Способ улучшения характеристик измерения азимута наземных целей с учетом отражений от подстилающей поверхности

Изобретение относится к области радиолокации, в частности к радиолокационным станциям (РЛС) обнаружения наземных и низколетящих целей. Достигаемый технический результат - однозначное и более точное измерение азимутальной координаты цели под малыми углами места и улучшение разрешающей способности по азимуту. Указанный результат достигается тем, что определяют разрешающую способность по азимуту за счет ширины диаграммы направленности (ДН) при сканировании (вращении ДН) в азимутальной плоскости, а угловое положение антенны, при котором сигнал имеет максимальную амплитуду, принимают за азимут цели, затем высокочастотные сигналы, принимаемые фоновой апертурой, отделяют от низкочастотных сигналов, принимаемых реальной апертурой, для чего запоминают полную азимутальную последовательность сигналов за время одного обзора, далее осуществляют дискретное преобразование Фурье сигнала в область пространственных частот, затем осуществляют фильтрацию по верхней частоте, после чего с помощью обратного быстрого преобразования Фурье сигнал переводят во временную область, далее обуженную диаграмму направленности, полученную выделением высокочастотной части азимутального сигнала, используют для определения азимута цели с улучшенной разрешающей способностью. 8 ил.

 

Изобретение относится к области радиолокации, в частности к радиолокационным станциям (РЛС) обнаружения наземных и низколетящих целей.

Основной особенностью таких РЛС является необходимость учета отражений от подстилающей поверхности.

Известны исследования [1-3], посвященные изучению влияния отражений от подстилающей поверхности при малых углах места цели. Одна часть публикаций [напр., 1, 2] посвящена построению и анализу моделей отражений от различного вида подстилающей поверхности для получения возможности их дальнейшего учета или компенсации при проектировании РЛС. Другая часть исследований [напр., 3] направлена на улучшение характеристик РЛС по измерению угла места с помощью оценки уровня отражений.

Недостатками данных аналогов являются, во-первых, отсутствие возможности учета влияния отражений от подстилающей поверхности на дальность действия РЛС и точность измерения азимутальной координаты, а во-вторых, модели, направленные на компенсацию отражений, не позволяют использовать энергию сигнала, переотраженного от земной поверхности, для улучшения характеристик РЛС.

Традиционно используется упрощенная модель в виде гладкой зеркально отражающей поверхности, с последующим расчетом коэффициента ослабления электромагнитного поля [например, 4, стр. 32]. Недостатком данной модели является то, что она не учитывает сложной структуры земной поверхности. В связи с этим более близкой к реальным условиям является фацетная модель [5, стр. 273]. Отражающая поверхность между РЛС и целью представляется в виде совокупности пластинок. В случае ориентации данных фацетов так, что падающий луч отражается в направлении на цель, эхо-сигнал от цели в совокупности с сигналом, переотраженным от земной поверхности, требует более сложной обработки.

Используя фацетную модель отражений электромагнитной волны от земной поверхности, следует учитывать область, существенную для отражения радиоволн [6, стр. 31].

Возбуждение совокупности фацетов вдоль линии визирования РЛС - цель энергетически наиболее эффективно в пределах первой зоны Френеля, радиусы которой определяются выражениями:

Поскольку разность хода различных сигналов в пределах зоны Френеля меньше длины волны, можно считать для всей зоны, что сумма расстояний R1+R2=const, где R1 и R2 - расстояния от антенны РЛС и цели до точки отражения на земле соответственно (фиг. 1).

Данное соотношение справедливо для эллипса, фокусами которого являются цель и РЛС. Нетрудно определить примерные радиусы данного эллипса, из геометрических соображений малый радиус b=(h1+h2)/2, большой радиус a=(R1+R2)/2, где h1 и h2 - высота подъема антенн РЛС, и цели над поверхностью земли.

Из выражений (1) следует, что при уменьшении высоты цели относительно земной поверхности и высоты подъема РЛС продольные размеры зоны, существенной для отражения радиоволн, приближаются к R. В результате, кроме реальной традиционно используемой апертуры антенны, получаем антенную решетку типа «волнового канала» - фоновую апертуру, состоящую из фацетов, которые излучают когерентный сигнал и, складываясь в пространстве, образуют дополнительную (фоновую) диаграмму направленности (ДН).

Размер апертуры определяется областью, существенной для отражений от подстилающей поверхности, которая представляет собой эллипс, соответствующий первой зоне Френеля. Для малых углов места цели, то есть когда b << a, поверхность данного эллипса стремится к плоской. При этом на значительных расстояниях и при малых углах места ДН антенны облучает всю поверхность, которую ввиду вышеизложенного можно считать когерентно переизлучающей на цель. Стоит учитывать статистический характер распределения неровностей земной поверхности, то есть вводить коэффициент рассеяния электромагнитной волны земной поверхностью.

В результате когерентно отражающие фацеты представляют собой фоновую апертуру антенны бегущей волны, реализующую режим осевого излучения, в основном лепестке ДН которой находится цель. Ширина главного лепестка ДН определяется как [7, стр. 180]:

где L - размер первой зоны Френеля для низколетящих и наземных целей. L асимптотически стремится к R, k - коэффициент, характеризующий размер земной поверхности относительно L, фацеты которой переотражают сигнал на цель. ДН на прием-передачу представляет собой функцию ДН антенны, возведенную в квадрат, следовательно, угловой элемент разрешения по азимуту будет определяться как:

При больших L, то есть под малыми углами места, луч ДН значительно обужается в азимутальной плоскости. Энергия, отраженная от земной поверхности и сосредоточенная в узком луче ДН, может быть сравнима или больше энергии основного луча, падающей на цель. При этом стоит учитывать, что ДН в дальней зоне ограничена конусом в результате дифракции радиоволн в раскрыве антенны, вблизи антенны эти результаты не применимы и в грубом приближении можно считать, что до расстояния L2/λ ДН ограничена цилиндром, где L - апертура антенны, соответствующая размеру первой зоны Френеля [8, стр. 376]. Отсюда можно сделать вывод, что при L<R<L2/λ, то есть когда размер зоны Френеля близок к расстоянию между целью и РЛС, линейный элемент разрешения по азимуту равен:

Если R>L2/λ, то

Таким образом, при сканировании по азимуту в РЛС под малыми углами места приходят два сигнала, неразрешаемых по дальности, «земной» и «небесный», которые сформированы, соответственно, фоновой и реальной апертурами антенны, то есть длинная азимутальная пачка, соответствующая эхо-сигналу по азимуту в основном лепестке ДН, и короткая азимутальная пачка, соответствующая ДН, обуженной за счет переотражения от земной поверхности. Причем в РЛС принимается суперпозиция данных сигналов. Поскольку фаза сигнала, отраженного от земной поверхности, меняется на противоположную, произойдет вычитание «земного» и «небесного» сигналов. Представим азимутальные ДН данных сигналов с гауссовой огибающей (фиг. 2).

Пунктиром изображена ДН, принятая в результате. При накоплении данной азимутальной пачки возникает неоднозначность определения азимута цели.

В качестве прототипа заявляемого способа обработки использован традиционный метод измерения угловых координат цели [9, стр. 58]. Разрешающая способность по азимуту достигается за счет ширины ДН при сканировании (вращении ДН) в азимутальной плоскости, а угловое положение антенны, при котором сигнал имеет максимальную амплитуду, принимают за точное направление прихода сигнала - азимут цели.

Недостатком прототипа является невозможность учета отражений от подстилающей поверхности, что приводит к неоднозначности определения азимута цели и ухудшению разрешающей способности по азимуту.

Техническим результатом данного изобретения является однозначное и более точное измерение азимутальной координаты цели под малыми углами места и улучшение разрешающей способности по азимуту.

Указанный технический результат достигается тем, что в известном способе определения угловых координат цели, в котором определяют разрешающую способность по азимуту за счет ширины ДН при сканировании (вращении ДН) в азимутальной плоскости, а угловое положение антенны, при котором сигнал имеет максимальную амплитуду, принимают за азимут цели, далее в отличие от прототипа высокочастотные сигналы, принимаемые фоновой апертурой, отделяют от низкочастотных сигналов, принимаемых реальной апертурой, для чего запоминают полную азимутальную последовательность сигналов за время одного обзора, далее осуществляют дискретное преобразование Фурье сигнала в область пространственных частот, затем осуществляют фильтрацию по верхней частоте, после чего с помощью обратного быстрого преобразования Фурье сигнал переводят во временную область, далее обуженную диаграмму направленности, полученную выделением высокочастотной части азимутального сигнала, используют для определения азимута цели с улучшенной разрешающей способностью.

Рассмотрим спектральную характеристику принятой пачки, разложив ее по пространственным частотам (фиг. 3).

Спектр суммарного сигнала показывает, что большая часть информации содержится в высокочастотной части спектра и за счет большей полосы дает обужение азимутальной пачки. В то время как «небесный» сигнал большой длительности (по аналогии с временными частотами) имеет узкий спектр, соответственно более низкий элемент разрешения по азимуту, а в сумме два сигнала дают неоднозначность определения азимута. В качестве решения данной проблемы возможно использование пространственного фильтра нижних частот (ФНЧ), вырезающего часть спектра, которая соответствует длинной азимутальной пачке (фиг. 4), что врезультате позволит убрать неоднозначность измерения азимута. При использовании фильтра верхних частот (ФВЧ) будет вырезана часть спектра, отвечающая за длинный «земной» сигнал.

На фиг. 5 показан восстановленный сигнал с ФНЧ (сплошная) и сигнал с применением ФВЧ (пунктир). Видно, что при обработке принятой азимутальной пачки ФВЧ достигается улучшение разрешающей способности РЛС по азимуту, а также однозначное и более точное измерение азимутальной координаты цели.

В качестве иллюстрации обработки сигнала по азимуту приведем схему, изображенную на фиг. 6. Данное устройство содержит 1 - блок памяти, настроенный на длительность одного обзора, 2 - блок быстрого преобразования Фурье (БПФ), осуществляющий перевод принятых колебаний в область пространственных частот в соответствии с формулой (1), далее два канала 3 - ФНЧ и 4 - ФВЧ осуществляют соответствующую фильтрацию сигнала, 5, 6 - блоки обратного быстрого преобразования Фурье (ОБПФ) переводят сигнал во временную область, 7, 8 - схемы отбора максимума ДН по азимуту измеряют азимутальную координату цели. Подобная схема позволяет в частотной области разделить «земной» и «небесный» сигналы, но является не единственно возможной, так как обработку возможно осуществлять и во временной области.

Поскольку форма рельефа земной поверхности имеет статистический характер, ширина земного луча, а соответственно и предельного элемента разрешения зависит от коэффициента k и при сканировании может меняться.

Техническое решение является новым, поскольку из общедоступных сведений не известен способ обработки принятых в РЛС колебаний, использующих естественным образом расширенную апертуру (фоновую) - наземный «волновой канал» для улучшения характеристик сигнала, не прибегая при этом к компенсации отражений от подстилающей поверхности.

Принцип действия предложенных пространственных ФНЧ и ФВЧ отличается от хорошо известных временных фильтров. Суть данного различия можно пояснить обработкой принятого РЛС эхо-сигнала в спектральной области, хотя существует также возможность обрабатывать принятые колебания и во временной области.

При обработке принятых сигналов во временной области дальностные отсчеты фиксируются в каждом такте, и обработка по дальности сводится к осуществлению дискретного преобразования Фурье (ДПФ) над каждым принятым тактом с частотой дискретизации сигнала аналого-цифровым преобразователем (АЦП) и дальнейшей обработкой (накоплением) совокупности полученных амплитудно-частотных зависимостей. Осуществление ДПФ над азимутальным сигналом возможно только после принятия полной азимутальной последовательности, поскольку спектр сигнала вычисляется по полной его временной реализации. В случае азимутальной сигнальной пачки частота дискретизации временного сигнала равна тактовой частоте импульсов Fтакт. ДН по азимуту является дискретной функцией fДН (tскан) зависимости амплитуды принятого сигнала от времени сканирования по азимуту, которая в общем случае аппроксимируется гауссовой функцией. Дискретное время tскан можно переписать в виде:

, где n - номер такта, тогда ДПФ записывается как

,

где время Тскан - длительность азимутальной пачки, w - пространственные частоты сигнала. Выбор Тскан должен осуществляться относительно длины азимутальной пачки, так как, исходя из вышеизложенного, обработка ДПФ применяется ко всей азимутальной пачке одновременно. Отсюда очевидно, что размер временного окна должен превышать длительность азимутальной пачки и не должен превышать времени одного обзора пространства, так как одна и та же цель в повторном обзоре будет иметь другой азимут. При этом, поскольку точная азимутальная координата цели нам неизвестна, брать окно меньше времени одного обзора с применением обычного ДПФ нецелесообразно, так как это может привести к разбиению азимутальной пачки на несколько частей.

Предлагаемый способ можно проиллюстрировать моделью разрешения двух целей. В случае, когда цели находятся на достаточно большом расстоянии, две цели разрешаются как в канале с ФНЧ, так и в канале с ФВЧ (фиг. 7, а - принятая азимутальная пачка, б - спектр пачки, обработанный ФНЧ и ФВЧ, в - восстановленный сигнал с двух каналов).

Если же цели находятся достаточно близко, по каналу с ФНЧ они уже не разрешаются, а по каналу с ФВЧ их можно разрешить (фиг. 8).

Аналогичное разделение эхо-сигналов реальной и фоновой апертур можно производить также и во временной области, используя типовые схемы скользящего окна на основе стандартных линий задержек, схем сложения и вычитания, а также разнообразных схем компенсации, уменьшающих взаимодействие между разделяемыми сигналами.

Таким образом, за счет того, что для азимутального разрешения целей под малыми углами места эхо-сигналы, принимаемые фоновой апертурой, отделяют от эхо-сигналов, принимаемых реальной апертурой, и затем обрабатывают, достигается улучшение разрешающей способности РЛС по азимуту, а также однозначное и более точное измерение азимутальной координаты при малых углах места цели на основе анализа спектральной структуры азимутального сигнала с учетом влияния отражений от подстилающей поверхности.

Литература

1. Характеристики последетекторного обнаружения сигналов на фоне помех от морской поверхности при малых углах скольжения луча РЛС. Н.А. Гайдамакин Радиотехника, 1996, №11 с 3-7.

2. Различие параметров прямого и переотраженных от подстилающей поверхности сигналов, Б.В. Ракитин, Н.Г. Духина, Радиотехника 1987, №8 с. 45-46.

3. Adaptive canceller for elevation angle estimation in the presence of multipath. Haykin, S.; Kesler, J. IEE Proceedings, Part F - Communications, Radar and Signal Processing (ISSN 0143-7070), vol. 130, pt. F, no. 4, June 1983, p. 303-308.

4. Калинин А.И., Черенкова ЕЛ. «Распространение радиоволн и работа радиолиний», М., «Связь», 1971

5. Справочник по радиолокации. Под ред. М. Сколника. - М.: Советское радио, 1976, 456 с.

6. Шередько Е.Ю. «Распространение радиоволн и антенно-фидерные устройства», М., «Связь», 1976.

7. Устройства СВЧ и антенны. Д.И. Воскресенский и др. - М.: Радиотехника, 2006, 376 с.

8. Современная радиолокация. Под ред. Ю.Б. Кобзарева. - М.: Советское радио, 1969, 704 с.

9. Д. Бартон «Радиолокационные системы». - М.: Военное издательство МО СССР, 1967, 480 с.

Способ измерения азимута наземных целей с учетом отражений от подстилающей поверхности, в котором разрешающая способность по азимуту достигается за счет ширины диаграммы направленности при сканировании в азимутальной плоскости, а угловое положение антенны, при котором сигнал имеет максимальную амплитуду, принимают за азимут цели, отличающийся тем, что для определения азимута цели под малыми углами выделяют сигнал фоновой апертуры, для чего запоминают полную азимутальную последовательность сигналов за время одного обзора, далее осуществляют дискретное преобразование Фурье сигнала в область пространственных частот, затем осуществляют фильтрацию по верхней частоте, после чего с помощью обратного быстрого преобразования Фурье сигнал переводят во временную область, далее обуженную диаграмму направленности, полученную выделением высокочастотной части азимутального сигнала, используют для определения азимута цели.



 

Похожие патенты:

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний и измерения радиальных скоростей. Достигаемый технический результат - обеспечение постоянной разрешающей способности измерения расстояний до целей.
Изобретение относится к радиолокации протяженных целей и может быть использовано для измерения высоты и составляющих скорости летательных аппаратов (ЛА). Достигаемый технический результат - однолучевое измерение скорости летательного аппарата на базе радиовысотомера, позволяющее измерить высоту и составляющие скорости ЛА при сниженных габаритах антенной системы.

Группа изобретений относится к радиолокации протяженных целей и может быть использована для измерения высоты и составляющих скорости летательных аппаратов. Достигаемый технический результат - однолучевое измерение высоты и составляющих скорости ЛА на базе радиовысотомера при сниженных габаритах антенной системы.

Изобретение может быть использовано в радиолокационных станциях (РЛС) для управления их разрешающей способностью. Достигаемый технический результат - возможность в широких пределах изменять разрешающую способность РЛС.

Изобретения относятся к области радиотехники и могут быть использованы для определения местоположения объектов угломерно-дальномерным способом с летно-подъемного средства (ЛПС).

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний до неподвижных и подвижных объектов и для измерения радиальной скорости объектов.

Изобретение относится к области радиолокации, в частности к способам обнаружения объектов и определения параметров траектории их движения, и может быть использовано при построении радиолокационных станций (РЛС), осуществляющих последовательный круговой или секторный обзор пространства за счет сканирования диаграммой направленности антенны.

Изобретение относится к области радиолокационной техники, а точнее, к способам цифровой обработки сигнала, отраженного от целей и принятого радиолокатором. .

Предлагаемое изобретение относится к радиолокационной измерительной технике и может быть использовано в радиолокаторах, в том числе радиовысотомерах, с непрерывным сигналом. Достигаемый технический результат изобретения - расширение верхних и нижних границ диапазона измеряемых дальностей в радиолокаторе с непрерывным шумовым сигналом для заданного разноса приемной и передающей антенн при сохранении скрытности и повышенной помехозащищенности. Указанный результат достигается за счет формирования непрерывного опорного шумового сигнала с полосой и формой спектра, соответствующей требуемому разрешению по дальности и допустимому уровню боковых лепестков автокорреляционной функции, переноса модуляции опорного сигнала на несущую, усиления и излучения через передающую антенну, прием отраженного сигнала через приемную антенну, переноса принятого сигнала на видеочастоту, оцифровки принятого сигнала, задержки опорного сигнала на паспортизованную величину задержки сигнала межантенной связи, отслеживания амплитуды сигнала межантенной связи, формирования аналога сигнала межантенной связи и компенсации сигнала межантенной связи путем вычитания аналога сигнала межантенной связи из принятого сигнала. 5 н.п. ф-лы, 3 ил.

Изобретение относится к радиолокации и может быть использовано в трехкоординатных радиолокаторах кругового обзора для измерения угла места (высоты) низколетящих целей под малыми углами места, в том числе целей, летящих на предельно малых высотах (десятки метров от поверхности земли), при наличии мешающих отражений от подстилающей поверхности. Достигаемым техническим результатом изобретения является создание способа измерения угла места (высоты) низколетящих целей под малыми углами места в трехкоординатных радиолокаторах кругового обзора, позволяющего обеспечить минимизацию влияния явления многолучевости, вызванного переотражениями эхо-сигналов от подстилающей поверхности. Технический результат достигается благодаря тому, что вычисление угла места (высоты) обнаруженной цели производится на основе оценок координаты дальности и разности в оценке азимутов цели, измеряемых при прохождении вертикального и наклоненного на 45 градусов в угломестной плоскости лучей антенной системы через цель на одной дальности. 1 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Достигаемый технический результат - увеличение дальности обнаружения и повышение точности определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Сущность способа заключается в приеме отраженного сигнала, его демодуляции, запоминании демодулированного сигнала биений в течение периода модуляции зондирующего сигнала, определении скорости изменения частоты его линейной частотной модуляции (ЛЧМ) и расчете с ее помощью радиальной скорости цели с последующим формированием опорного сигнала, демодуляцией запомненного сигнала и определением по его частоте дальности до цели. Устройство для реализации способа содержит частотный модулятор, генератор высокой частоты, передающую антенну, а также приемную антенну, первый умножитель сигналов, усилитель низкой частоты, измеритель скорости изменения частоты ЛЧМ сигнала, вычислитель радиальной скорости, формирователь опорного сигнала, второй умножитель сигналов, частотный анализатор и вычислитель дальности, а также запоминающее устройство и устройство синхронизации. Перечисленные средства определенным образом соединены между собой. 2 н.п. ф-лы, 1 ил.
Изобретение относится к радионавигации и технике связи и может использоваться для определения пространственных координат (ПК) объекта - источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - обеспечение однозначного определения ПК ИР, находящегося в любой точке пространства, с высокой точностью. Указанный результат достигается за счет того, что на объекте формируют и передают радиосигнал (PC) в виде трех высокочастотных гармонических колебаний с заданными частотами, содержащими заданную высокочастотную составляющую и заданные низкочастотные составляющие. При приеме и обработке PC обеспечивают выполнение заданных в способе условий. Принятые на каждой из станций PC передают по соответствующим линиям связи в единый центр. В нем осуществляют квадратурный прием высокочастотных PC, принятых от каждой из станций с заданными частотами гетеродинов. Для них полученные аналоговые квадратурные компоненты преобразуют в цифровые квадратурные компоненты (ЦКК). Последовательно формируют для каждого PC ЦКК, соответствующие трем упомянутым низкочастотным гармоническим колебаниям. Из полученных ЦКК формируют ЦКК, соответствующие гармоническим колебаниям на разностных частотах, и по этим ЦКК формируют ЦКК, соответствующие разностям фаз колебаний с одинаковыми разностными частотами, но относящимися к различным принятым PC. По сформированным таким образом ЦКК (с учетом временных задержек, возникающих при приеме, передаче по линии связи и обработке PC) однозначно определяют относительные дальности до объекта от фазовых центров антенн станций и по ним однозначно определяют ПК фазового центра антенны объекта.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и может быть использовано в пассивных системах местоопределения (МО) источников радиоизлучения (ИРИ), размещенных на неровных участках местности. Достигаемый технический результат – снижение погрешности определения координат ИРИ. Сущность изобретения заключается в расположении четырех приемных пунктов (ПП), размещенных на беспилотных летательных аппаратах (БЛА) типа "мультикоптер" в районе предполагаемого нахождения ИРИ. В указанный район ПП доставляются посредством беспилотного или пилотируемого летательного аппарата среднего класса. В состав каждого ПП входят блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник, приемопередатчик. В районе предполагаемого нахождения ИРИ приемные пункты распределяют в пространстве по команде с наземного пункта управления и обработки (НПУО), формируя, таким образом, разностно-дальномерную систему (РДС) МО. Приемные пункты располагают в вершинах тетраэдра: периферийные ПП в вершинах его нижнего основания, а опорный в вершине над основанием. В образованной РДС по сигналам блоков навигационно-временного обеспечения каждого ПП осуществляется определение их координат в пространстве, высокоточная привязка к собственной системе координат РДС и передача координатной информации о периферийных ПП на опорный. По команде с него все ПП выполняют поиск сигнала ИРИ в заданном частотном диапазоне и при обнаружении сигнала ретранслируют его на опорный. Прием и ретрансляция сигнала ИРИ приемными пунктами осуществляются их панорамными приемниками и приемопередатчиками соответственно. На опорном ПП на основе вычисления корреляции между сигналом, принятым на нем, и сигналами, ретранслированными с периферийных ПП, вычисляются и отправляются на НПУО координаты обнаруженного ИРИ. На НПУО оценивается значение погрешности полученных координат и в случае превышения требуемого значения, установленного оператором, осуществляется пересчет собственных координат всех ПП для их перестроения. Такое перестроение ПП относительно ИРИ выполняется до тех пор, пока погрешность определения его координат не установится ниже требуемого значения. 8 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) ультракороткого–сверхвысокочастотного (УКВ-СВЧ) диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более трех, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП они «размещаются» не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых в заданном диапазоне частот множеством источников радиоизлучения, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых, как для РКП, так и для всех заданных ВП по определенной программе. 5 ил., 1 табл.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более двух, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП их размещают не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых множеством источников радиоизлучения в заданном диапазоне частот, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых как для РКП, так и для всех заданных ВП по определенной программе.1 з.п. ф-лы, 8 ил.

Изобретение относится к способам определения координат объектов. Заявлен способ определения координат объектов, при котором устанавливают на высотном сооружении вращающуюся вокруг вертикальной оси видеокамеру, выполненную с возможностью изменения угла наклона, определяют координаты высотного сооружения, наводят видеокамеру на определяемый объект, определяют координаты объекта по углу наклона видеокамеры, высоте расположения видеокамеры и азимутальному углу видеокамеры. Также в заявленном способе выбирают радиус обзора местности, выбирают шаг поворота видеокамеры, строят модель срезов рельефа вокруг точки установки видеокамеры с заданным шагом по базе данных карт высот рельефа, определяют расчетную линию горизонта в каждом кадре, накладывают на изображение с видеокамеры линию, составленную из точек расчетной линии горизонта, определяют на изображении с видеокамеры линию, соответствующую реальной линии горизонта, определяют отклонение реальной линии горизонта от расчетной, записывают в базу данных поправочный угол к углу наклона камеры для расчета координат пересечения вектора, соответствующего линии взгляда видеокамеры на рельеф местности. Технический результат – повышение точности определения координат объектов. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям обнаружения наземных и низколетящих целей. Достигаемый технический результат - однозначное и более точное измерение азимутальной координаты цели под малыми углами места и улучшение разрешающей способности по азимуту. Указанный результат достигается тем, что определяют разрешающую способность по азимуту за счет ширины диаграммы направленности при сканировании в азимутальной плоскости, а угловое положение антенны, при котором сигнал имеет максимальную амплитуду, принимают за азимут цели, затем высокочастотные сигналы, принимаемые фоновой апертурой, отделяют от низкочастотных сигналов, принимаемых реальной апертурой, для чего запоминают полную азимутальную последовательность сигналов за время одного обзора, далее осуществляют дискретное преобразование Фурье сигнала в область пространственных частот, затем осуществляют фильтрацию по верхней частоте, после чего с помощью обратного быстрого преобразования Фурье сигнал переводят во временную область, далее обуженную диаграмму направленности, полученную выделением высокочастотной части азимутального сигнала, используют для определения азимута цели с улучшенной разрешающей способностью. 8 ил.

Наверх