Газоперекачивающий агрегат

Изобретение относится к энергетике. Газоперекачивающий агрегат, содержащий воздушный тракт, содержащий, в свою очередь, воздухозаборник, компрессор, камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, свободную турбину, соединенную с газовым компрессором, и систему подачи топливного газа в камеру сгорания с топливопроводом, причём система подачи топливного газа содержит электролизер воды и смеситель водорода и кислорода с топливным газом, установленным перед камерой сгорания, при этом к смесителю присоединена система подачи воды. Изобретение позволяет повысить полноту сгорания топлива в газотурбинном двигателе, используемом в качестве привода газоперекачивающего агрегата, а также улучшить его удельные характеристики и уменьшить эмиссию вредных веществ. 17 з.п. ф-лы, 24 ил.

 

Изобретение относится к двигателестроению, конкретно к газоперекачивающим агрегатам - ГПА, предназначенным для перекачки природного газа. Приводом газоперекачивающих агрегатов является газотурбинный двигатель.

Основную часть природного газа составляет метан (CH4) - от 70 до 98%. В состав природного газа могут также входить более тяжелые углеводороды - гомологи метана:

- этан (С2Н6),

- пропан (С3Н8),

- бутан (С4Н10),

а также другие неуглеводородные вещества.

В настоящее время основным видом транспорта является трубопроводный. Газ под давлением 75 атм прокачивается по трубам диаметром до 1,4 м. По мере продвижения газа по трубопроводу он теряет потенциальную энергию, преодолевая силы трения как между газом и стенкой трубы, так и между слоями газа, которая рассеивается в виде тепла. Поэтому через определенные промежутки необходимо сооружать компрессорные станции, на которых газ обычно дожимается до давления от 55 до 120 атм и затем охлаждается.

Известен газоперекачивающий агрегат по патенту РФ на изобретение №2450139, МПК F02C 1/00, опубл. 10.05.2012 г.

Газоперекачивающий агрегат содержит компрессор, газотурбинный привод, газомасляный теплообменник, контур системы смазки и охлаждения подшипников газотурбинного привода, образованный маслопроводами, маслофильтром, газомасляным теплообменником, маслобаком, с установленным в нем нагревателем масла, датчиками контроля температуры масла, и контур системы подачи топливного газа в камеру сгорания газотурбинного привода, образованный газопроводами, газовым фильтром, этим же газомасляным теплообменником, нагревателем газа, регулятором давления газа, датчиком контроля температуры газа. В контуре системы смазки и охлаждения подшипников газотурбинного привода маслопровод подвода масла в газомасляный теплообменник и маслопровод отвода масла из газомасляного теплообменника соединены между собой маслопроводом-перемычкой с установленным в ней управляемым регулирующим клапаном, открываемым при пуске агрегата. В контуре системы подачи топливного газа в камеру сгорания газотурбинного привода газопровод подвода газа в газомасляный теплообменник и газопровод отвода газа из газомасляного теплообменника соединены между собой газопроводом-леремычкой с установленным в ней регулирующим клапаном.

Недостаток - сложность конструкции.

Известен газоперекачивающий агрегат по патенту РФ на полезную модель №155146, МПК F02C 6/00, опубл. 20.09.2015 г., прототип.

Газоперекачивающий агрегат содержит воздушный тракт, содержащий, в свою очередь, воздухозаборник, компрессор, камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, свободную турбину, соединенную с газовым компрессором и систему подачи топливного газа в камеру сгорания с топливопроводом и активатором топлива,

Недостатки этого ГПА низкий КПД агрегата и эмиссия вредных веществ углерода, окислов углерода и азота. Кроме того, при электрическом разряде в природном газе образуется углерод, что приводит к закоксовыванию форсунок. Применение озона вызывает коррозию деталей двигателя.

Очень низкая эффективность активатора топлива связанна с тем, что время жизни радикалов, возникающих при электрическом разряде в метане составляет около 30 наносек.

Из статьи А.В. Кирюкова, В.В. Рыжкова, А.И. Суслова «Кинетика свободных радикалов в плазме искрового разряда в метане» Письма в ЖТФ, 1999 г., том 25, вып. 19 известно, что при конверсии метана образуются радикалы. Время жизни радикалов СН2 составляет около 30 наносек. За это время их концентрация уменьшается в 100 раз (фиг. 24) и они практически не влияют на активацию горения.

Задачи создания изобретения: повышение энергетических возможностей газотурбинного двигателя, используемого в качестве привода газоперекачивающего агрегата.

Достигнутые технические результаты: повышение полноты сгорания в ГТД, улучшение его удельных характеристик и уменьшение эмиссии вредных веществ.

Решение указанных задач достигнуто в газоперекачивающем агрегате, содержащем воздушный тракт, содержащий, в свою очередь, воздухозаборник, компрессор, камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, свободную турбину, соединенную с газовым компрессором, и систему подачи топливного газа в камеру сгорания с топливопроводом и активатором топлива, тем, что система подачи топливного газа содержит электролизер воды и смеситель водорода и кислорода с топливным газом, установленным перед камерой сгорания, при этом к смесителю присоединена система подачи воды.

Электролизер может быть соединен трубопроводом, содержащим насос с баком воды. Электролизер может быть выполнен в виде герметичной емкости, внутри которой установлена по меньшей мере одна пара электродов, присоединенных электрическими проводами к источнику электроэнергии. Между источником электроэнергии и одним из электродов может быть установлен реостат.

Газоперекачивающий агрегат может содержать активатор воздуха. Активатор воздуха может быть установлен в воздушном тракте. В качестве активатора воздуха может быть применен ионизатор. В качестве активатора воздуха может быть применен озонатор. Активатор воздуха может быть установлен во входном устройстве. Активатор воздуха может быть установлен в воздухозаборнике. Активатор воздуха может быть установлен за компрессором. Активатор воздуха может быть установлен между ступенями компрессора.

Активатор воздуха может быть установлен вне двигателя. Активатор воздуха установленный вне двигателя, может иметь вход, присоединенный к выходу из компрессора, а выход соединен с камерой сгорания. Камера сгорания может быть выполнена с второй группой форсунок, к которой присоединен выход из активатора воздуха. Выход из активатора воздуха может быть соединен с полостью между компрессором и камерой сгорания.

Детали воздухозаборника и компрессора могут быть выполнены из алюминиевых сплавов. Детали камеры сгорания, в первую очередь жаровая труба, форсуночная плита и коллектор, покрыты жаропрочной эмалью.

Сущность изобретения поясняется на фиг. 1…24, где:

- на фиг. 1 приведена схема газоперекачивающего агрегата с активатором воздуха, установленным во входном устройстве,

- на фиг. 2 приведена электрическая схема питания электролизера электрической энергией,

- на фиг. 3 приведена электрическая схема питания электролизера электрической энергией от электрического генератора,

- на фиг. 4 приведена схема газоперекачивающего агрегата с активатором воздуха, установленным в воздухозаборнике ГТД,

- на фиг. 5 приведена схема газоперекачивающего агрегата с активатором воздуха, установленным в воздухозаборнике ГТД,

- на фиг. 6 приведена схема газотурбинного двигателя с активатором воздуха, установленным за компрессором,

- на фиг. 7 приведена схема газотурбинного двигателя с активатором воздуха, установленным между ступенями компрессора,

- на фиг 8 и 9 приведена схема радиальной установки электродов,

- на фиг. 10 и 11 приведена схема параллельной установки электродов,

- на фиг. 12 и 13 приведена схема консольной радиальной установки электродов,

- на фиг. 14 и 15 приведена схема консольной параллельной установки электродов,

- на фиг. 16 приведена конструкция секции из двух электродов,

- на фиг. 17 приведен разрез А-А, первый вариант,

- на фиг. 18 приведен разрез А-А, второй вариант,

- на фиг. 19 приведен разрез А-А, третий вариант,

- на фиг. 20 приведена схема газотурбинного двигателя с активатором воздуха, установленным вне двигателя,

- на фиг. 21 приведена конструкция выносного активатора воздуха,

- на фиг. 22 приведена камера сгорания,

- на фиг. 23 приведен второй вариант камеры сгорания,

- на фиг. 24 приведено время жизни радикалов.

Предложенный ГПА (фиг. 1…24) содержит газотурбинный двигатель 1, входное устройство 2, выхлопное устройство 3, свободную турбину 4, содержащую в свою очередь корпус 5, сопловой аппарат 6 и рабочее колесо 7 с рабочими лопатками 8. Рабочее колесо 7 валом 9 соединено с нагнетающим компрессором 10, содержащим входной корпус 11, выходной корпус 12 и центробежное рабочее колесо 13. К входному корпусу 11 присоединена входная газовая труба 14, а к выходному корпусу 12 присоединена выходная газовая труба 15. (Средства очистки и охлаждения природного газа на фиг. 1…24 не показаны.)

Газотурбинный двигатель 1 содержит воздушный тракт 16, содержащий, в свою очередь, воздухозаборник 17, компрессор 18 и полость 19 за компрессором 18 и перед камерой сгорания 20. Воздушный тракт 16 включает также и входное устройство 2, не относящееся к конструкции газотурбинного двигателя 1.

За камерой сгорания 20 установлена турбина 21 и выполнен газовый тракт 22, соединяющий выход из камеры сгорания 20 с входом в свободную турбину 4.

Компрессор 18 содержит несколько ступеней, каждая из которых содержит направляющий аппарат 23 и рабочее колесо 24 (фиг. 1) Турбина 21 содержит, по меньшей мере, одну ступень. Каждая ступень компрессора 18 содержит сопловой аппарат 25 и рабочее колесо 26.

Камера сгорания 20 содержит жаровую трубу 27, форсуночную плиту 28 с форсунками 29 и с коллектором 30 перед форсуночной плитой 28, предназначенным для подачи топливного газа к форсункам 29 через специальные каналы в форсуночной плите 28.

Более подробно конструкция камеры сгорания 20 приведена далее со ссылкой на фиг. 20 и 21. Вал 31, соединяет рабочие колеса 24 компрессора 18 и рабочее колесо 26 турбины 21 и установлен на опорах 32 и 33. Опор может быть более двух.

Система подачи топливного газа содержит топливопровод 34, один конец которого соединен с выходной газовой трубой 15, а другой - с коллектором 30 камеры сгорания 20. В топливопроводе 34 установлены регулятор расхода 35 и клапан 36.

Таким образом, питание камеры сгорания 20 ГПА осуществляется газом, перекачиваемым самим турбонасосным агрегатом.

Первой особенностью предложенного ГПА является наличие электролизера 37 и смесителя 38, к первому входу 39 которого присоединен топливопровод 34. (фиг. 1 и 2).

К второму входу 40 присоединен трубопровод подачи газа Брауна 41 с клапаном 42. К третьему входу 43 присоединена система подачи воды 44.

Газ Брауна - это смесь водорода и кислорода, полученная в результате электролиза воды в электролизере 37. Электролизер 37 выполняет функцию активатора процесса горения, и газ Брауна имеет неограниченное время жизни.

Электролизер воды 37 (фиг. 2) содержит по меньшей мере одну пару электродов 45, к которым присоединены электрические провода 46, соединяющие их с блоком питания 47, вход которого соединен проводами низкого напряжения 48 с источником электроэнергии 49, например аккумуляторной батареей. Один из электрических проводов 46 содержит выключатель 50 и реостат 51.

К электролизеру 37 присоединен трубопровод 52 с насосом 53, имеющим привод 54. Другой конец трубопровода 52 соединен с емкостью воды 55.

Выход 56 из смесителя 38 соединен с входом в камеру сгорания 20.

Активация топлива газом Брауна позволяет изменить его химический состав в сторону преобладания большего содержания метана и водорода. Учитывая, что такая смесь будет обладать большей теплотворной способностью, мощность ГТА и его КПД резко возрастут.

Впрыск воды в смеситель 38 увеличивает время жизни свободных радикалов СН, СН2 и СН3.

Одновременно, активация входного воздуха - с образованием в нем озона O3 существенно повышает его окислительную способность и, значит, обеспечивает повышение полноты сгорания метана в камере сгорания. При сгорании активированного газообразного топлива, смешанного с активированным воздухом в камере, возникает более полное сгорание ТВС и возникает повышение давления на лопатки выходной турбины. При более полном сгорании ТВС в отходящих газах образуется угарный газ, диоксид азота (ядовитый газ), пары воды, после чего вода входит в реакцию с диоксидом азота и нейтрализует его, в результате получаем снижение расхода топливного газа и существенное снижение выбросов диоксида азота.

Подобных подходов к активации топливного газа (метану) еще не применяли, в газоперекачивающих станциях - единственное, что из метана в промышленных объемах получают водород и кристаллы твердого углерода. В Газпроме же снижение выбросов диоксида азота пытаются снизить лишь низко эмиссионными камерами сгорания (более тщательное смешение воздуха и метана). Активатор с применение газа Брауна будет служить дополнительным источником снижения вредных выбросов в атмосферу.

Данный активатор можно будет применять на любом газотурбинном двигателе, единственное, что может различаться, - мощность активатора - в зависимости от количества потребляемого топлива (мощность и КПД газогенератора - основы ГТД).

Для обеспечения энергоснабжения электролизера воды 37 к валу 31 через редуктор 57 (фиг. 3) валом отбора 58 присоединен электрогенератор 59, который низковольтными проводами 48 соединен с источником электроэнергии 49, который проводами 46 соединен с электролизером 37, точнее с его электродами 44 и 45.

Если в качестве силовой установки ГПА используется авиационный газотурбинный двигатель, такой электрогенератор предусмотрен в его конструкции.

Второй особенностью предложенного ГПА является наличие активатора воздуха 60, установленного в воздушном тракте 16, или во входном устройстве 2, или вне двигателя 1 (фиг. 1 и 4). Активатор воздуха 60 содержит два электрода 61 и 62 (фиг. 1 и 4). При этом возможна его установка в любом месте воздушного тракта 16 (фиг. 5…7) или вне двигателя (фиг. 22 и 23). Установка активатора воздуха 60 вне газотурбинного двигателя 1 позволит выполнить доработку ГПА собственными силами, не прибегая к услугам двигателестроительных фирм.

Активатор воздуха 60 (фиг. 4) содержит два электрода 61 и 62, между которыми возникает электрическое поле.

В зависимости от напряжения между электродами 61 и 62 и расстояния между ними в воздухе будут образовываться ионы или озон или их смесь, т.е. активатор воздуха 60 будет работать как ионизатор или озонатор. Для энергоснабжения активатора воздуха 60 служит второй блок высокого напряжения 63 (фиг. 1 и 4).

Озон

Озон (О3) (от греч. , «пахну») - простое вещество состава О3, одно из аллотропических видоизменений элемента кислорода. В отличие от наиболее распространенной в атмосфере Земли молекулярной формы кислорода О2, молекула озона состоит из трех атомов. Чистый озон при обыкновенных условиях представляет из себя резко пахнущий взрывчатый газ, в толстом слое синего цвета, обладает сильнейшими окислительными свойствами.

Физические свойства

- Температура кипения: -111,9°C

- Температура критическая: -12,1°C

- Температура начала разложения:

- Теплота образования (жидк.) (ккал/моль): +30,4

- Теплота образования (газ) (ккал/моль):

- Теплота плавления (ккал/моль): 0,5

- Теплота испарения: (ккал/моль): 3,626

- Критическое давление, 54,6 атм:

- Плотность:

- Плотность критическая:

Озон хорошо растворяется в воде (при обычных условиях 0,45 объема/1 объем воды) и при этом его водный раствор приобретает тонкую голубоватую окраску. Значительно лучше озон растворяется в различных хлор и фторопроизводных углеводородов (фреонах), например при обычных условиях в четыреххлористом углероде растворяется 3 объема озона/1 объем и раствор имеет красивый и насыщенный голубой цвет.

Химические свойства

Образование озона проходит по обратимой реакции:

3O2 + 68 ккал (285 кДж) ←→ 2O3.

Озон представляет из себя весьма реакционноспособное химическое вещество, химическая активность которого исключительно велика. Это его свойство обусловлено тем, что трехатомная молекула озона способна к легкому распаду и дополнительному выделению энергии (озон эндотермичен). Освобождающийся атом кислорода имеет чрезвычайно высокую активность, усиленную дополнительной энергией. Так, например, при комнатной температуре озон взаимодействует практически со всеми химическими элементами и их химическими соединениями. Под действием газообразного озона все металлы кроме Au, Pt, Ir превращаются в оксиды или покрываются тонкой оксидной пленкой, сульфиды, селениды, теллуриды окисляются до сульфатов, селенатов, теллуратов, аммиак окисляется до азотистой и азотной кислоты и т.д. Резина чрезвычайно быстро разрушается озоном (охрупчивается и рассыпается в порошок), а многие горючие органические вещества (спирты, кетоны, углеводороды и т.д.) при соприкосновении с озоном воспламеняются или взрываются. После некоторого поверхностного окисления довольно хорошо противостоят воздействию озона Cu, Ni, Sn, а также безуглеродистые сплавы железа с 25% хрома. Бактерии, грибы и вирусы при взаимодействии с озоном полностью разрушаются, что находит широкое применение для обеззараживания самых разнообразных сред. В присутствии небольших количеств HNO3 озон стабилизируется, а в герметичных сосудах из стекла, некоторых пластмасс или чистых металлов озон при низких температурах (-78°C) практически не разлагается.

Для питания активатора воздуха 60 предназначен второй блок высокого напряжения 63, который по выходу проводами высокого напряжения 46 соединен с электродами 61 и 62 и по входу проводами низкого напряжения 48 присоединен к источнику электрической энергии (фиг. 1).

Более детально конструкция активатора воздуха 60 показана на фиг. 8…15. Активатор воздуха 60 содержит, кроме электродов 61 и 62, внутренний диэлектрический корпус 64 и внешний диэлектрический корпус 65, установленный внутри корпуса 66 ГТД 1. При этом электроды 61 и 62 могут быть установлены радиально (фиг. 8 и 9) или параллельно (фиг. 10 и 11). Электроды 61 и 62 могут быть выполнены радиальными и консольными (фиг. 12 и 13) или параллельными и консольными (фиг. 14 и 15).

Электроды 61 и 62 могут быть выполнены в виде параллельных пластин с острыми кромками 67 (фиг. 16), или в виде ромбов (фиг. 17), или в виде обтекаемых профилей (фиг. 18). Электроды 61 и 62 образуют секцию, которая монтируется на приливах на корпусе 66 ГТД 1 при помощи крышки 68 из электроизоляционного материала (фиг. 19). Острые кромки 66 способствуют активации процесса электрического разряда.

Второй вариант ГПА (фиг. 20) с выносным активатором воздуха 60 дополнительно содержит трубопровод отбора воздуха 69, присоединенный к выходу из компрессора 18, присоединенный к активатору воздуха 60, выход из которого трубопроводом 70 соединен с камерой сгорания 20.

Конструкция выносного активатора воздуха 60 приведена на фиг. 21. Активатор воздуха 60 содержит цилиндрический корпус 71 из диэлектрического материала, к которому присоединены входной и выходной патрубки 72 и 73. В камере 74 внутри цилиндрического корпуса 71 на держателях 75 и 76 установлены электроды 61 и 62.

Камера сгорания 20 для второго варианта ГПА с выносным активатором воздуха 60 (фиг. 22) содержит жаровую трубу 27, форсуночную пииту 28 и форсунки 29. На форсуночной плите 29 установлен коллектор 30.

Кроме того, камера сгорания 20 содержит второй коллектор 77 и вторую группу форсунок 78. К коллектору 30 присоединены форсунки 29, а к второму коллектору 77 - вторая группа форсунок 78 для ионизированного воздуха или озона. Под жаровой трубой 27 установлен внутренний кожух 80, образующий с жаровой трубой 27 внутренний канал 81. Между корпусом 82 камеры сгорания 20 и жаровой трубой 27 образован внешний канал 83. В жаровой трубе 27 выполнены отверстия 84. Все детали камеры сгорания 20, в первую очередь жаровая труба 27, должны быть покрыты жаростойкой эмалью.

Возможен третий вариант (фиг. 23), когда воздух с примесью ионов и озона подается перед форсуночной плитой 28. Этот вариант позволяет реально внедрить предложенное техническое решение без существенных доработок газотурбинного двигателя 1.

Вредное воздействие озона на детали корпуса ГТД 1 и камеры сгорания 20 исключено. Сплавы алюминия покрываются тонкой пленкой из окиси алюминия и в дальнейшем сплав на глубину не окисляется. Детали камеры сгорания покрыты жаростойкой эмалью.

РАБОТА ГПА

При работе газоперекачивающего агрегата (фиг 1…24) осуществляют его запуск путем подачи электроэнергии на стартер от внешнего источника энергии (на фиг. 1…24 стартер не показан). Потом открывают клапан 36 (фиг. 1) и топливный газ из выходного трубопровода 15 по топливопроводу 34 через регулятор расхода 35 и клапан 36 подается в коллектор 30 и далее в форсунки 29 камеры сгорания 20. Проходя смеситель 37, к топливу подмешивается газ «Брауна», идущий из электролизера 38, и происходит повышение энергетической активности топлива и активация топливного газа.

Впрыск воды в смеситель 38 снижает температуру смеси топлива с газом Брауна и значительно в сотни и тысячи раз увеличивает время жизни свободных радикалов СН, СН2 и СН3, так как резко замедляет реакцию рекомбинации.

Одновременно воздух из атмосферы поступает в воздушный тракт 16 и проходит через активатор воздуха 60, в котором образуются ионы и/или озон в зависимости от напряжения на выходе источника высокого напряжения 53. Ионы и/или озон образуется за счет разрядов между электродами 60 и 61 высокого напряжения, подаваемого по высоковольтным проводам 22 на активатор воздуха 60. Происходит активация воздуха с образованием озона.

При наличии выносного активатора воздуха 60 через него проходит незначительная (от 1 до 3%) часть воздуха, потребляемого ГТД 1 (фиг. 21 и 22). Но эта схема позволит отказаться от доработки камеры сгорания 20. В камеру сгорания 20 поступает смесь воздуха с ионизированным воздухом (и/или озоном) и активированное топливо. Учитывая, что ионизированный воздух и озон обладает более высокими окислительными свойствами, топливо сгорает полнее, при сгорании образуется более высокая температура продуктов сгорания. Это увеличивает его энергетический потенциал на турбине 21 и на свободной турбине 4. Кроме того, учитывая, что теплотворная способность водорода в 3 раза выше, чем у природного газа, добавление каждого процента газа «Брауна» повышает КПД двигателя 1 примерно на 3%. Учитывая, что температура продуктов сгорания на входе в турбину 21 всегда имеет предельное проектное значение, можно снизить расход топлива для сохранения заданной температуры.

Одновременное применение всех мероприятий (активатора топливного газа и активатора воздуха) приведет к экономии топлива на 10…20%. Использование электролизера и активатора топлива уменьшит эмиссию вредных веществ в атмосферу при работе ГПА за счет интенсификации процесса горения в камере сгорания.

Применение изобретения позволило:

1. Повысить экономичность газоперекачивающего агрегата за счет более полного сгорания углеводородного топлива, что достигнуто применением активатора топливного газа и воздуха и впрыска воды в смеситель топливного газа и газа Брауна и применения озонатора, т.к. озон является более агрессивным окислителем, чем кислород.

2. Уменьшить выхлоп в атмосферу вредных веществ, углерода - С и окислов углерода - СО и окислов азота.

3. Обеспечить работоспособность ГПА при эксплуатации на больших высотах (в высокогорных районах) за счет применения ионизированного воздуха или озона.

4. На максимальных режимах повысить степень сжатия компрессора газотурбинного двигателя за счет реализации более полного сгорания топлива и повышения мощности основной и свободной турбин.

1. Газоперекачивающий агрегат, содержащий воздушный тракт, содержащий в свою очередь, воздухозаборник, компрессор, камеру сгорания, газовую турбину, вал, соединяющий компрессор и газовую турбину, свободную турбину, соединенную с газовым компрессором, и систему подачи топливного газа в камеру сгорания с топливопроводом, отличающийся тем, что система подачи топливного газа содержит электролизер воды и смеситель водорода и кислорода с топливным газом, установленным перед камерой сгорания, при этом к смесителю присоединена система подачи воды.

2. Газоперекачивающий агрегат по п. 1, отличающийся тем, что электролизер соединен трубопроводом, содержащим насос с баком воды.

3. Газоперекачивающий агрегат по п. 1, отличающийся тем, что электролизер выполнен в виде герметичной емкости, внутри которой установлена по меньшей мере одна пара электродов, присоединенных электрическими проводами к источнику электроэнергии.

4. Газоперекачивающий агрегат по п. 4, отличающийся тем, что между источником электроэнергии и одним из электродов установлен реостат.

5. Газоперекачивающий агрегат по п. 1, отличающийся тем, что он содержит активатор воздуха.

6. Газоперекачивающий агрегат по п. 5, отличающийся тем, что активатор воздуха установлен в воздушном тракте.

7. Газоперекачивающий агрегат по п. 6, отличающийся тем, что в качестве активатора воздуха применен ионизатор.

8. Газоперекачивающий агрегат по п. 6, отличающийся тем, что в качестве активатора воздуха применен озонатор.

9. Газоперекачивающий агрегат по п. 6, отличающийся тем, что активатор воздуха установлен во входном устройстве.

10. Газоперекачивающий агрегат по п. 6, отличающийся тем, что активатор воздуха установлен в воздухозаборнике.

11. Газоперекачивающий агрегат по п. 6, отличающийся тем, что активатор воздуха установлен за компрессором.

12. Газоперекачивающий агрегат по п. 6, отличающийся тем, что активатор воздуха установлен между ступенями компрессора.

13. Газоперекачивающий агрегат по п. 5, отличающийся тем, что активатор воздуха установлен вне двигателя.

14. Газоперекачивающий агрегат по п. 13, отличающийся тем, что, активатор воздуха установленный вне двигателя, имеет вход, присоединенный к выходу из компрессора, а выход соединен с камерой сгорания.

15. Газоперекачивающий агрегат по п. 13, отличающийся тем, что камера сгорания выполнена с второй группой форсунок, к которой присоединен выход из активатора воздуха.

16. Газоперекачивающий агрегат по п. 13, отличающийся тем, что выход из активатора воздуха соединен с полостью между компрессором и камерой сгорания.

17. Газоперекачивающий агрегат по п. 1, отличающийся тем, что детали воздухозаборника и компрессора выполнены из алюминиевых сплавов.

18. Газоперекачивающий агрегат по п. 1, отличающийся тем, что детали камеры сгорания, в первую очередь жаровая труба, форсуночная плита и коллектор, покрыты жаропрочной эмалью.



 

Похожие патенты:

Изобретение относится к энергетике. Способ нагружения паровой турбины, включающий: прием коэффициента нагружения турбины; прием текущей температуры отработанного пара паровой турбины; определение параметра скорости линейного изменения потока пара и параметра скорости линейного изменения температуры пара частично на основании коэффициента нагружения турбины и текущей температуры отработанного пара паровой турбины, при этом параметр скорости линейного изменения потока пара и параметр скорости линейного изменения температуры пара определяют частично на основании обратного соотношения между параметром скорости линейного изменения потока пара и параметром скорости линейного изменения температуры пара.

Изобретение относится к энергетике. Система для генерирования энергии содержит компрессор, теплообменник и ионопроницаемую мембрану.

Топливная система (8) и способ её промывки для газопаротурбинной установки с интегрированной газификацией угля, включающей газовую турбину (1). Топливная система (8) подключена к камере (3) сгорания газовой турбины (1) и содержит устройство (10) для газификации природного топлива и газопровод (9), ответвляющийся от устройства (10) для газификации и соединенный с камерой (3) сгорания газовой турбины (1).

Изобретение относится к способу и устройству реформинга углеводородов. Способ включает сжигание расширенного выпуска из турбины и первого топлива внутри первой реформинг-установки, чтобы произвести отработавший газ.

Способ эксплуатации газотурбинной комбинированной теплоэлектростанции, содержащей компрессорную установку и турбинную установку, заключается в том, что полезную работу отбирает по меньшей мере одно устройство, имеющееся в станции, при котором производят топочные газы камерой сгорания, установленной перед турбинной установкой.

Изобретение относится к области энергетики и двигателестроения и предназначено в качестве энергоустановки для генерации тепловой и электрической энергии. Установка содержит детонационную камеру бескислородного разложения ацетилена на газообразный водород и углерод в виде наночастиц, которая соединена с сепаратором для отделения углерода.

Изобретение относится к энергетике. Парогазовая установка с пароприводным дозатором-компрессором газового топлива содержит газотурбинный двигатель с камерой сгорания и регулирующим клапаном по топливу, турбогенератор, энергетическую паровую турбину, установленную на валу турбогенератора, котел-утилизатор с паровыми контурами одного или более давлений, систему трубопроводов газа, пара и воды с регулирующей и запорной арматурой, причём установка также содержит компенсационную турбину, установленную на одном валу с приводной паровой турбиной и дозатором-компрессором в общем герметичном корпусе со стороны дозатора-компрессора.

Изобретение относится к энергетике. Теплофикационная газотурбинная установка, содержащая компрессор, соединенный последовательно с камерой сгорания, газовой турбиной и электрогенератором, к выхлопу газовой турбины подключен паровой котел-утилизатор, соединенный по пару с тепловым потребителем, причем она дополнительно содержит паровую турбину с конденсатором, соединенную через эластичную гидромуфту с валом компрессора, при этом выход котла-утилизатора соединен с входом паровой турбины паропроводом, на входе в котел-утилизатор установлена камера дожигания.

Устройство экономного производства электроэнергии и тепла состоит из котельной, воздушно-турбинного двигателя, радиаторов. Выход из заборника атмосферного воздуха (3) связан с входом в воздушно-газовый радиатор (4), выход из которого связан с входом в воздушный компрессор воздушно-турбинного двигателя (5), выход из которого связан с входом в воздушно-газовый радиатор (6), выход из которого связан с входом в воздушную турбину воздушно-турбинного двигателя (7), выход из которой связан с входом в поддувало котельной (1).

Система генерирования мощности с комбинированным циклом содержит паротурбинную систему, газотурбинную систему, включающую в себя компрессор, камеру сгорания и газовую турбину; парогенератор с регенерацией тепла, проточную линию.

Изобретение может быть использовано в стационарных газотурбинных установках в камере сгорания топлива. Способ работы газотурбинной установки непрерывного действия заключается в сжатии поступающего воздуха в компрессоре, подаче сжатого воздуха и топлива в первую камеру сгорания, сжигании в первой камере сгорания топлива, расширении образовавшихся продуктов сгорания в первой турбине, использовании, по меньшей мере, части механической энергии, вырабатываемой первой турбиной для привода компрессора, последующей подаче расширившихся продуктов сгорания и топлива во вторую камеру сгорания и расширении образовавшихся продуктов сгорания во второй турбине для производства механической энергии.

Двигательная установка гиперзвукового самолета содержит мотогондолу, воздухозаборник, корпус, компрессор, камеру сгорания, установленную за компрессором, газовую турбину, реактивное сопло и топливную систему, использующую водород, соединенную с камерой сгорания.

Газотурбинный двигатель содержит воздушный тракт, содержащий, в свою очередь, воздухозаборник и, по меньшей мере, одну ступень компрессора, камеру сгорания, газовую турбину, по меньшей мере один вал, соединяющий компрессор и газовую турбину, реактивное сопло и систему подачи топлива.

Трехкомпонентный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, два компрессора, камеру сгорания, по меньшей мере две газовые турбины, по меньшей мере два вала, соединяющих компрессоры и газовые турбины, реактивное сопло и систему подачи водородного топлива.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания.

Способ уменьшения конденсационного следа газотурбинного двигателя заключается в том, что подают топливо со сверхнизким содержанием серы, с концентрацией серы меньше чем одна часть на миллион, в камеру сгорания газотурбинного двигателя для снижения количества содержащих серу побочных продуктов, образующихся в выхлопе газотурбинного двигателя.

Изобретение относится к турбореактивным двигателям, преимущественно двухконтурным, и пригодно для газотурбинных двигателей. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к энергетическим установкам и может быть использовано при создании наземных установок для получения электроэнергии и тепла с высокой эффективностью и при высоких экологических показателях, в том числе и при утилизации твердых бытовых и промышленных отходов (ТБО).
Наверх