пласта 8 в нижележащий перфорированный нефтеносный пласт 9.

По показаниям базового датчика 4 отмечается слабое увеличение температуры относительно фонового замера через определенное время t после запуска скважины 1 в работу, связанное с подъемом по НКТ 3 более теплой жидкости из нефтеносного пласта 9.

По показаниям контрольных датчиков 5.1, 5.2, 5.3, расположенных между подошвой неперфорированного водоносного пласта 8 и кровлей перфорированного нефтеносного пласта 9, после запуска скважины 1 в работу по истечении времени t отмечается постепенное понижение температуры относительно фонового замера, связанное с фильтрацией по заколонному пространству более охлажденной жидкости из вышележащего водоносного пласта 8 в нижележащий нефтеносный пласт 9.

Использование заявляемого способа, в сравнении с известными, позволяет повысить достоверность определения интервалов заколонного перетока жидкости в скважинах, перекрытых термоизолированными НКТ.

Способ определения заколонного перетока жидкости в скважине в интервалах, перекрытых НКТ, может быть осуществлен с использованием современных материалов и оборудования.

1. Способ определения заколонного перетока жидкости в скважине в интервалах, перекрытых насосно-компрессорными трубами, путем одновременной регистрации температуры по стволу скважины с последующим их анализом, отличающийся тем, что в скважину опускают термоизолированные насосно-копрессорные трубы с размещенными снаружи датчиками температуры, осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале, а после извлечения термоизолированных насосно-копрессорных труб анализируют показания датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, а - температуропроводность среды между насосно-компрессорными трубами и колонной после начала работы скважины, об интервале заколонного перетока судят по аномалиям температуры.

2. Способ по п. 1, отличающийся тем, что применены насосно-копрессорные трубы с термоизоляцией только на участках размещения датчиков температуры.

3. Способ по п. 1, отличающийся тем, что в интервале заколонного перетока устанавливают не менее 3-х датчиков температуры.

4. Способ по п. 1, отличающийся тем, что выше интервала заколонного перетока устанавливают базовый датчик температуры.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности. Способ включает отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий пласты, измерение общего дебита жидкости и ее обводненности на дневной поверхности, измерение давления на приеме и параметров работы насоса с помощью модуля телеметрической системы, установленного под погружным электродвигателем насоса, измерение давления на забое нижнего пласта с помощью глубинного манометра, соединенного кабелем с модулем телеметрической системы, перекрытие поступления продукции одного из пластов с помощью гидравлического пакера с передачей давления по трубке малого диаметра для проведения замеров параметров работы другого пласта, определение дебитов нефти и воды перекрываемого пласта путем вычитания из общих дебитов нефти и воды скважины дебитов работающего пласта.

Изобретение относится к способам измерения дебита нефтяных скважин в групповых замерных установках и может быть использовано в информационно-измерительных системах объектов добычи, транспорта и подготовки нефти, газа и воды.

Изобретение относится к системам автоматического контроля и может быть использовано при контроле и управлении процессами добычи продукции скважины в нефтяной, газовой и других отраслях промышленности.

Изобретение относится к системе и способу обнаружения и мониторинга эрозии в различных средах, включая окружающую среду нисходящих скважин. Способ, в котором размещают индикаторный элемент в материале скважинного компонента посредством встраивания защитного индикаторного элемента внутрь скважинного компонента, таким образом, что достаточная степень эрозии материала инициирует высвобождение индикаторного элемента.

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: определение полного компонентного состава жидкости, а именно - воды и нефти за счет конструктивной конфигурации сепаратора, компоновки плотномера, газового и жидкостного сифонов.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии.

Изобретение относится к области исследования характеристик скважин, а именно к способу экспресс-определения характеристик призабойной зоны малодебитных скважин, применяемому при освоении скважин, и системе его реализующей.

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для измерения дебита продукции нефтяных и газовых скважин. Технический результат заключается в повышении точности измерения фазового расхода в режиме реального времени за счет обеспечения однородности измеряемого потока газожидкостной смеси.

Группа изобретений относится к вариантам блока регулирования и учета добычи флюида из многопластовой скважины. Блок по первому варианту содержит корпус, ограниченный снизу стыковочным узлом с каналами потоков пластовых флюидов и сверху стыковочным узлом с установленными на нем регулируемыми клапанами в количестве, равном числу эксплуатируемых пластов скважины.

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине. Предложен способ обнаружения притока газа в буровую скважину, содержащий: развертывание буровой колонны в буровой скважине, проходящей от поверхности земли в пласт; обеспечение бурового раствора в буровой скважине; обеспечение множества акустических датчиков в соответствующих местоположениях по длине буровой колонны для обнаружения в каждом акустическом датчике акустических импульсов, распространяющихся в буровом растворе по длине буровой колонны, причем каждый из акустических датчиков генерирует электрический сигнал, чувствительный к обнаружению каждого из акустических импульсов; определение изменения акустической характеристики бурильного раствора на основании сгенерированных сигналов; и определение наличия притока газа в буровую скважину на основании определенного изменения. Раскрыта также система для осуществления указанного способа. 2 н. и 12 з.п. ф-лы, 3 ил.

Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство, предусмотренное для индивидуальной калибровки датчика давления в соответствии с параметрами каждой отдельной скважины. Технический результат - повышение точности результатов измерения дебита флюидов. 2 н. и 15 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический результат изобретения заключается в создании упрощенной конструкции устройства, которое обеспечивает высокое качество проведения исследований газожидкостных потоков, за счет повышения точности проводимых экспериментов. Устройство содержит испытуемую колонну, смеситель газа и жидкости, кран впуска и выпуска газа, сепаратор, центробежный газовый нагнетатель, жидкостный насос, расходомер жидкости, расходомер газа, блок датчиков перепада давления, блок датчиков давления и температуры, блок аналого-цифрового преобразования и блок обработки данных и визуализации результатов наблюдения. 4 ил.

Изобретение относится к промысловой геофизике и может быть использовано для измерения скорости потока или расхода жидкости или газа в добывающих и нагнетательных скважинах. Техническим результатом, получаемым от внедрения изобретения, является расширение диапазона измеряемых скоростей. Данный технический результат достигают за счет того, что в потоке создают тепловую метку с помощью генератора тепловых меток, регистрируют появление тепловой метки, прошедшей базовое расстояние X, с помощью регистратора тепловых меток. Затем измеряют время t прохождения меткой базового расстояния X, по которому определяют скорость Vn потока. При этом генератор и регистратор меток перемещают вдоль скважины со скоростью Vk, удовлетворяющей математическому соотношению |Vk - Vn| = 0,01÷0,05 м·с-1. Базовое расстояние Х задается равным 0,01÷0,05 м для жидкости и 0,01÷0,02 м для газа. 1 ил.

Изобретение относится к нефтегазовой промышленности и может быть использовано при проведении промысловых гидродинамических, газоконденсатных исследований скважин в процессе разведки и разработки газовых и газоконденсатных месторождений. Технический результат изобретения заключается в снижении трудоемкости проведения исследований при обеспечении необходимого качества результатов проводимых исследований. Установка для исследования газовых и газоконденсатных скважин включает пробоотборное устройство, дозирующий цилиндр, сепарационную установку, газовый анализатор, станцию привода, расходомеры, обратный клапан, дроссельные устройства, задвижки, линии газопровода, краны, контроллер, компьютер, клапаны, датчики температуры и давления. Установка оснащена пробоотборным устройством, монтируемым на фонтанной арматуре скважины, которое отбирает часть потока продукции скважины по всей площади сечения трубопровода фонтанной арматуры и дозирующий цилиндр направляет ее на сепарационную установку, при этом не останавливая скважину и продолжая подавать продукцию скважины в газопровод. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу, в частности к способу определения дебита скважин, оборудованных насосными установками. Способ включает снятие характеристики подача - напор скважинного насоса, энергетической характеристики мощность и КПД - подача на жидкости - воде, определение плотности жидкостной смеси, определение фактического напора насоса. Построение расчетной характеристики подача - напор на жидкостной смеси, построение расчетных энергетических характеристик и по расчетным характеристикам определение подачи насоса - дебита скважины, соответствующей фактическому напору и фактическому энергопотреблению. По паспортным характеристикам используемого насоса строится паспортная напорно-расходная и энергетическая характеристика при номинальной частоте. Учитываются фактические параметры откачиваемой газожидкостной смеси - плотность и вязкость, а также насосной установки - фактическая частота вращения ротора насоса, газосодержание на приеме насоса, ток, напряжение, коэффициент загрузки, давление и температура на приеме насоса, давление и температура на выходе из насоса. Проводится пересчет и перестроение паспортной рабочей напорно-расходной и энергетической характеристики скважинного насоса. По уточненной рабочей характеристике насоса и по определенным с учетом фактических рабочих показателей насосной установки напору и мощности насоса определяется подача насоса. Технический результат заключается в повышении точности определения дебита скважин, оборудованных насосными установками, снижении массогабаритных параметров оборудования определения дебита скважин, увеличении межремонтного периода стационарных замерных установок. 5 ил.

Изобретение относится к обработке скважин и разработке месторождений и, в частности, системе и способу интерпретации дебита потока во время скважинной обработки. Технический результат заключается в эффективности стимуляционной обработки за счет получения знаний о распределении потока на рабочем интервале в режиме реального времени. Способ включает этапы, на которых размещают комплект нижней части буровой колонны (КНБК) в стволе скважины. Причем КНБК содержит нагнетательный порт для выдачи текучей среды в скважины, первый датчик, расположенный над нагнетательным портом, и второй датчик, расположенный под нагнетательным портом. Каждый из первого датчика и второго датчика генерирует сигнал обратной связи, представляющий собой скорость потока текучей среды на участке ствола скважины. Определяют приблизительную глубину участка КНБК в стволе. Формируют модель данных, основанную на наборе инструкций, причем модель данных представляет по меньшей мере характеристики потока текучей среды в стволе скважины, при этом модель данных получают из сигнала обратной связи и приблизительной глубины нагнетательного порта. Анализируют модель данных для экстраполяции характеристик формации. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к способам измерения продукции нефтегазодобывающих скважин. Технический результат заключается в повышении точности измерений. Способ измерения продукции нефтегазодобывающих скважин включает разделение потока продукции на газ и жидкость, непрерывное измерение массового расхода и плотности жидкости расходомером-счетчиком кориолисова типа со встроенным плотномером, измерение процентного содержания воды в жидкости поточным влагомером, измерение объемного расхода газа. Разделение основной части свободного газа от жидкости производится непрерывно путем предварительного отбора газа с помощью устройства в виде наклонного трубчатого газоотделителя без мерной емкости, затем газ пропускается через сепаратор капельной жидкости в отделенном газе в виде каплеотбойника, и после этого измеряется объемный расход газа. 1 з.п. ф-лы, 1 ил.

Изобретение по существу относится к композициям меченого ингибитора отложений и способам ингибирования отложений. В частности, настоящее изобретение относится к имидазолсодержащим меченым полимерным ингибиторам отложений, предназначенным для использования при обработке воды и/или нефтяных месторождений. Описан способ определения концентрации сополимера, ингибирующего отложения, для ингибирования образования отложений, включающий введение эффективного количества сополимера, ингибирующего отложения, в среду, измерение сигнала флуоресценции, соответствующего имидазольному фрагменту, и определение концентрации сополимера, ингибирующего отложения, на основании сигнала флуоресценции. Имидазолсодержащие сополимеры обеспечивают свойства ингибировать отложения и наряду с прочим позволяют осуществлять мониторинг уровней ингибитора отложений во время добычи нефти или применять в горном деле. 2 н. и 12 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к горному делу, в частности к способам определения дебита скважин, оборудованных насосными установками. Способ включает снятие характеристики подача - напор скважинного насоса, энергетической характеристики мощность и КПД - подача на жидкости. Определение плотности жидкостной смеси. Определение фактического напора насоса. Построение расчетной характеристики подача - напор на жидкостной смеси, построение расчетных энергетических характеристик и по расчетным характеристикам определение подачи насоса - дебита скважины, соответствующего фактическому напору и фактическому энергопотреблению. При этом дебит скважины определяется как среднее квадратичное значение подач насоса, полученных по расчетной характеристике подача - напор и энергетической характеристике. При этом при построении расчетной характеристики подача - напор и определении фактического напора насоса по расчетной характеристике подача - напор, учитывают влияние частоты тока на частоту вращения ротора насоса и вязкость перекачиваемой жидкости. Плотность жидкостной смеси рассчитывают по кривой разгазирования исходя из обводненности, давления насыщения и газосодержания на приеме насоса с учетом давления и температуры на приеме насоса. Кроме того, при определении подачи по энергетической характеристике учитывают отношение подачи насоса к его КПД и производят перерасчет подачи насоса в соответствии с условиями на устье скважины. Технический результат заключается в повышении точности определения дебита скважин, оборудованных насосными установками, повышении надежности работы оборудования за счет оперативного контроля дебита скважины. 3 ил.
Наверх