Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель



Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель
Способ улучшения экономичности газотурбинного двигателя и газотурбинный двигатель

 


Владельцы патента RU 2572258:

Болотин Николай Борисович (RU)
Дудышев Валерий Дмитриевич (RU)

Газотурбинный двигатель содержит воздушный тракт, содержащий, в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбину, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива. Газотурбинный двигатель содержит активатор воздуха, который установлен вне двигателя, и его вход присоединен к выходу из компрессора, а выход из активатора воздуха соединен с камерой сгорания. Изобретение направлено на повышение энергетических возможностей газотурбинного двигателя. 19 ил.

 

Изобретение относится к двигателестроению, конкретно к авиационным двигателям для гражданских, военных, дозвуковых и сверхзвуковых и гиперзвуковых самолетов.

Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2029118, МПК F02C 3/04, опубл. 20.05.1995 г., со вспомогательным контуром, работающим на водороде, во вспомогательный контур введен дополнительный воздушный тракт, связывающий выход из свободного компрессора со вспомогательной камерой. Водород в контуре двигателя играет роль хладагента. Для охлаждения турбины основного контура используется воздух высокого давления, который после охлаждения турбины подается в камеру сгорания промежуточного перегрева, куда поступает одновременно перешедший в газообразное состояние сжиженный воздух.

Недостаток - низкие удельные характеристики двигателя вследствие малой степени сжатия воздуха в компрессоре.

Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2320889, МПК F02K 3/04, опубл. 27.03.2008 г., который содержит вентилятор, высоконапорный скоростной компрессор, мультипликатор, пароводяной нагреватель (генератор пара), форсажную камеру, турбодетандер с тепломассообменным аппаратом. Двигатель также имеет трехступенчатую активно-реактивную турбину, у которой третья ступень радиально-осевая, проточная часть которой переходит в критическое сверхзвуковое сечение сопла Лаваля, окруженное аккумулятором пара. Высоконапорный скоростной компрессор выполнен комбинированным со степенью повышения давления, равной 60. Двигатель рассчитан на тягу не менее 150 тонн с расходом воздуха через первый контур 600 кг/с, через второй контур - 1200 кг/с, температурой газа пред турбиной 2000 K. Вентилятор имеет наружный диаметр лопастей первого ряда 4000 мм. Внутри корпуса сопла Лаваля установлены форсунки подачи атомарного водорода для дожигания несгоревшего окислителя. Диски высоконапорного скоростного компрессора выполнены комбинированными - к осевым ступеням добавлены центробежные нагнетающие. Сопло Лаваля снабжено центральным телом, через отверстия которого подается паровоздушная смесь, создающая внешнюю упругую «оболочку-подушку», что позволяет изменять площадь проходного критического сечения сопла Лаваля.

Недостатки:

- низкий уровень силы тяги на максимальном режиме, относительно низкие удельные параметры, например удельный расход топлива, недостаточная степень сжатия компрессора;

- высокая стоимость водородного топлива (стоимость водорода более чем в 100 раз превышает стоимость углеводородного топлива - авиационного керосина);

- большие объемы топливных баков водородного топлива из-за низкой плотности водорода (плотность водорода примерно в 10 раз меньше плотности углеводородных топлив);

- низкие удельные параметры объясняются тем, что создать компрессор со степенью сжатия более 30…40 невозможно, из-за того, что температура воздуха на выходе из него превысит 800°C. Кроме того, энергетического потенциала газовой турбины недостаточно для привода более мощного компрессора из-за ограничений температуры газов на входе в турбины диапазоном 1700…1800K, в первую очередь из-за снижения ресурса рабочих лопаток газовой турбины при повышении их температуры. Рабочие лопатки газовой турбины находятся на большом диаметре, вращаются с огромными окружными скоростями, следовательно, на них действуют значительные центробежные нагрузки. Прочностные свойства материалов при увеличении температуры ухудшаются;

- значительное снижение силы тяги или полная неработоспособность двигателя на очень больших высотах из-за недостатка воздуха.

Известен газотурбинный двигатель (Кулагин И.И. Основы теории авиационных газотурбинных двигателей, Москва, Военное издательство министерства обороны СССР, 1967, стр. 42…44, рис. 19 ), прототип.

Этот двигатель содержит воздушный тракт, содержащий, в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбины, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива.

Недостатки: относительно низкие удельные характеристики двигателя как удельная тяга, КПД узлов из-за неполного сгорания топлива.

Практически во всех двигателях до 5% топлива не сгорает. Теоретически можно увеличить полноту сгорания топлива в камере сгорания еще на 2…3%, но это приведет к увеличению габаритов камеры сгорания и увеличению веса двигателя.

Задачи создания изобретения: повышение энергетических возможностей газотурбинного двигателя и улучшение его удельных характеристик.

Достигнутые технические результаты: повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик.

Решение указанных задач достигнуто в газотурбинном двигателе, содержащем воздушный тракт, содержащий, в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбины, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива, тем,

что применен активатор воздуха, который установлен вне двигателя, и его вход присоединен к выходу из компрессора, а выход из активатора воздуха соединен с камерой сгорания.

Сущность изобретения поясняется на фиг. 1…19, где:

- на фиг. 1 приведена схема газотурбинного двигателя с активатором воздуха, установленным в воздухозаборнике,

- на фиг. 2 приведена схема газотурбинного двигателя с активатором воздуха, установленным за компрессором,

- на фиг. 3 приведена схема газотурбинного двигателя с активатором воздуха, установленным между ступенями компрессора,

- на фиг 4 и 5 приведена схема радиальной установки электродов,

- на фиг. 6 и 7 приведена схема параллельной установки электродов,

- на фиг. 8 и 9 приведена схема консольной радиальной установки электродов,

- на фиг. 10 и 11 приведена схема консольной параллельной установки электродов.

- на фиг. 12 приведена конструкция секции из двух электродов,

- на фиг. 13 приведен разрез А-А, первый вариант,

- на фиг. 14 приведен разрез А-А, второй вариант,

- на фиг. 15 приведен разрез А-А, третий вариант,

- на фиг. 16 приведена схема газотурбинного двигателя с активатором воздуха, установленный вне двигателя,

- на фиг. 17 приведена конструкция выносного ионизатора,

- на фиг. 18 приведена камера сгорания,

- на фиг. 19 приведен второй вариант камеры сгорания.

Предложенный газотурбинный двигатель (фиг. 1…19) содержит воздушный тракт 1, содержащий в свою очередь воздухозаборник 2, компрессор 3, камеру сгорания 4, турбину 5 и реактивное сопло 6. Реактивное сопло 6 предпочтительно выполнить сверхзвуковым.

Компрессор 3 содержит несколько ступеней 7, каждая из которых содержит направляющий аппарат 8 и рабочее колесо 9. Турбина 5 содержит по меньшей мере одну ступень 10. Каждая ступень 10 содержит сопловой аппарат 11 и рабочее колесо 12. Камера сгорания 4 содержит жаровую трубу 13, форсуночную плиту 14 с форсунками 15 для подачи топлива. Более подробно конструкция камеры сгорания 4 приведена далее со ссылкой на фиг. 5. Валы 16 и 17 соединяют рабочие колеса 9 компрессора 3 и рабочих колес 12 турбины 5 и установлены на опорах 18.

Особенностью предложенного ГТД является наличие активатора воздуха 19. При этом возможна установка в воздушном тракте 1 (фиг. 1…3) или вне двигателя (фиг. 18 и 19). Кроме того, к валу 16 через редуктор 20 валом отбора 21 присоединен электрогенератор 22, который электрическими связями 23 соединен с источником высокого напряжения 24, который высоковольтными проводами 25 соединен с активатором воздуха 19, точнее с его электродами 26 и 27. Источник высокого напряжения 24 рассчитан на 20…30 кВ.

В зависимости от напряжения между электродами 26 и 27 и расстояния между ними в воздухе будут образовываться ионы или озон или их смесь.

Озон

Озон (О3) (от греч. , «пахну») - простое вещество состава О3, одно из аллотропических видоизменений элемента кислорода. В отличие от наиболее распространенной в атмосфере Земли молекулярной формы, кислорода О3, молекула озона состоит из трех атомов. Чистый озон при обыкновенных условиях представляет из себя резко пахнущий взрывчатый газ, в толстом слое синего цвета, обладает сильнейшими окислительными свойствами.

История открытия

История открытия озона довольно туманна, и в целом ряду научных энциклопедий приводятся различные авторы открытия озона. В настоящее время научным сообществом принято, что озон был впервые найден в начале 1785 года Ван-Марумом, по характерному запаху и окислительным свойствам, обнаруженным в воздухе, после длительного пропускания в последнем электрических искр. Ван-Марум сделал вывод, что озон - это так называемая «электрическая материя».

В 1840 году Шенбейн произвел сопоставление свойств газообразного кислорода при пропускании в нем электрических искр, и после выделения его электролитически, и объяснил изменение физических и химических свойств видоизмененного кислорода тем, что он при обработке электрическими искрами переходит в иное молекулярное состояние.

Позже Мариньяк и де ля Рив подтвердили, что озон является аллотропической модификацией кислорода. В дальнейшем известный изобретатель Никола Тесла запатентовал (22 сентября 1896 г.) первый в истории озонатор, а в 1857 г. Вернер фон Сименс с помощью созданной им «совершенной трубки магнитной индукции» построил первый промышленный озонатор. В 1901 г. фирмой «Сименс» построена первая гидростанция с мощным озонатором в городе Висбанд.

Физические свойства

- Температура кипения: -111,9°C

- Температура критическая: -12,1°C

- Температура начала разложения:

- Теплота образования (жидк) (ккал/моль): +30,4

- Теплота образования (газ) (ккал/моль):

- Теплота плавления (ккал/моль): 0,5

- Теплота испарения: (ккал/моль): 3,626

- Критическое давление, 54,6 атм:

- Плотность:

- Плотность критическая:

Озон хорошо растворяется в воде (при обычных условиях 0,45 объема/1 объем воды) и при этом его водный раствор приобретает тонкую голубоватую окраску. Значительно лучше озон растворяется в различных хлор- и фторопроизводных углеводородов (фреонах), например при обычных условиях в четыреххлористом углероде растворяется 3 объема озона/1 объем и раствор имеет красивый и насыщенный голубой цвет.

Химические свойства

Образование озона проходит по обратимой реакции:

3O2+68 ккал (285 кДж)←→2O3.

Озон представляет из себя весьма реакционноспособное химическое вещество, химическая активность которого исключительно велика. Это его свойство обусловлено тем, что трехатомная молекула озона способна к легкому распаду и дополнительному выделению энергии (озон эндотермичен). Освобождающийся атом кислорода имеет чрезвычайно высокую активность, усиленную дополнительной энергией. Так, например, при комнатной температуре озон взаимодействует практически со всеми химическими элементами и их химическими соединениями. Под действием газообразного озона все металлы кроме Au, Pt, Ir превращаются в оксиды или покрываются тонкой оксидной пленкой, сульфиды, селениды, теллуриды окисляются до сульфатов, селенатов, теллуратов, аммиак окисляется до азотистой и азотной кислоты и т.д. Резина чрезвычайно быстро разрушается озоном (охрупчивается и рассыпается в порошок), а многие горючие органические вещества (спирты, кетоны, углеводороды и т.д.) при соприкосновении с озоном воспламеняются или взрываются. После некоторого поверхностного окисления довольно хорошо противостоят воздействию озона Cu, Ni, Sn, а также безуглеродистые сплавы железа с 25% хрома. Бактерии, грибы и вирусы при взаимодействии с озоном полностью разрушаются, что находит широкое применение для обеззараживания самых разнообразных сред. В присутствии небольших количеств HNO3 озон стабилизируется, а в герметичных сосудах из стекла, некоторых пластмасс или чистых металлов озон при низких температурах (-78°C) практически не разлагается.

Более детально конструкция активатора показана на фиг. 4…11. Активатор 19 содержит кроме электродов 26 и 27 внутренний диэлектрический корпус 28 и внешний диэлектрический корпус 29, установленный внутри корпуса 30 двигателя. При этом электроды 26 и 27 могут быть установлены радиально (фиг. 4 и 5) или параллельно (фиг. 6 и 7). Электроды 26 и 27 могут быть выполнены радиальными и консольными (фиг. 8 и 9) или параллельными и консольными (фиг. 10 и 11).

Электроды 26 и 27 могут быть выполнены в виде параллельных пластин с острыми кромками 31 (фиг. 12), или в виде ромбов (фиг. 13), или в виде обтекаемых профилей (фиг. 14). Электроды 26 и 27 образуют секцию, которая монтируется на приливах на корпусе 20 при помощи крышки 32 из электроизоляционного материала (фиг. 15). Острые кромки 31 способствую активации процесса электрического разряда.

Воздушно-реактивный двигатель (фиг. 1) содержит систему топливоподачи. Система подачи топлива содержит бак 33 для хранения топлива, топливопровод низкого давления 34, подключенный к выходу из бака 33. К топливопроводу низкого давления 34 присоединены насос 35, топливопровод высокого давления 36, регулятор расхода 37 и отсечной клапан 38.

Второй вариант ГТД (фиг. 16) с выносным активатором дополнительно содержит трубопровод отбора воздуха 39, присоединенный к выходу из компрессора 3, присоединенный к активатору воздуха 19, выход из которого трубопроводом 40 соединен с камерой сгорания 4.

Конструкция выносного активатора 19 приведена на фиг. 17. Активатор воздуха 19 содержит цилиндрический корпус 41 из диэлектрического материала, к которому присоединены входной и выходной патрубки 42 и 43. В камере 44 на держателях 45 и 46 установлены электроды 26 и 27.

Камера сгорания 4 для второго варианта ГТД с выносным активатором воздуха 19 (фиг. 18) содержит жаровую трубу 13, форсуночную пииту 14 и форсунки 15. На форсуночной плите 14 установлены два коллектора 47 и 48. К коллектору 47 присоединены форсунки 15, а к коллектору 48 - форсунки ионизированного воздуха или озона 49. Под жаровой трубой 13 установлен внутренний кожух 50, образующий с жаровой трубой 13 внутренний канал 51. Между корпусом 52 камеры сгорания 4 и жаровой трубой 13 образован внешний канал 53. В жаровой трубе 13 выполнены отверстия 54.

Возможен вариант (фиг. 19), когда воздух с примесью ионов и озона подается перед форсуночной плитой 14.

Возможно выполнение реактивного сопла 6 сверхзвуковым. Это целесообразно для сверхзвуковых летательных аппаратов.

РАБОТА ДВИАТЕЛЯ

При работе газотурбинного двигателя (фиг 1…19) осуществляют его запуск путем подачи электроэнергии на стартер от внешнего источника энергии (на фиг. 1…19 стартер не показан).

Потом включают насос 21 (фиг. 1), и топливо из бака 33 по топливопроводу низкого давления 34 подается в насос 35 и далее по топливопроводу высокого давления 36 подается в форсунки 15 камеры сгорания 4.

Одновременно воздух из атмосферы поступает в воздушный тракт 1 и проходит через активатор воздуха 19, в котором образуются ионы и/или озон в зависимости от напряжения на выходе источника выокого напряжения 24. Ионы и/или озон образующегося за счет разрядов между электродами 26 и 27 высокого напряжения, подаваемого по высоковольтным проводам 25.

При наличии выносного активатора воздуха 19 через него проходит часть воздуха, потребляемого двигателем (фиг. 18 и 19).

В камеру сгорания 4 поступает смесь воздуха с ионизированным воздухом (и/или озоном) и топливо. Учитывают, что ионизированный воздух и озон обладает более высокими окислительными свойствами, топливо сгорает полнее, при сгорании образуется более высокая температура продуктов сгорания. Это увеличивает его энергетический потенциал на турбине 5 и реактивном сопле 6. Учитывая, что температура продуктов сгорания на входе в турбину всегда имеет предельное проектное значение можно снизить расход топлива для сохранения заданной температуры. Это приведет к экономии 3…5% топлива.

Применение изобретения позволило:

1. Повысить экономичность газотурбинного двигателя за счет более полного сгорания углеводородного топлива.

2. Уменьшить количество углерода - С и окислов углерода - СО в выхлопных газах.

3. Обеспечить работоспособность двигателя на очень больших высотах за счет применения ионизированного воздуха или озона.

4. На максимальных (форсажных) режимах при полете на гиперзвуковых скоростях повысить степень сжатия компрессоров газотурбинного двигателя за счет применения полного сгорания топлива.

5. Обеспечить достижение самолетами, оборудованными этими двигателями гиперзвуковых скоростей М=3…6.

6. Уменьшить затраты на полет летательного аппарата за счет использования более дешевого углеводородного топлива.

Газотурбинный двигатель, содержащий воздушный тракт, содержащий в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбины, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива, отличающийся тем, что он содержит активатор воздуха, который установлен вне двигателя, и его вход присоединен к выходу из компрессора, а выход из активатора воздуха соединен с камерой сгорания.



 

Похожие патенты:

Трехкомпонентный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, два компрессора, камеру сгорания, по меньшей мере две газовые турбины, по меньшей мере два вала, соединяющих компрессоры и газовые турбины, реактивное сопло и систему подачи водородного топлива.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания.

Способ уменьшения конденсационного следа газотурбинного двигателя заключается в том, что подают топливо со сверхнизким содержанием серы, с концентрацией серы меньше чем одна часть на миллион, в камеру сгорания газотурбинного двигателя для снижения количества содержащих серу побочных продуктов, образующихся в выхлопе газотурбинного двигателя.

Изобретение относится к турбореактивным двигателям, преимущественно двухконтурным, и пригодно для газотурбинных двигателей. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к энергетическим установкам и может быть использовано при создании наземных установок для получения электроэнергии и тепла с высокой эффективностью и при высоких экологических показателях, в том числе и при утилизации твердых бытовых и промышленных отходов (ТБО).

Изобретение относится к газотурбинным источникам электроэнергии, а именно к малоразмерным газотурбинным установкам - микротурбинам, и может применяться в энергетике, а также в автомобильном, железнодорожном, водном, воздушном транспорте в составе силовых установок с электроприводом.

Изобретение относится к машиностроению, в частности к газотурбинным двигателям, и может быть использовано в двигателестроении. .

Изобретение относится к машиностроению, в частности к газотурбинным двигателя, и может быть использовано в двигателе-строении. .
Наверх