Способ и устройство для эксплуатации парового цикла со смазываемым детандером

Изобретение относится к способу эксплуатации парового цикла, осуществляемому в предложенном устройстве, содержащем испаритель или парогенератор для испарения жидкого рабочего тела (А) и смазываемый смазочным средством детандер для совершения механической работы. Способ включает в себя следующие этапы: а) жидкое рабочее тело (А) подается в испаритель, в котором оно испаряется и в виде пара подается в детандер; b) в детандер в качестве смазочного средства дополнительно подается ионическая жидкость (В), которая образует с жидким рабочим телом (А) при комнатной температуре две жидкие фазы; c) образующая смазочное средство для детандера ионическая жидкость отделяется перед испарителем от рабочего тела (А). Изобретение позволяет повысить эффективность эксплуатации парового цикла за счет хорошего отделения смазочного средства от рабочего тела. 3 н. и 22 з.п. ф-лы, 4 ил.

 

Изобретение относится к способу эксплуатации парового цикла со смазываемым детандером, согласно ограничительной части п.1 формулы изобретения, и к устройству для эксплуатации парового цикла со смазываемым детандером, согласно ограничительной части п.17 формулы изобретения.

Паровые циклы с детандером известны, например, из DE 102007020086 D3. Детандер может быть выполнен в виде поршневого, лопаточного, ротационного поршневого детандера, детандера с качательными дисками, наклонными дисками, детандера типа Рутс или винтового детандера. В случае вытеснительного принципа выводимый из парогенератора свежий пар подается в рабочую камеру детандера, причем подаваемый в нее свежий пар в рабочем такте расширяется за счет увеличивающего объем движения деталей с отдачей работы, а расширившийся пар по достижении наибольшего объема в соответствующей конструкции направляется из выпускного отверстия в пароотвод. В качестве пара может использоваться не только водяной пар, но и, как известно, также другие неорганические и органические летучие вещества и, в целом, хладагенты.

Большая доля этих детандеров должна смазываться собственным смазочным средством, причем происходит контакт рабочего тела и смазочного средства. В другом контуре, содержащем конденсатор и насос, рабочее тело в конденсаторе полностью сжижается, доводится в насосе до более высокого давления и, по меньшей мере, частично испаряется в парогенераторе.

Большую проблему в этих контурах представляет выбор смазочного средства. Поскольку большинство смазочных средств являются тепловосприимчивыми, как можно более полное отделение смазочного средства от рабочего тела перед испарителем является возможностью применения тепловосприимчивых смазочных средств.

Чтобы можно было экономить топливо, в частности, в мобильных двигателях внутреннего сгорания (ДВС), например, автомобилей, приоритетными в настоящее время являются два технических решения. Помимо различных гибридных концепций, подходящих, прежде всего, для городского движения и пригородного сообщения из-за происходящих во время него процессов торможения и ускорения, известны системы рекуперации тепла, которые используют отходящее тепло ДВС для вырабатывания дополнительной приводной энергии. Такие системы использования отходящего тепла подходят для мобильных ДВС, прежде всего, в транспортных средствах, эксплуатируемых в междугороднем сообщении.

В таких системах использования отходящего тепла возникающее в зоне ДВС и/или системы отвода отработавших газов (ОГ) отходящее тепло, по меньшей мере, частично передается на вторичный тепловой контур. В нем циркулирует рабочее тело, которое при этом обычно, по меньшей мере, частично испаряется в испарителе, пар расширяется в расширительном блоке, например поршневом детандере, и, наконец, снова сжижается в конденсаторе. После этого конденсированное рабочее тело снова доводится насосным блоком до давления испарения, и контур, тем самым, замыкается. Созданная с помощью расширительного блока механическая энергия подается в виде дополнительной работы к приводной системе, в частности приводной системе транспортного средства.

В этой связи из DE 102006043139 А1 известна система рекуперации тепла для ДВС. С помощью этой системы транспортное средство получает в свое распоряжение дополнительную приводную энергию из отходящего тепла ДВС и/или системы отвода ОГ. После расширения парообразного рабочего тела в детандере рабочее тело вторичного теплового контура подается в конденсатор, в котором оно сжижается с отдачей тепла, в результате чего соответствующий паровой контур замыкается.

Применение детандеров при использовании отходящего тепла ДВС требует комплексной конструкции. Для удовлетворения всех требований в отношении массы, расходов, ресурса и необходимого сервиса трущиеся друг о друга детали, например цилиндропоршневые пары, подшипники скольжения, золотники и т.д., смазываются жидким смазочным средством. За счет этого возникает контакт между рабочим телом и смазочным средством или смазанными поверхностями. В результате возникает та проблема, что обе эти рабочие среды смешиваются и поэтому сообща в едином контуре транспортируются дальше в направлении насоса и испарителя со многими негативными побочными явлениями.

Чтобы можно было рентабельно эксплуатировать длительное время круговой процесс (цикл), вся конструкция должна обеспечивать эффективное отделение смазочного масла от пара рабочего тела перед поступлением в испаритель. Эффективное разделение масляного и парового контуров надежно препятствует тому, чтобы смазочное масло попадало в зону горячего испарителя и приводило там к загрязнению деталей и рабочих сред продуктами разложения смазочного средства. Известные из уровня техники смазочные средства большей частью эмульгируют с рабочим телом (например, вода-водяной пар) или смешиваются (например, углеводороды). В любом случае эти известные из уровня техники смазочные средства имеют также давление пара. Этот пар смазочного средства практически неотделим от пара рабочего тела. В результате этого часть рабочего тела за счет транспортировки теплоносителя в круговом процессе попадает в испаритель, подвергаясь там воздействию высоких температур, которые приводят к преждевременному старению, химическому превращению (например, крекингу), вплоть до термического разрушения смазочного масла. Таким образом, смазочное средство изменяется по своим свойствам и больше не может в достаточной степени выполнять свои смазочные задачи.

В основе изобретения лежит задача создания способа эксплуатации парового цикла, при котором смазочное средство после детандера очень хорошо отделялось бы от рабочего тела.

Эта задача решается посредством признаков независимых пунктов формулы. Предпочтительные варианты осуществления изобретения являются объектом подчиненных им зависимых пунктов.

По п.1 задача решается посредством способа эксплуатации парового цикла, реализуемого в устройстве, содержащем испаритель или парогенератор для испарения жидкого рабочего тела и смазываемый смазочным средством детандер для вырабатывания двигательной энергии или для совершения механической работы, причем способ включает в себя следующие этапы:

а) жидкое рабочее тело (А) подается в испаритель (1), в котором оно испаряется и в виде пара подается в детандер (5);

б) в детандер (5) дополнительно подается в качестве смазочного средства ионическая жидкость (В), которая образует с жидким рабочим телом (А) при комнатной температуре две жидкие фазы;

в) образующая смазочное средство для детандера (5) ионическая жидкость отделяется перед испарителем (1) от рабочего тела (А).

Изобретение основано на том факте, что ионические жидкости, когда они образуют с рабочим телом в жидком состоянии при комнатной температуре (около 20°С или 239К) две жидкие фазы, очень хорошо подходят для использования в качестве смазочного средства. Разумеется, ионические жидкости имеют очень низкое давление пара, что благоприятно сказывается на предложенном способе.

При этом ионическая жидкость в качестве смазочного средства, отделенная в сепарирующем устройстве после детандера, выполненного, например, в виде содержащего, по меньшей мере, один рабочий поршень поршневого детандера, растворила очень мало или почти не растворила рабочее тело в каком-либо виде и за счет этого может снова подаваться в смазочный контур. В нем смазочное средство снова подается к трущимся частям детандера.

Ионические жидкости в смысле признанной литературы (например, Wasserscheid, Peter; Welton, Tom (Eds.); „Ionic Liquids in Synthesis“, Verlag Wiley-VCH 2008; ISBN 978-3-527-31239-9; Rogers, Robin D.; Seddon, Kenneth R. (Eds.); „Ionic Liquids - Industrial Applications to Green Chemistry“, ACS Symposium Series 818, 2002; ISBN 0841237891) являются жидкими органическими солями или смесями солей, состоящими из органических катионов и органических или неорганических анионов с температурами плавления ниже 100°С.

При осуществлении способа далее предпочтительно обеспечивается то, что ионическая жидкость в качестве смазочного средства обладает хорошими смазочными свойствами (вязкость, температурная стабильность, долговременная стабильность и т.д.), низкой коррозионной активностью и небольшими негативными воздействиями на окружающую среду (утилизация, ядовитость и т.д.).

Для использования в качестве смазочных или гидравлических жидкостей ионические жидкости обладают интересными свойствами, например небольшой склонностью к кавитации за счет неизмеримо низкого давления пара, очень высокой термической стабильностью, очень высокой жесткостью при сжатии (= небольшая сжимаемость), хорошими смазочными свойствами, высокими индексами вязкости, трудновоспламеняемостью вплоть до негорючести, высокой теплопроводностью и т.д. (см., например, A. Jimenez, M. Bermudez, P. Iglesias, F. Carrion, G. Martinez-Nicolas, Wear 260, 2006, 766-778; Z. Mu, F. Zhou, S. Zang, Y. Liang, W. Liu, Tribology International 2005, 38, 725-731; C. Jin, C. Ye, B. Phililips, J. Zabrinski, X. Liu, W. Liu, J. Shreeve, J. Mater, Chem. 2006, 16, 1529-1525 или DE 102008024284).

Ионические смазочные средства могут иметь дополнительно ионические и/или молекулярные добавки, например:

- уменьшители износа (anti wear);

- уменьшители трения (friction modifiers);

- для защиты от заедания (extreme pressure additives);

- модификаторы вязкости;

- улучшители индекса вязкости (VI improvers);

- для защиты от коррозии;

- для защиты от старения, антиоксиданты;

- антивспениватели (anti foam additives);

- биоциды;

- ПАВы и демульгаторы;

- диспергаторы и смачиватели;

- регуляторы кислотности;

- комплексообразователи;

- термостабилизаторы;

- гидролизные стабилизаторы.

Оказалось, что для первичного отделения ионического смазочного средства от рабочего тела особенно предпочтительной является почти количественная несмешиваемость рабочего тела с ионическим смазочным средством. Растворимость ионического смазочного средства в рабочем теле должна составлять предпочтительно <0,1 масс.%, предпочтительно <100 ppm (частей на миллион), более предпочтительно <10 ppm и особенно предпочтительно <1 ppm.

Растворимость рабочего тела в ионическом смазочном средстве должна составлять предпочтительно <5 масс.%, более предпочтительно <1 масс.% и особенно предпочтительно <0,1 масс.%.

Далее предпочтительно, если ионическая жидкость в качестве смазочного средства не оказывает эмульгирующего действия, т.е. не обладает или обладает лишь небольшими, снижающими поверхностное натяжение на границе раздела фаз свойствами.

Отделение действующей в качестве смазочного средства ионической жидкости от рабочего тела может осуществляться в рамках парового цикла в цельном или составном или в одно- или многоступенчатом сепарирующем устройстве, а именно, в принципе, на основе приведенных ниже в качестве примера принципов действия и/или аппаратной техники.

а) За счет отличия в плотности посредством силы тяжести или центробежной силы (с помощью ускоряющих полей): ионические жидкости, например 1-этил-3-метилимидазол-бис(трифторметилсульфонил)имид (см. US 5827602 и US 6531241, Covalent Associates Inc.) и 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфат (см. Journal of Fluorine Chemistry (2005), 126(8), 1150-1159), имеют плотности >1,5 г/см3, совершенно не смешиваются, например, с водой, не обладают никакой эмульгирующей способностью, однако обладают хорошими смазочными свойствами и совершенно устойчивы к гидролизу. Они полностью отделяются за счет отличия в плотности. В качестве альтернативы этому также ионические смазочные средства небольшой плотности (минимум 0,7 г/см3) могут комбинироваться с рабочими телами большой плотности, например фторированными углеводородами (плотностью 1,5-2,0 г/см3); в этом случае ионическое смазочное средство отделяется в виде верхней фазы.

б) Механическим путем.

в) За счет использования коалесцентных фильтров и/или коалесцентных сепараторов.

г) За счет использования полимеров в качестве фильтров, например полимеров пространственно-глобулярной структуры, ионообменных смол, мембран (например, ПТФЭ, нейлон) и других сорбирующих поверхностей, обладающих сродством с соответствующим ионическим смазочным средством, т.е. например, имеющими небольшое поверхностное натяжение на границе раздела фаз.

д) За счет ультрафильтрации.

е) За счет добавления деэмульгаторов, т.е. ПАВ, расщепляющих эмульсии.

ж) За счет испарения рабочего тела при температурах ниже температуры разложения ионического смазочного средства.

з) За счет использования сильных электрических полей.

и) На поверхностях электродов за счет приложения напряжения постоянного или переменного тока.

к) За счет ультразвука.

л) За счет какой-либо комбинации а)-к).

В случае многоступенчатого отделения ионического смазочного средства от рабочего тела после первичного отделения можно, при необходимости, удалить еще имеющиеся следы, например, посредством фильтрации и/или фильтрующей мембраны; фильтры могут состоять из описанных выше в в), г) или д) материалов, однако для удаления органических следов возможно также применение обычных ионообменных смол или же активированного угля, силикагеля или других адсорбентов. Также возможно электрохимическое окисление, например, с помощью алмазных электродов или электродов на основе смешанных оксидов Ru/Ta или Ru/Ir.

При этом особенно предпочтителен удлиненный колонноподобный сепарирующий резервуар, основание которого мало по сравнению с протяженностью по высоте или площади в направлении вертикальной оси, благодаря чему, в частности в случае подвижных объектов, например транспортного средства, можно обеспечить, во-первых, компактную конструкцию, а, во-вторых, затруднить перемешивание обеих фаз. Такие колонноподобные конструкции должны обязательно включать в себя резервуары, которые выполнены изогнутыми или извилистыми или выполнены так, по меньшей мере, на отдельных участках.

В качестве рабочего тела подходит, например, водяной пар или любое другое летучее или испаряющееся вещество, например аммиак, алканы, фторированные углеводороды, силоксаны или хладагент. Здесь необходимо упомянуть, что термин «парообразный» следует понимать в широком смысле и что он должен включать в себя обязательно также газообразные состояния рабочего тела.

Ионическими жидкостями, которые могут применяться в предложенном способе, являются, например, 1-этил-3-метилимидазол-бис(трифторметилсульфонил)имид или 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфат, 1-этил-3-метилимидазол-трис(перфторалкил)трифторфосфат, 1-этил-3-метилимидазол-этилсульфат, 1-этил-3-метилимидазол-метилсульфат, 1-этил-3-метилимидазол-метансульфонат, 1-этил-3-метилимидазол-диэтилфосфат, 1-этил-3-метилимидазол-дибутилфосфат, 1-этил-3-метилимидазол-дицианамид, 1-этил-3-метилимидазол-перфторалкилсульфонат, 1-этил-3-метилимидазол-перфторалкилкарбоксилат, 1-этил-3-метилимидазол-тиоцианат, 1-этил-3-метилимидазол-трицианометид, 1-пропил-3-метилимидазол-бис(трифторметилсульфонил)имид, или 1-пропил-3-метилимидазол-трис(перфторалкил)трифторфосфат, 1-пропил-3-метилимидазол-этилсульфат, 1-пропил-3-метилимидазол-метилсульфат, 1-пропил-3-метилимидазол-метансульфонат, 1-пропил-3-метилимидазол-диэтилфосфат, 1-пропил-3-метилимидазол-дибутилфосфат, 1-пропил-3-метилимидазол-перфторалкилсульфонат, 1-пропил-3-метилимидазол-перфторалкилкарбоксилат, 1-пропил-3-метилимидазол-дицианамид, 1-пропил-3-метилимидазол-тиоцианат, 1-пропил-3-метилимидазол-трицианометид, 1-бутил-3-метилимидазол-бис(трифторметилсульфонил)имид или 1-бутил-3-метилимидазол-трис(пентафторэтил)трифторфосфат, 1-бутил-3-метилимидазол-этилсульфат, 1-бутил-3-метилимидазол-метилсульфат, 1-бутил-3-метилимидазол-метансульфонат, 1-бутил-3-метилимидазол-диэтилфосфат, 1-бутил-3-метилимидазол-дибутилфосфат, 1-бутил-3-метилимидазол-перфторалкилсульфонат, 1-бутил-3-метилимидазол-перфторалкилкарбоксилат, 1-бутил-3-метилимидазол-дицианамид, 1-бутил-3-метилимидазол-тиоцианат, 1-бутил-3-метилимидазол-трицианометид, 1-этил-1-метилпирролидин-бис(трифторметилсульфонил)имид или 1-этил-1-метилпирролидин-трис(пентафторэтил)трифторфосфат, 1-этил-1-метилпирролидин-трис(перфторалкил)трифторфосфат, 1-этил-1-метилпирролидин-этилсульфат, 1-этил-1-метилпирролидин-метилсульфат, 1-этил-1-метилпирролидин-метансульфонат, 1-этил-1-метилпирролидин-диэтилфосфат, 1-этил-1-метилпирролидин-дибутилфосфат, 1-этил-1-метилпирролидин-дицианамид, 1-этил-1-метилпирролидин-перфторалкилсульфонат, 1-этил-1-метилпирролидин-перфторалкилкарбоксилат, 1-этил-1-метилпирролидин-тиоцианат, 1-этил-1-метилпирролидин-трицианометид, 1-бутил-1-метилпирролидин-бис(трифторметилсульфонил)имид, 1-бутил-1-метилпирролидин-трис(пентафторэтил)трифторфосфат, 1-бутил-1-метилпирролидин-трис(перфторалкил)трифторфосфат, 1-бутил-1-метилпирролидин-этилсульфат, 1-бутил-1-метилпирролидин-метилсульфат, 1-бутил-1-метилпирролидин-метансульфонат, 1-бутил-1-метилпирролидин-диэтилфосфат, 1-бутил-1-метилпирролидин-дибутилфосфат, 1-бутил-1-метилпирролидин-дицианамид, 1-бутил-1-метилпирролидин-перфторалкилсульфонат, 1-бутил-1-метилпирролидин-перфторалкилкарбоксилат, 1-бутил-1-метилпирролидин-тиоцианат, 1-бутил-1-метилпирролидин-трицианометид, тетраалкиламмоний-бис(трифторметилсульфонил)имид, тетраалкиламмоний-трис(пентафторэтил)трифторфосфат, тетраалкиламмоний-трис(перфторалкил)трифторфосфат, тетраалкиламмоний-этилсульфат, тетраалкиламмоний-метилсульфат, тетраалкиламмоний-метансульфонат, тетраалкиламмоний-диэтилфосфат, тетраалкиламмоний-дибутилфосфат, тетраалкиламмоний-дицианамид, тетраалкиламмоний-перфторалкилсульфонат, тетраалкиламмоний-перфторалкилкарбоксилат, тетраалкиламмоний-тиоцианат или тетраалкиламмоний-трицианометид или их смеси.

Для использования с водой или аммиаком в качестве рабочего тела подходят, в частности, такие ионические жидкости, которые содержат фторированные анионы и/или катионы с одной или несколькими алькильными цепями средней длины (С5-С10). Для использования с силоксанами, алканами или фторалканами в качестве рабочего тела подходят, в частности, такие ионические жидкости, которые содержат небольшие полярные, содержащие атомы кислорода анионы и/или катионы с одной или несколькими короткими, при необходимости, кислородзамещенными алькильными цепями (С1-С4).

Согласно одному конкретному варианту, может быть предусмотрено, что ионическая жидкость для смазки детандера вводится в парообразное рабочее тело по потоку перед детандером и, тем самым, в него вместе с рабочим телом. При этом речь идет о так называемой смешанной смазке. В качестве альтернативы или, при необходимости, также дополнительно к этому может быть также предусмотрено, что ионическая жидкость подается прямо в детандер для осуществления, например, циркуляционной смазки. Это значит, что здесь тогда ионическая жидкость целенаправленно подается к местам смазки детандера. Оба варианта гарантируют предпочтительную и обеспечивающую надежную смазку детандера подачу смазочного средства.

Согласно другому конкретному варианту, предложено, что парообразное рабочее тело перед его повторной подачей в испаритель и по потоку перед детандером подается, по меньшей мере, в один конденсатор, в котором оно перед повторной подачей в испаритель или парогенератор может быть функционально-надежно сжижено. Как уже говорилось выше, парообразное рабочее тело по потоку перед детандером подается далее, по меньшей мере, в одно сепарирующее устройство, в котором ионическая жидкость в одну или несколько ступеней может быть отделена от рабочего тела. Здесь возникают несколько разных возможностей расположения и/или последовательного включения конденсаторов и сепарирующих устройств, из которых предпочтительные возможности расположения поясняются ниже более подробно и в качестве примера.

Так, согласно первому варианту, может быть предусмотрено, что конденсатор расположен по потоку за детандером и по потоку перед сепарирующим устройством, так что в конденсатор может подаваться покидающая детандер смесь из рабочего тела и ионической жидкости.

В качестве альтернативы этому, согласно второму варианту, может быть предусмотрено, что конденсатор, в частности, в случае покидающего детандер в виде пара рабочего тела, расположен по потоку за сепарирующим устройством в контуре рабочего тела, так что в конденсатор может подаваться выходящее из сепарирующего устройства, по меньшей мере, частично парообразное рабочее тело.

При необходимости, может быть целесообразной также комбинация обоих вариантов.

Для особенно эффективного и экономичного парового цикла рабочее тело и действующая в качестве смазочного средства ионическая жидкость направляются каждая в своем контуре, причем оба контура в зависимости от конкретного выполнения, в частности в зависимости от вида смазки детандера, более или менее отделены друг от друга. Согласно особенно предпочтительному выполнению, предусмотрено, что действующая в качестве смазочного средства для детандера ионическая жидкость направляется в контуре смазочного средства таким образом, что она отводится, по меньшей мере, из одного резервуара для него и подается в детандер, откуда она снова возвращается, по меньшей мере, в один резервуар.

Этот резервуар может быть образован, в общем, по меньшей мере, одним сепарирующим устройством, в котором ионическая жидкость в одну или несколько ступеней отделяется от рабочего тела. Здесь сепарирующее устройство выполняет, тем самым, уменьшающую число деталей и, следовательно, конструктивное пространство двойную функцию: во-первых, в качестве резервуара для ионической жидкости или также в качестве резервуара для рабочего тела и, во-вторых, в качестве собственно сепаратора. В этой связи особенно предпочтительно, если резервуар для смазочного средства образован, по меньшей мере, одним описанным выше сепарирующим устройством, которое расположено по потоку за детандером и в которое подается выходящая от детандера смесь из рабочего тела и ионической жидкости.

Согласно другому предпочтительному выполнению, в случае полностью отделенных друг от друга контуров из рабочего тела и ионической жидкости предусмотрено, что резервуар для смазочного средства образован предусмотренной для детандера емкостью, в частности, в виде масляного поддона, в которой размещаются, с одной стороны, ионическая жидкость в качестве жидкой фазы, а с другой стороны, - поступающее в виде просачивающихся паров в контур смазочного средства парообразное рабочее тело в качестве паровой фазы. Из этой емкости ионическая жидкость подается в детандер отдельно и независимо от парообразного рабочего тела, а именно либо посредством насоса, либо за счет гравитационного слива. Эти просачивающиеся пары рабочего тела возникают, например, в поршневых детандерах и попадают туда вдоль боковой поверхности поршня из рабочей камеры в направлении картера. Скапливающееся в емкости парообразное рабочее тело также отводится из нее, например, посредством системы вентиляции картера, с помощью которой парообразное рабочее тело за счет своего давления пара может улетучиваться самопроизвольно (при необходимости, пары могут отсасываться также с помощью соответствующего вспомогательного средства).

Поскольку не только контур смазочного средства загрязняется просачивающимися парами, но и контур рабочего тела загрязняется ионической жидкостью, например, за счет пленки смазочного средства, образующейся на стенке рабочей камеры, например, одного поршня поршневого детандера, согласно другому предпочтительному выполнению, предусмотрено, что отводимое из емкости парообразное и загрязненное ионической жидкостью рабочее тело подается, по меньшей мере, в одно, расположенное по потоку за детандером сепарирующее устройство, в которое подается также выходящее из детандера и загрязненное ионической жидкостью рабочее тело. В этом случае особенно предпочтительно, что отводимое из емкости парообразное рабочее тело перед подачей, по меньшей мере, в одно сепарирующее устройство подается в конденсатор, в котором оно сжижается. Далее предпочтительно предусмотрено, что емкость соединена с сепарирующим устройством таким образом, что ионическая жидкость может течь из него в емкость и, при необходимости, наоборот. Такой подробно поясненный вариант способа простым образом гарантирует, что ионическая жидкость не будет концентрироваться в рабочем теле или в его контуре в слишком больших количествах, что повышает эксплуатационную надежность и, кроме того, обеспечивает также оптимальное компактное выполнение и оптимальный расчет оборудования и трубопроводов парового цикла.

Задача изобретения решается далее посредством устройства для эксплуатации парового цикла, в частности для осуществления способа по одному из пунктов формулы изобретения, содержащего, по меньшей мере, один испаритель или парогенератор для испарения жидкого рабочего тела и смазываемый смазочным средством детандер для вырабатывания двигательной энергии или для совершения механической работы, причем смазочное средство образовано ионической жидкостью, которая образует с жидким рабочим телом при комнатной температуре две жидкие фазы. Такое устройство дает те же преимущества, что и предложенный способ, так что в их повторе нет необходимости, и в этом отношении следует сослаться на приведенные выше рассуждения. То же относится к предпочтительным вариантам устройства.

Предложенные способ и устройство могут иметь универсальное назначение и применение. Приведенный здесь предпочтительный пример предусматривает применение способа и/или устройства в сочетании с устройством рекуперации тепла для автомобиля, в частности с ДВС, как это описано, например, в DE 102006028868 А1. В этой связи, согласно одному особенно предпочтительному конкретному варианту, предпочтительно связать непосредственно или косвенно с возможностью передачи тепла испаритель с источником тепла автомобиля, в частности с ДВС и/или системой выпуска ОГ и/или охладителем наддувочного воздуха. С другой стороны, детандер соединяется или связывается в этом случае предпочтительно с возможностью передачи усилия косвенно или непосредственно с трансмиссией, и/или работающим в качестве генератора электродвигателем, и/или, по меньшей мере, с одним потребителем в автомобиле, в частности системой охлаждения и/или кондиционирования в качестве потребителя.

Изобретение более подробно поясняется ниже со ссылкой на чертежи, на которых схематично и лишь в качестве примера изображены предпочтительные варианты его осуществления. На чертежах:

- фиг.1: принципиальная схема первого примера выполнения предложенного парового цикла, в котором отделение смазочного средства происходит в жидкой фазе парового контура;

- фиг.2: принципиальная схема второго примера выполнения предложенного парового цикла, в котором отделение смазочного средства происходит в парообразной фазе парового контура;

- фиг.3: принципиальная схема третьего примера выполнения предложенного парового цикла, в котором в отличие от варианта на фиг.1 ионическая жидкость в качестве смазочного средства примешивается по потоку перед детандером к парообразному рабочему телу;

- фиг.4: принципиальная схема четвертого примера выполнения предложенного парового цикла, в котором отделение смазочного средства происходит в жидкой фазе парового контура, а отделение пара от смазочного средства - в парообразной фазе.

На фиг.1 изображена схема первого примера выполнения предложенного парового цикла, в котором имеются контур рабочего тела А и контур действующей в качестве смазочного средства ионической жидкости В.

На фиг.1 изображено образованное, например, гравитационным сепаратором одноступенчатое сепарирующее устройство 4, посредством которого в жидкой фазе происходит отделение ионической жидкости В от рабочего тела А. Сепарирующее устройство 4 выполнено предпочтительно в виде колонноподобного резервуара максимально большой протяженности по высоте при относительно малой площади основания, что показано лишь схематично. Разумеется, возможны также еще более удлиненные или вытянутые варианты. Контур рабочего тела А (в данном случае жидкое рабочее тело легче действующей в качестве смазочного средства ионической жидкости) обозначен сплошной линией 6, а контур ионической жидкости В - штриховой линией 7.

Позицией 1 обозначен испаритель 1, в котором испаряется жидкое рабочее тело А. Для этого оно подается в него из сепарирующего устройства 4 посредством питающего насоса 2.

При этом подаваемая в испаритель 1 теплота испарения Qzu в зависимости от случая применения может происходить из разных источников тепла. В случае применения такого парового цикла в сочетании, например, с системой рекуперации тепла в автомобиле подаваемое в испаритель 1 тепло отбирается преимущественно из ДВС, и/или системы отвода ОГ, и/или охладителя наддувочного воздуха. В зависимости от места отбора тепла испаритель 1 может иметь в своем распоряжении разные температуры испарения, что в соответствии с заданным температурным уровнем требует соответственно приспособленного рабочего тела. Например, вода в качестве рабочего тела может использоваться только в том случае, если температура испарения в испарителе составляет заметно выше 100°С, как, например, в том случае, когда тепло отбирается из системы отвода ОГ.

Из испарителя 1 парообразное рабочее тело подается по трубопроводу 6 в детандер 5, где оно, расширяясь, совершает механическую работу. В зависимости от случая применения эта механическая работа может использоваться различным образом. В сочетании с автомобилем, например транспортным средством промышленного назначения, совершенная механическая работа может направляться к системе привода и/или посредством установленного в транспортном средстве электродвигателя, который может эксплуатироваться в качестве генератора, преобразовываться в ток и/или направляться к другому подходящему потребителю, например системе охлаждения.

В детандер 5 по трубопроводу 7 подается также смазочное средство, т.е. ионическая жидкость В. В нем она осуществляет смазку. В качестве альтернативы этому ионическая жидкость В может примешиваться к выходящему из испарителя 1 парообразному рабочему телу, однако также перед детандером 5, как это показано на фиг.3, которая в остальном идентична показанному на фиг.1 варианту.

Из детандера 5 смесь из парообразного рабочего тела А и ионической жидкости В поступает в конденсатор 3, где она сжижается. В зависимости от случая применения отходящее тепло Qab конденсатора 3 может снова подаваться в подходящую систему. В случае автомобиля, например транспортного средства промышленного назначения, напрашивается подача этого отходящего тепла, например, в его систему охлаждения. Сжиженная смесь подается в сепарирующее устройство 4, где ионическая жидкость В, поскольку она не смешивается с жидким рабочим телом А, скапливается в нижней части в виде более тяжелой жидкости.

Ионическая жидкость В отводится из сепарирующего устройства 4 насосом 8 со стороны зумпфа и по трубопроводу 7 снова подается в детандер 5.

Согласно изображенной на фиг.2 модификации варианта из фиг.1, можно также расположить конденсатор 3 по отношению к контуру рабочего тела А по потоку за сепарирующим устройством 4, в данном случае, тем самым, между ним и насосом 2. Этот вариант целесообразен, прежде всего, тогда, когда рабочее тело покидает детандер 5, по существу, только в виде пара. В этом случае, когда рабочее тело А покидает детандер 5, по существу, только в виде пара, возникает особенно хорошая возможность отделения парообразного рабочего тела от ионической жидкости В в сепарирующем устройстве 4, причем выходящая из последнего еще парообразная доля рабочего тела перед подачей в испаритель сжижается затем в конденсаторе 3.

На фиг.4 изображен еще один вариант, который в отношении расположения детандера 5, конденсатора 3, сепарирующего устройства 4 и испарителя 1 соответствует варианту на фиг.1, однако с тем отличием, что дополнительно к сепарирующему устройству 4 предусмотрено выполненное в виде емкости 10 устройство для отделения пара от смазочного средства, которое расположено, например, на детандере 5 по типу масляного поддона (подробно не показано). Эта емкость служит улавливающим сосудом для, в основном, парообразного рабочего тела А, которое в виде просачивающихся паров в рабочей камере поршня детандера 5, выполненного, например, в виде поршневого детандера, попадает из контура рабочего тела в контур 7 смазочного средства. Это парообразное рабочее тело скапливается в емкости 10 выше образующей жидкую фазу ионической жидкости В. Загрязненное ионической жидкостью в виде просачивающихся паров рабочего тела смазочное средство попадает при этом по отводящему его трубопроводу 13, предпочтительно с верхней стороны, в емкость 10, как это схематично показано на фиг.4.

От емкости 10 со стороны паровой фазы ответвляется представляющий здесь, например, вентиляцию картера отводящий трубопровод 12, посредством которого загрязненное ионической жидкостью в качестве смазочного средства парообразное рабочее тело подается в трубопровод 11 мятого пара, который ответвляется от детандера 5 и направляет загрязненное смазочным средством рабочее тело (загрязнения происходят, в частности, от слоев смазочной пленки на стенках рабочей камеры, так что смазочное средство может переходить из контура 7 в контур рабочего тела).

Этот загрязненный ионической жидкостью в качестве смазочного средства поток рабочего тела подается затем в конденсатор 3, в котором оно сжижается, прежде чем будет подаваться в сепарирующее устройство 4 вместе с ионической жидкостью. Скапливающаяся в его зумпфе ионическая жидкость за счет гравитационного слива или, как показано, опционально также посредством насоса 8 может подаваться в емкость 10, например, предпочтительно со стороны зумпфа.

Также может быть предусмотрен еще один насос 9 для смазочного средства, который всасывает ионическую жидкость В из емкости 10 и подает ее, например, в детандер 5.

Понятно, что также в сочетании с примером на фиг.4, в принципе, существует также возможность предусмотреть в качестве альтернативы или дополнительно смешанную смазку в соответствии с вариантом на фиг.2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для использования ионических жидкостей в качестве смазочного средства в паровом цикле в соответствии с идеей изобретения помимо подходящих смазочных свойств решающее значение имеет минимальная смешиваемость вырабатывающего пар рабочего тела со служащей в качестве смазочного средства ионической жидкости. Поскольку рабочее тело испаряется в испарителе, растворимость ионической жидкости в ней должна быть минимально возможной. Однако желательная также небольшая растворимость рабочего тела в ионической жидкости, чтобы достичь кавитационных повреждений в месте смазки.

Эксперимент 1

50 г 1-этил-3-метилимидазол-этилсульфата (ионическая жидкость) энергично смешивались с 50 г 1,1,3,3-тетраметилдисилоксана (вырабатывающее пар рабочее тело) в закрытой круглодонной колбе в течение 2 часов посредством магнитной мешалки и нагревательной бани при температуре 80ºС (типичная температура применения). Смесь переливалась в делительную воронку и вручную очень энергично встряхивалась в течение 1 минуты. По окончании встряхивания наблюдалось, что в течение нескольких секунд произошло чистое разделение фаз. По истечении времени ожидания 2 минуты (типичная продолжительность выдерживания для разделения фаз за счет гравитации при применении) обе фазы отделялись друг от друга и для измерения разливались в пробоотборные пузырьки (случай А: разделение за счет гравитации).

Весь процесс повторялся со второй пробой, причем дополнительно к разделению за счет гравитации отделенное рабочее тело фильтровалось посредством мембранного ПТФЭ-фильтра с размером ячеек 0,45 мкм (случай В: разделение за счет фильтрации).

Весь процесс повторялся с третьей пробой, причем дополнительно к разделению за счет гравитации отделенное рабочее тело центрифугировалось с частотой вращения 5000 об/мин в течение 10 минут, а затем фильтровалось посредством мембранного ПТФЭ-фильтра с размером ячеек 0,45 мкм (случай С: разделение за счет центрифугирования и фильтрации).

Измерение оставшейся ионической жидкости в рабочем теле

Взвешенное количество в несколько грамм отделенного 1,1,3,3-тетраметилдисилоксана выпаривалось в ротационном испарителе при 60°С и падающем вплоть до < 10 мбар давлении, чтобы отделить летучее рабочее тело от следов не испаряющейся ионической жидкости. Как хорошо известно специалисту, ионические жидкости, за немногим исключением, имеют почти неизмеримо малое давление пара и в этих условиях остаются количественно в осадке колбы. Этот осадок промывался 2-пропанолом puriss p.a. для УФ-спектроскопиии количественно в измерительную колбу объемом 10 мл и гомогенизировался. После этого измерялась экстинкция при длине волны 213 нм посредством УФ-спектрометра против кюветы с 2-пропанолом. Путем стандартного добавления чистой ионической жидкости 1-этил-3-метилимидазол-этилсульфат по 10 мл в расчете на первоначальное количество 1,1,3,3-тетраметилдисилоксана строилась градуировочная кривая, измерялось количество растворенной ионической жидкости и рассчитывалось на первоначальную концентрацию. Линейная регрессия градуировочной кривой R2 была лучше 0,95.

Результаты

Концентрация 1-этил-3-метилимидазол-этилсульфата в 1,1,3,3-тетраметилдисилоксане

Случай А (разделение за счет гравитации): 300 ppm

Случай В (разделение за счет центрифугирования): 43 ppm

Случай С (разделение за счет центрифугирования и фильтрации): 33 ppm

Оценка оставшегося рабочего тела в ионической жидкости

В противоположность ионической жидкости рабочее тело 1,1,3,3-тетраметилдисилоксан показывает в инфракрасном спектре спектрометра „Mattson-Galaxy 2020“ c ZnSe-ATR-измерительной ячейкой очень сильный пик при 2133 см-1. Отделенная ионическая жидкость (случай А) показывает при почти таком же волновом числе 2130 см-1 малый пик вблизи предела разрешения, который можно было однозначно идентифицировать как 1,1,3,3-тетраметилдисилоксан. При сравнении площади пика чистого дисилоксана в 4622 единицы с измеренной в отделенной ионической жидкости площадью в 42 единицы это дает оцениваемую концентрацию менее 1 мас.%.

Эксперимент 2

50 г 1-этил-3-метилимидазол-этилсульфата (ионическая жидкость) энергично смешивались с 50 г гексаметилдисилоксана (вырабатывающее пар рабочее тело) в закрытой круглодонной колбе в течение 2 часов посредством магнитной мешалки и нагревательной бани при температуре 80°С (типичная температура применения). Смесь переливалась в делительную воронку и вручную очень энергично встряхивалась в течение 1 минуты. По окончании встряхивания наблюдалось, что в течение нескольких секунд произошло чистое разделение фаз. Остальной эксперимент протекал аналогично эксперименту 1. Линейная регрессия градуировочной кривой R2 была лучше 0,95.

Результаты

Концентрация 1-этил-3-метилимидазол-этилсульфата в гексаметилдисилоксане

Случай А (разделение за счет гравитации): 350 ppm

Случай В (разделение за счет центрифугирования): 55 ppm

Случай С (разделение за счет центрифугирования и фильтрации): 26 ppm

Оценка оставшегося рабочего тела в ионической жидкости

Рабочее тело гексаметилдисилоксан не показывает в инфракрасном спектре никакой подходящей полосы и не измерялось.

Эксперимент 3

50 г 1-этил-3-метилимидазол-метансульфоната (ионическая жидкость) энергично смешивались с 50 г 1,1,3,3-тетраметилдисилоксана (вырабатывающее пар рабочее тело) в закрытой круглодонной колбе в течение 2 часов посредством магнитной мешалки и нагревательной бани при температуре 80°С (типичная температура применения). Смесь переливалась в делительную воронку и вручную очень энергично встряхивалась в течение 1 минуты. По окончании встряхивания наблюдалось, что в течение нескольких секунд произошло чистое разделение фаз. Остальной эксперимент протекал аналогично случаю С в эксперименте 1. Линейная регрессия градуировочной кривой R2 была лучше 0,95.

Результаты

Концентрация 1-этил-3-метилимидазол-метансульфоната в 1,1,3,3-тетраметилдисилоксане

Случай С (разделение за счет центрифугирования и фильтрации): 23 ppm

Оценка оставшегося рабочего тела в ионической жидкости

Рабочее тело 1,1,3,3-тетраметилдисилоксан измерялось аналогично эксперименту 1 посредством ИФ-спектроскопии и оценивалось с < 0,5 мас.%.

Эксперимент 4

50 г 1-этил-3-метилимидазол-метансульфоната (ионическая жидкость) энергично смешивались с 50 г гексаметилдисилоксана (вырабатывающее пар рабочее тело) в закрытой круглодонной колбе в течение 2 часов посредством магнитной мешалки и нагревательной бани при температуре 80°С (типичная температура применения). Смесь переливалась в делительную воронку и вручную очень энергично встряхивалась в течение 1 минуты. По окончании встряхивания наблюдалось, что в течение нескольких секунд произошло чистое разделение фаз. Остальной эксперимент протекал аналогично случаю С в эксперименте 1. Линейная регрессия градуировочной кривой R2 была лучше 0,95.

Результаты

Концентрация 1-этил-3-метилимидазол-метансульфоната в гексаметилдисилоксане

Случай С (разделение за счет центрифугирования и фильтрации): 11 ppm

Оценка оставшегося рабочего тела в ионической жидкости

Рабочее тело гексаметилдисилоксан не показывает в инфракрасном спектре никакой подходящей полосы и не измерялось.

Эксперимент 5

50 г 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфата (ионическая жидкость) энергично смешивались с 50 г дистиллированной воды (вырабатывающее пар рабочее тело) в закрытой круглодонной колбе в течение 2 часов посредством магнитной мешалки и нагревательной бани при температуре 80°С (типичная температура применения). Смесь переливалась в делительную воронку и вручную очень энергично встряхивалась в течение 1 минуты. По окончании встряхивания наблюдалось, что в течение нескольких секунд произошло чистое разделение фаз и не образовалось эмульсии. По истечении времени ожидания 2 минуты (типичная продолжительность выдерживания для разделения фаз за счет гравитации при применении) обе фазы отделялись друг от друга и для измерения разливались в пробоотборные пузырьки (случай А: разделение за счет гравитации).

Весь процесс повторялся со второй пробой, причем дополнительно к разделению за счет гравитации отделенное рабочее тело вода фильтровалось посредством мембранного ПТФЭ-фильтра с размером ячеек 0,45 мкм (случай В: разделение за счет фильтрации).

Весь процесс повторялся с третьей пробой, причем дополнительно к разделению за счет гравитации отделенное рабочее тело вода центрифугировалось с частотой вращения 5000 об/мин в течение 10 минут, а затем фильтровалось посредством мембранного ПТФЭ-фильтра с размером ячеек 0,45 мкм (случай С: разделение за счет центрифугирования и фильтрации).

Измерение оставшейся ионической жидкости в рабочем теле

Взвешенное количество в несколько грамм отделенной дистиллированной воды выпаривалось в ротационном испарителе при 60°С и падающем вплоть до < 10 мбар давлении, чтобы отделить летучее рабочее тело от следов не испаряющейся ионической жидкости. Как хорошо известно специалисту, ионические жидкости, за немногим исключением, имеют почти неизмеримо малое давление пара и в этих условиях остаются количественно в осадке колбы. Этот осадок промывался 2-пропанолом puriss p.a. для УФ-спектроскопиии количественно в измерительную колбу объемом 10 мл и гомогенизировался. После этого измерялась экстинкция при длине волны 213 нм посредством УФ-спектрометра против кюветы с 2-пропанолом. Путем стандартного добавления чистой ионической жидкости 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфата по 10 мл в расчете на первоначальное количество дистиллированной воды строилась градуировочная кривая, измерялось количество растворенной ионической жидкости и рассчитывалось на первоначальную концентрацию. Линейная регрессия градуировочной кривой R2 была лучше 0,95.

Результаты

Концентрация 1-этил-3-метилимидазол-трис(пентафторэтил) трифторфосфата в дистиллированной воде

Случай А (разделение за счет гравитации): 65 ppm

Случай В (разделение за счет центрифугирования): 45 ppm

Случай С (разделение за счет центрифугирования и фильтрации): 10 ppm

Измерение оставшейся воды в ионической жидкости

Содержание воды в отделенном 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфате определялось посредством кулонометрии по Карлу Фишеру и составило 3100 ppm.

1. Способ эксплуатации парового цикла, осуществляемого в устройстве, содержащем испаритель (1) или парогенератор для испарения жидкого рабочего тела (А) и смазываемый смазочным средством детандер (5) для совершения механической работы, причем способ включает в себя следующие этапы:
a) жидкое рабочее тело (А) подают в испаритель (1), в котором оно испаряется и в виде пара подается в детандер (5);
b) в детандер (5) дополнительно подают в качестве смазочного средства ионическую жидкость (В), которая образует с жидким рабочим телом (А) при комнатной температуре две жидкие фазы;
c) образующую смазочное средство для детандера (5) ионическую жидкость отделяют перед испарителем (1) от рабочего тела (А),
отличающийся тем, что растворимость ионического смазочного средства в рабочем теле составляет <0,1 масс. % и/или что растворимость рабочего тела в ионическом смазочном средстве составляет <1 масс. %.

2. Способ по п. 1, отличающийся тем, что ионическую жидкость для смазки детандера (5) вводят в парообразное рабочее тело (А) по потоку перед детандером (5) и, тем самым, подают в детандер (5) вместе с рабочим телом (А), и/или ионическую жидкость подают в детандер (5).

3. Способ по п. 1 или 2, отличающийся тем, что парообразное рабочее тело подают перед его повторной подачей в испаритель (1) и по потоку за детандером (5), по меньшей мере, в один конденсатор (3), в котором его сжижают.

4. Способ по п. 1 или 2, отличающийся тем, что парообразное рабочее тело (А) подают по потоку за детандером (5), по меньшей мере, в одно сепарирующее устройство (4), в котором ионическую жидкость (В) в одну или несколько ступеней отделяют от рабочего тела (А).

5. Способ по п. 3, отличающийся тем, что парообразное рабочее тело (А) подают по потоку за детандером (5), по меньшей мере, в одно сепарирующее устройство (4), в котором ионическую жидкость (В) в одну или несколько ступеней отделяют от рабочего тела (А).

6. Способ по п. 5, отличающийся тем, что конденсатор (3) расположен по потоку за детандером (5) и по потоку перед сепарирующим устройством (4), так что в конденсатор (3) подают покидающую детандер (5) смесь из рабочего тела (А) и ионической жидкости (В).

7. Способ по п. 5, отличающийся тем, что конденсатор (3), в частности в случае покидающего детандер (5) в виде пара рабочего тела (А), расположен по потоку за сепарирующим устройством (4) в контуре рабочего тела, так что в конденсатор (3) подают выходящее из сепарирующего устройства (4), по меньшей мере, частично парообразное рабочее тело (А).

8. Способ по п. 1, отличающийся тем, что действующую в качестве смазочного средства для детандера (5) ионическую жидкость (В) направляют в контуре смазочного средства с возможностью ее отвода, по меньшей мере, из одного резервуара (4; 10) для смазочного средства и ее подачи в детандер (5), откуда ее снова возвращают в указанный, по меньшей мере, один резервуар (4; 10) для смазочного средства.

9. Способ по п. 8, отличающийся тем, что резервуар (4; 10) для смазочного средства образован, по меньшей мере, одним сепарирующим устройством, в котором ионическую жидкость (В) в одну или несколько ступеней отделяют от рабочего тела (А).

10. Способ по п. 9, отличающийся тем, что парообразное рабочее тело (А) подают по потоку за детандером (5), по меньшей мере, в одно сепарирующее устройство (4), в котором ионическую жидкость (В) в одну или несколько ступеней отделяют от рабочего тела (А), при этом резервуар для смазочного средства образован указанным, по меньшей мере, одним расположенным по потоку за детандером (5) сепарирующим устройством (4), в которое подают выходящую из детандера (5) смесь из рабочего тела (А) и ионической жидкости (В).

11. Способ по п. 9 или 10, отличающийся тем, что рабочее тело и ионическую жидкость направляют в отдельных друг от друга контурах, причем резервуар для смазочного средства образован предназначенной для детандера (5) емкостью (10), в частности масляным поддоном детандера, в которой размещены, с одной стороны, ионическая жидкость (В) в виде жидкой фазы, а с другой стороны, по существу, парообразное рабочее тело (просачивающиеся пары) в виде паровой фазы, и из этой емкости (10) ионическую жидкость (В) подают в детандер (5) отдельно и независимо от парообразного рабочего тела (А) предпочтительно посредством насоса (9) или за счет гравитационного слива, причем в емкость (10) ионическую жидкость (В), выходящую из детандера (5), в частности из его картера, подают вместе с просачивающимися парами рабочего тела, при этом скапливающееся в емкости (10) парообразное рабочее тело (А) отводят из емкости (10).

12. Способ по п. 11, отличающийся тем, что отводимое из емкости (10) и, при необходимости, загрязненное ионической жидкостью парообразное рабочее тело (А) подают в указанное, по меньшей мере, одно расположенное по потоку за детандером (5) сепарирующее устройство (4), в которое в случае раздельных контуров рабочего тела и смазочного средства дополнительно подают выходящее из детандера (5) и загрязненное ионической жидкостью рабочее тело (А), причем предпочтительно предусмотрено, что отводимое из емкости (10) парообразное рабочее тело (А) перед подачей в указанное, по меньшей мере, одно сепарирующее устройство (4) подают в конденсатор (3), в котором парообразное рабочее тело (А) сжижают, и/или емкость (10) связана с сепарирующим устройством (4) с возможностью течения ионической жидкости (В) из сепарирующего устройства (4) к емкости (10), а также, при необходимости, наоборот.

13. Способ по п. 1, отличающийся тем, что устройство, с помощью которого осуществляют паровой цикл, является составной частью, по меньшей мере, одного устройства рекуперации тепла автомобиля, в частности автомобиля с двигателем внутреннего сгорания, так что в испаритель (1) подают отходящее тепло автомобиля, в частности двигателя внутреннего сгорания, и/или системы выпуска отработавших газов, и/или охладителя наддувочного воздуха, в качестве тепла, при этом совершенную детандером (5) механическую работу используют со стороны автомобиля, в частности подводят к его трансмиссии, и/или эксплуатируемому в качестве генератора электродвигателю и/или потребителю в автомобиле, в частности системе охлаждения и/или кондиционирования в качестве потребителя.

14. Способ по п. 1, отличающийся тем, что в качестве рабочего тела используют водяной пар или летучее вещество, в частности аммиак, алканы, фторированные углеводороды, силоксаны или хладагент.

15. Способ по п. 1, отличающийся тем, что в качестве ионической жидкости используют 1-этил-3-метилимидазол-бис(трифторметилсульфонил)имид или 1-этил-3-метилимидазол-трис(пентафторэтил)трифторфосфат, 1-этил-3-метилимидазол-трис(перфторалкил)трифторфосфат, 1-этил-3-метилимидазол-этилсульфат, 1-этил-3-метилимидазол-метилсульфат, 1-этил-3-метилимидазол-метансульфонат, 1-этил-3-метилимидазол-диэтилфосфат, 1-этил-3-метилимидазол-дибутилфосфат, 1-этил-3-метилимидазол-дицианамид, 1-этил-3-метилимидазол-перфторалкилсульфонат, 1-этил-3-метилимидазол-перфторалкилкарбоксилат, 1-этил-3-метилимидазол-тиоцианат, 1-этил-3-метилимидазол-трицианометид, 1-пропил-3-метилимидазол-бис(трифторметилсульфонил)имид, или 1-пропил-3-метилимидазол-трис(перфторалкил)трифторфосфат, 1-пропил-3-метилимидазол-этилсульфат, 1-пропил-3-метилимидазол-метилсульфат, 1-пропил-3-метилимидазол-метансульфонат, 1-пропил-3-метилимидазол-диэтилфосфат, 1-пропил-3-метилимидазол-дибутилфосфат, 1-пропил-3-метилимидазол-перфторалкилсульфонат, 1-пропил-3-метилимидазол-перфторалкилкарбоксилат, 1-пропил-3-метилимидазол-дицианамид, 1-пропил-3-метилимидазол-тиоцианат, 1-пропил-3-метилимидазол-трицианометид, 1-бутил-3-метилимидазол-бис(трифторметилсульфонил)имид или 1-бутил-3-метилимидазол-трис(пентафторэтил)трифторфосфат, 1-бутил-3-метилимидазол-трис(перфторалкил)трифторфосфат, 1-бутил-3-метилимидазол-этилсульфат, 1-бутил-3-метилимидазол-метилсульфат, 1-бутил-3-метилимидазол-метансульфонат, 1-бутил-3-метилимидазол-диэтилфосфат, 1-бутил-3-метилимидазол-дибутилфосфат, 1-бутил-3-метилимидазол-перфторалкилсульфонат, 1-бутил-3-метилимидазол-перфторалкилкарбоксилат, 1-бутил-3-метилимидазол-дицианамид, 1-бутил-3-метилимидазол-тиоцианат, 1-бутил-3-метилимидазол-трицианометид, 1-этил-1-метилпирролидин-бис(трифторметилсульфонил)имид или 1-этил-1-метилпирролидин-трис(пентафторэтил)трифторфосфат, 1-этил-1-метилпирролидин-трис(перфторалкил)трифторфосфат, 1-этил-1-метилпирролидин-этилсульфат, 1-этил-1-метилпирролидин-метилсульфат, 1-этил-1-метилпирролидин-метансульфонат, 1-этил-1-метилпирролидин-диэтилфосфат, 1-этил-1-метилпирролидин-дибутилфосфат, 1-этил-1-метилпирролидин-дицианамид, 1-этил-1-метилпирролидин-перфторалкилсульфонат, 1-этил-1-метилпирролидин-перфторалкилкарбоксилат, 1-этил-1-метилпирролидин-тиоцианат, 1-этил-1-метилпирролидин-трицианометид, 1-бутил-1-метилпирролидин-бис(трифторметилсульфонил)имид, 1-бутил-1-метилпирролидин-трис(пентафторэтил)трифторфосфат, 1-бутил-1-метилпирролидин-трис(перфторалкил)трифторфосфат, 1-бутил-1-метилпирролидин-этилсульфат, 1-бутил-1-метилпирролидин-метилсульфат, 1-бутил-1-метилпирролидин-метансульфонат, 1-бутил-1-метилпирролидин-диэтилфосфат, 1-бутил-1-метилпирролидин-дибутилфосфат, 1-бутил-1-метилпирролидин-дицианамид, 1-бутил-1-метилпирролидин-перфторалкилсульфонат, 1-бутил-1-метилпирролидин-перфторалкилкарбоксилат, 1-бутил-1-метилпирролидин-тиоцианат, 1-бутил-1-метилпирролидин-трицианометид, тетраалкиламмоний-бис(трифторметилсульфонил)имид, тетраалкиламмоний-трис(пентафторэтил)трифторфосфат, тетраалкиламмоний-трис(перфторалкил)трифторфосфат, тетраалкиламмоний-этилсульфат, тетраалкиламмоний-метилсульфат, тетраалкиламмоний-метансульфонат, тетраалкиламмоний-диэтилфосфат, тетраалкиламмоний-дибутилфосфат, тетраалкиламмоний-дицианамид, тетраалкиламмоний-перфторалкилсульфонат, тетраалкиламмоний-перфторалкилкарбоксилат, тетраалкиламмоний-тиоцианат или тетраалкиламмоний-трицианометид или ионическую жидкость, которая содержит фторированные анионы и/или катионы с одной или несколькими алькильными цепями средней длины (С5-С10), или ионическую жидкость, которая содержит небольшие полярные, содержащие атомы кислорода анионы и/или катионы с одной или несколькими короткими, при необходимости, кислородзамещенными алькильными цепями (С1-С4), или смесь какой-либо из описанных ионических жидкостей.

16. Способ по п. 1, отличающийся тем, что растворимость ионического смазочного средства в рабочем теле составляет <100 ppm, более предпочтительно <10 ppm и особенно предпочтительно <1 ppm.

17. Способ по п. 1, отличающийся тем, что растворимость рабочего тела в ионическом смазочном средстве составляет <0,1 масс. %.

18. Устройство для эксплуатации парового цикла, в частности для осуществления способа по одному из предыдущих пунктов, по меньшей мере, содержащее испаритель (1) или парогенератор для испарения жидкого рабочего тела (А) и смазываемый смазочным средством детандер (5) для совершения механической работы, причем смазочное средство образовано ионической жидкостью (В), которая образует с жидким рабочим телом (А) при комнатной температуре две жидкие фазы, отличающееся тем, что растворимость ионического смазочного средства в рабочем теле составляет <0,1 масс. % и/или что растворимость рабочего тела в ионическом смазочном средстве составляет <1 масс. %.

19. Устройство по п. 18, отличающееся тем, что за детандером (5) установлен, по меньшей мере, один конденсатор (3) и/или, по меньшей мере, одно сепарирующее устройство (4), причем предпочтительно предусмотрено, что конденсатор (3) расположен по потоку перед и/или по потоку за сепарирующим устройством (4).

20. Устройство по п. 18 или 19, отличающееся тем, что предусмотрено по одному отдельному контуру для рабочего тела (А) и для действующей в качестве смазочного средства для детандера (5) ионической жидкости, в частности, таким образом, что по потоку за детандером (5) расположено по меньшей мере одно служащее резервуаром для рабочего тела (А) и/или для ионической жидкости (В) сепарирующее устройство (4), выполненное с возможностью подачи в него загрязненного конической жидкостью, выходящего из детандера (5) рабочего тела и/или загрязненной рабочим телом (А) ионической жидкости (В).

21. Устройство по п. 20, отличающееся тем, что для детандера (5) в качестве резервуара для ионической жидкости (В) предусмотрена емкость (10), в частности, выполненная по типу масляного поддона, с возможностью подачи в нее загрязненной рабочим телом, выходящей из детандера (5) ионической жидкости, при этом от емкости (10) к сепарирующему устройству (4) ведет трубопровод, предпочтительно направленный через конденсатор (3).

22. Устройство по п. 19, отличающееся тем, что сепарирующее устройство (4) выполнено в виде удлиненной колонноподобной сепарирующей емкости.

23. Устройство рекуперации тепла для автомобиля, в частности, с двигателем внутреннего сгорания, с устройством по п. 18 для осуществления способа по п. 1.

24. Устройство рекуперации тепла по п. 23, отличающееся тем, что испаритель (1) непосредственно или косвенно связан с возможностью передачи тепла с источником тепла автомобиля, в частности с двигателем внутреннего сгорания, и/или системой выпуска отработавших газов и/или охладителем наддувочного воздуха.

25. Устройство рекуперации тепла по п. 23 или 24, отличающееся тем, что детандер (5) косвенно или непосредственно соединен или связан с возможностью передачи усилий с трансмиссией и/или эксплуатируемым в качестве генератора электродвигателем и/или, по меньшей мере, с одним потребителем в автомобиле, в частности системой охлаждения и/или кондиционирования в качестве потребителя.



 

Похожие патенты:

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Изобретение относится к энергетике. Устройство прямого испарения для использования в системе рекуперации энергии в органическом цикле Ренкина содержит корпус, имеющий входное отверстие для газообразного источника тепла и выходное отверстие для газообразного источника тепла и ограничивающий проточный проход для газообразного источника тепла от входного отверстия к выходному отверстию; и теплообменную трубку, расположенную в проточном проходе для газообразного источника тепла, выполненную с возможностью вмещения рабочей текучей среды в органическом цикле Ренкина и имеющую входное отверстие для - рабочей текучей среды и выходное отверстие для рабочей текучей среды.

Тепловая машина предназначена для преобразования энергии тепловых отходов на тепловых электростанциях в механическую энергию с целью вторичной выработки электроэнергии.

Изобретение относится к многофункциональным энергетическим установкам, в которых в качестве рабочего вещества используют сжатый газ или жидкость под высоким давлением.

Изобретение относится к способу и системе для производства энергии из геотермального теплового источника. .

Изобретение относится к области производства электроэнергии, кислорода, инертных газов, холода, пресной воды; накопления, хранения и регенерации энергии. .

Изобретение относится к энергетике. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к энергетике. Теплоутилизационная система содержит клапанную систему, выполненную с возможностью переключения между положением рекуперации сбросного тепла, при котором обеспечивается направление входящего выхлопного газа через внутреннее пространство выхлопной секции двигателя, и байпасным положением, при котором обеспечивается направление указанного входящего газа по перепускному контуру для обхода котла-утилизатора, расположенного в указанном внутреннем пространстве. Кроме того, система содержит устройство продувки инертным газом, выполненное с возможностью введения инертного газа в указанное внутреннее пространство, с обеспечением удаления остаточного выхлопного газа из указанного пространства. Также представлены вариант выполнения теплоутилизационной системы и способ продувки остаточных выхлопных газов из теплоутилизационной системы. Изобретение позволяет повысить эффективность теплоутилизационной системы, а также позволяет гасить и предотвращать воспламенение внутри выхлопного трубопровода. 3 н.и 17 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Рекуперационная установка для источника отходящего тепла состоит из органического цикла Ренкина (ОЦР), последовательно предусмотренного после этого источника отходящего тепла, который соединен с нагревательным устройством ОЦР-цикла, а также с расширительной машиной для расширения пара в ОЦР-цикле, связанной с генератором и имеющей систему магнитных опор с относящимся к ней регулирующим устройством и электропитанием через промежуточное звено постоянного тока, входящее в состав преобразователя частоты генератора. При исчезновении напряжения сети электрическая энергия, которая продолжает вырабатываться работающим по инерции генератором, используется для питания системы магнитных опор с относящимся к ней регулирующим устройством. Изобретение позволяет обеспечить надежную работу установки при исчезновении напряжения сети. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. Способ работы газотурбинной установки, включающей дополнительный контур с низкокипящим рабочим телом, включающий входное устройство, сообщенное с источником низкокипящего рабочего тела, теплообменный аппарат, турбину, сообщенную с дополнительным приводом. Рабочее тело-воздух первого контура после входного устройства охлаждают в первом теплообменном аппарате, далее после сжатия в компрессоре низкого давления и последующего охлаждения рабочего тела во втором теплообменном аппарате, рабочее тело расширяют до отрицательной температуры в турбодетандере и охлаждают в расположенном за ним третьем теплообменном аппарате, после сжатия в компрессоре высокого давления, горения в камере сгорания, расширения в турбинах высокого, низкого давлений, в силовой турбине и вращения привода потребителя отработавшие газы основного контура направляют в теплообменный аппарат дополнительного контура, куда одновременно подают низкокипящее рабочее тело, подогревают его отработавшими газами основного контура для срабатывания теплоперепада в турбине дополнительного контура, после чего низкокипящее рабочее тело из-за турбины подают в вышеупомянутый третий теплообменный аппарат перед компрессором высокого давления основного контура и далее в циркуляционный насос, где низкокипящее рабочее тело сжимается, и в жидком состоянии его подают для охлаждения рабочего тела-воздуха в теплообменные аппараты основного контура. Позволяет повысить КПД установки и увеличить полезную работу цикла. 2 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, а именно к тепловым двигателям, использующим разницу температур и преобразующим тепловую энергию в механическую или электрическую. Тепловой двигатель содержит множество шлюзов и кольцевую теплообменную трубу, проходящую сквозь эти шлюзы. При этом шлюзы заполнены воздухом одинаковой массы, находящимся при разной температуре, от самой высокой, которая на заданную величину меньше температуры окружающей среды, в шлюзе, являющемся на данный момент первым, до самой низкой, которая на заданную величину меньше температуры в первом шлюзе, в шлюзе являющемся на данный момент последним. Причем каждый шлюз циклически проходит все стадии нагрева воздуха от самой низкой температуры до самой высокой температуры за счет теплообмена с кольцевой трубой. Кольцевая теплообменная труба соединена множеством труб, количество которых равно количеству шлюзов, с первой газовой турбиной, которая соединена через фильтр с атмосферой. Выпускное отверстие каждого шлюза соединено со второй газовой турбиной. При циклической работе двигателя воздух, проходя через первую турбину и кольцевую теплообменную трубу, заполняет шлюз, охлаждаясь до минимальной температуры, затем нагревается за счет теплообмена с кольцевой теплообменной трубой до максимальной температуры и выпускается под давлением во вторую турбину. Техническим результатом, достигаемым предложенным изобретением, является повышение эффективности работы теплового двигателя и расширение его функциональных возможностей, заключающееся в дополнительном производстве холода в промышленных масштабах. 5 ил.

Система с замкнутым циклом для утилизации отработанного тепла содержит теплообменник, детандер, рекуператор, конденсаторный узел и насос. Теплообменник выполнен с возможностью передачи тепла от внешнего источника тепла к рабочей текучей среде. Детандер проточно соединен с выходным отверстием теплообменника и выполнен с возможностью расширения рабочей текучей среды и производства механической энергии. Рекуператор проточно соединен с выходным отверстием детандера и выполнен с возможностью отвода тепла от рабочей текучей среды. Конденсаторный узел проточно соединен с выходным отверстием рекуператора и выполнен с возможностью конденсации рабочей текучей среды. Указанный конденсаторный узел содержит многоступенчатый компрессор, проточно соединенный с первым охлаждающим устройством и вторым охлаждающим устройством. Первое охлаждающее устройство расположено выше по потоку от многоступенчатого компрессора. Второе охлаждающее устройство расположено ниже по потоку от упомянутого многоступенчатого компрессора. Конденсаторный узел выполнен с возможностью изменения состояния рабочей текучей среды с переходом в сверхкритическое состояние. Насос проточно соединен с выходным отверстием конденсаторного узла и выполнен с возможностью нагнетания сконденсированной рабочей текучей среды обратно в рекуператор. Рекуператор проточно соединен с теплообменником, так что рабочая текучая среда следует по замкнутому пути. Заявленная система утилизации тепла может работать с относительно большим отношением давлений цикла утилизации, благодаря чему появляется возможность использования охлаждающих сред с более низкими температурами и повышается энергетическая эффективность цикла утилизации тепла как вследствие более эффективного теплообмена, так и вследствие сокращения потребления энергии насосом. Таким образом, предложенная система позволяет уменьшить удельную стоимость утилизированного тепла благодаря повышению термодинамической эффективности цикла утилизации тепла. 3 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к тепловому двигателю для выполнения органического цикла (ORC) Ренкина, который содержит испаритель, двигатель, конденсатор и контур, содержащий текучую рабочую среду, при этом рабочая среда имеет критическое давление (pc) в диапазоне от 4000 кПа до 6500 кПа, предпочтительно от 4200 кПа до 6300 кПа, рабочая среда имеет критическую температуру (Tc) в диапазоне от 450 К до 650 К, предпочтительно от 460 К до 600 К, рабочая среда имеет молярную массу в диапазоне от 50 г/моль до 80 г/моль, предпочтительно от 60 г/моль до 75 г/моль, и газообразная рабочая среда частично конденсируется во время адиабатического расширения. Изобретение также относится к использованию в тепловом двигателе рабочей среды, имеющей критическое давление (pc) в диапазоне от 4000 кПа до 6500 кПа, предпочтительно от 4200 кПа до 6300 кПа, имеющей критическую температуру (Tc) в диапазоне от 450 К до 650 К, предпочтительно от 460 К до 600 К, и имеющей молярную массу в диапазоне от 50 г/моль до 80 г/моль, предпочтительно от 60 г/моль до 75 г/моль, при этом газообразная рабочая среда частично конденсируется во время адиабатического расширения в органическом цикле (ORC) Ренкина. Изобретение позволяет повысить эффективность теплового двигателя. 2 н. и 9 з.п. ф-лы, 8 ил., 4 табл.
Наверх