Акустический способ определения качества цементирования элементов конструкции скважины



Акустический способ определения качества цементирования элементов конструкции скважины
Акустический способ определения качества цементирования элементов конструкции скважины
Акустический способ определения качества цементирования элементов конструкции скважины
Акустический способ определения качества цементирования элементов конструкции скважины

 


Владельцы патента RU 2572870:

Открытое акционерное общество "Татнефть" им. В.Д. Шашина (RU)

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при исследовании качества цементирования элементов конструкции скважины. Техническим результатом является повышение эффективности определения качества цементирования элементов конструкции скважины. Способ включает размещение на верхнем торце исследуемого элемента конструкции скважины датчиков излучателя и приемника акустических импульсов, акустически связанных с элементом, излучение акустических импульсов и регистрацию вторичных сигналов. После излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 90-60° по окружности изучаемого элемента скважины, устанавливают их диаметрально противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 4-6 замеров по окружности, интерпретацию результатов исследований ведут путем суммирования данных, полученных с применением двух рабочих частот 2 и 5 кГц и двух периодов 3 Т и 5 Т, выполняют построение развертки в 360° поверхности контакта элемента конструкции скважины колонна-цемент с получением картины сцепления цемента с колонной по всему периметру скважины и выделением вертикальных дефектных нарушений цемента. 4 ил.

 

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при исследовании качества цементирования элементов конструкции скважины (направление, кондуктор, техническая и эксплуатационная колонна).

Известны различные модификации акустического способа скважинной цементометрии (типа АКЦ), включающие излучение акустических импульсов и последующую регистрацию вторичных сигналов с помощью излучателя и приемника и позволяющие оценивать качество сцепления заколонного цемента как с металлом (преимущественно эксплуатационной колонны), так и с окружающими породами (Основы полевой и промысловой геофизики / Под ред. Р.С. Хисамова. Казань, изд-во Академия наук. РТ, 2013, 358 с.).

Основным недостатком этого способа является высокая трудоемкость и продолжительность исследований, обусловленная необходимостью спуска во внутреннее пространство скважины соответствующей аппаратуры. Этому предшествуют длительные подготовительные работы, включающие вывод скважины из эксплуатации, установку мачты каротажного подъемника, демонтаж устьевого и извлечение забойного оборудования скважины. (Н.Н. Кривко. Аппаратура геофизических исследований скважин. М.: Недра, 1991, с. 179-191, 333-339.)

Известен акустический способ диагностики качества цементного кольца за кондуктором скважины (патент РФ 2055176, МПК Е21В 47/00, опубл. 27.02.1996), основанный на принципе использования самой колонны кондуктора скважины в качестве волновода для распространения зондирующих акустических импульсов и отраженных от неоднородностей системы металл - цемент - порода вторичных сигналов, несущих информацию о состоянии заколонного цемента. При этом излучатель и приемник акустических сигналов размещают на верхнем торце исследуемого кондуктора, что обеспечивает высокую оперативность проведения исследований, не требующих разгерметизации скважины и спуска в ее внутреннее пространство какого-либо оборудования.

Основной недостаток способа связан с тем, что он не позволяет различать вторичные сигналы, поступающие как от нарушений сцепления в системе металл - цемент, так и в системе цемент - порода. Кроме того, применение сравнительно высоких рабочих частот (от 10 до 40 кГц) ограничивает глубину применения способа величиной порядка 400 м (РД 39-0147585-070-92. Технологическая инструкция по определению качества цементирования кондукторов виброакустическим методом. - Казань, 1992. - 14 с). Вместе с тем известно, что глубина проникновения излучаемых акустических волн в окружающую среду и коэффициент их затухания находятся в обратной зависимости от частоты. (Исакович М.А. Общая акустика. - М.: Наука, 1973. - 495 с.) Поэтому при использовании двух (или более) различных рабочих частот более высокая из них должна быть чувствительнее к параметрам сцепления металл - цемент, а пониженная - к параметрам сцепления более удаленной от колонны-волновода системы цемент - порода. Таким образом, сопоставление относительной амплитуды соответствующих дефектам заколонного цемента пиков на цементограммах, полученных с использованием различных частот, может стать объективным критерием, позволяющим различать дефекты цемента различной природы. Кроме того, снижение используемых рабочих частот позволяет существенно (обратно пропорционально квадрату частоты) повысить глубинные возможности способа, расширяя область его применения на технические и эксплуатационные колонны скважины.

Наиболее близким к предложенному изобретению по технической сущности является акустический способ контроля качества цементирования элементов конструкции скважины (патент РФ 2238404, МПК 7 Е21В 47/00, опубл. 20.10.2004 - прототип), основанный на комбинации эхо- и зеркально-теневого методов. Способ виброакустической цементометрии сводится к возбуждению продольных звуковых волн в длинной стальной трубе, окруженной с внешней стороны цементным камнем. Продольные звуковые волны в стальной трубе представляют собой механические волны сжатия-расширения, распространяющиеся вдоль трубы. Применен принцип распространения зондирующих акустических импульсов и регистрации отраженных от неоднородностей системы металл - цемент - порода вторичных сигналов, несущих информацию о состоянии заколонного цемента с использованием двух рабочих частот 2 кГц и 5 кГц. Затухание звуковой волны сильнее при хорошем сцеплении металла с цементом и ослабевает при отсутствии сцепления. Наличие сигналов от дефектов цементирования проявляется в отклонении их амплитуд от линии огибающей (средней) линии зарегистрированных приемником сигналов. Излучатель и приемник акустических сигналов размещают параллельно друг другу на верхнем торце исследуемого кондуктора.

Способ не требует разгерметизации скважины и спуска в ее внутреннее пространство какого-либо оборудования.

Существенным недостатком этого способа является то обстоятельство, что на цементограмме отражаются лишь интервалы нарастания амплитуды отраженного сигнала, информация о ниспадающей части амплитудных пиков утрачивается, уходя в отрицательные значения первой производной, не отражаемые на результирующей цементограмме. Следствием этого является неполное отражение информации в представляемом результате - цементограмме, на которой отмечаются лишь головные части дефектов заколонного цемента.

В предложенном изобретении решается задача расширения информационной возможности и повышения достоверности результатов исследований. Дополнительно решается задача определения вертикальных зон плохого качества сцепления цемента с колонной.

Задача решается тем, что в акустическом способе контроля качества цементирования элементов конструкции скважины, включающем размещение на верхнем торце исследуемого элемента конструкции скважины датчиков излучателя и приемника акустических импульсов, акустически связанных с элементом конструкции, излучение акустических импульсов и регистрацию вторичных сигналов, согласно изобретению после излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 90-60° по окружности изучаемого элемента скважины, устанавливают их диаметрально-противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 4-6 замеров по окружности, интерпретацию результатов исследований ведут путем суммирования данных, полученных с применением двух рабочих частот 2 и 5 кГц и двух периодов 3 Т и 5 Т, выполняют построение развертки в 360° поверхности контакта элемента конструкции скважины колонна-цемент с получением картины сцепления цемента с колонной по всему периметру скважины и выделением вертикальных дефектных нарушений цемента.

Сущность изобретения

Существенными недостатками известных способов акустического контроля качества цементирования элементов конструкции скважины являются неполное отражение информации в представляемом результате, невысокая достоверность результатов. В предложенном изобретении решается задача расширения информационной возможности и повышения достоверности результатов исследований. Дополнительно решается задача определения вертикальных зон плохого качества сцепления цемента с колонной.

Задача решается следующим образом.

В акустическом способе контроля качества цементирования элементов конструкции скважины выполняют размещение на верхнем торце исследуемого элемента конструкции скважины датчиков излучателя и приемника акустических импульсов, акустически связанных с элементом конструкции, излучение акустических импульсов и регистрацию вторичных сигналов. После излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 90-60° по окружности изучаемого элемента скважины, устанавливают их диаметрально-противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 4-6 замеров по окружности, проводят интерпретацию результатов исследований, которую ведут путем суммирования данных, полученных с применением двух рабочих частот 2 и 5 кГц и двух периодов 3 Т и 5 Т, выполняют построение развертки в 360° поверхности контакта элемента конструкции скважины колонна-цемент с получением картины сцепления цемента с колонной по всему периметру скважины и выделением вертикальных дефектных нарушений цемента.

На фиг. 1 представлены схемы исследовательского процесса размещения датчиков излучателя и приемника при реализации предлагаемого способа, где 1 - исследуемая колонна, 2 - датчики излучателя акустических импульсов, 3 - датчики приемника вторичных акустических сигналов, 4 - аппаратный блок виброакустического цементомера.

На фиг. 2 представлены примеры размещения датчиков при исследовании скважин. На фиг. 2 приняты следующие обозначения: 1 - исследуемая колонна, 2 - датчики излучателя акустических импульсов, 3 - датчики приемника вторичных акустических сигналов, 4 - аппаратный блок виброакустического цементомера, 5 - кондуктор, 6 - кабели, 7 - аккумулятор. Датчики 2 и 3 устанавливают на диаметрально противоположных точках, изначально через 180° друг от друга и далее, поочередно, перемещают по периметру торца колонны, проводят замеры с шагом от 90 до 60°. Передающе-регистрирующая программа формирует зондирующий импульс на двух частотах 2 кГц и 5 кГц, проводит запись отраженного сигнала на двух 3-х и 5-ти периодах (Т). При этом увеличено количество замеров с одного до шести. По заданной частоте и амплитуде зондирующего сигнала увеличивается плотность замеров на метр длины элемента конструкции скважины в 5 раз по сравнению с прототипом, за счет чего увеличивается детальность исследований и регистрация малых до 10-30 см дефектов цемента.

При интерпретации полученных замеров использован аддитивный метод, основанный на суммировании четырех амплитуд (с частотой 2 кГц - 3 Т, 2 кГц - 5 Т, 5 кГц - 3 Т, 5 кГц - 5 Т) в каждой точки из 6-ти замеров и вычислении значения относительной амплитуды сигнала, которая рассчитывается по формуле Ао=(Ат - Ап)/Ат, где Ао представляет собой разность текущего значения амплитуды, Ат - предыдущее минимальное значение на кривой затухания, Ап - отнесенная к текущей амплитуде.

Исследования по заявляемому способу проводят в следующей последовательности: на торец колонны с помощью сцепляющего вещества необходимой консистенции (алебастр, гель), обеспечивающей акустический контакт, устанавливают излучатель и приемник, подключенные к аппаратному блоку, формируют зондирующий импульс и регистрацию вторичных сигналов с помощью программ, входящих в состав персонального компьютера. Измерения осуществляют с применением подаваемого от излучателя зондирующего акустического импульса длительностью 3 мс, 5 мс и частотой заполнения 5 кГц, затем импульс длительностью 3 мс, 5 мс и частотой 2 кГц.

Зарегистрированные посредством приемника экспоненциальные кривые затухания вторичного сигнала оцифровываются и обрабатываются специальной программой с записью сигнала в точке замера.

Далее аналогично замеры проводят секторально, через каждые 90-60°, перемещая датчики по окружности элемента скважины, выполняют 4-6 замеров по кругу (фиг. 2).

За счет секторного исследования строят развертку поверхности контакта колонна-цемент в 360°, в результате чего наблюдают сквозные нарушения контакта, а не только изолированные друг от друга дефекты сцепления. Наличие таких сквозных дефектов даже в случае небольших по мощности интервалов позволяет обнаружить потенциальные каналы для межпластовых перетоков за колонной, не выделяемые с помощью аналогичного метода. Построение развертки поверхности стенки скважины отображает псевдотрехмерное изображение качества цемента за исследуемой колонной скважины.

На выходе программного графического редактора строят цементограмму. Пики значений амплитуд, находящиеся в зоне «Дефектный цемент», соответствуют плохому сцеплению цементного камня с колонной скважины.

Примеры конкретного выполнения

Пример 1. На скважине, имеющей эксплуатационную колонну и заколонный цемент, проводят акустический контроль качества цементирования эксплуатационной колонны скважины. На устье скважины на торце эксплуатационной колонны размещают датчики излучателя и приемника акустических импульсов. Датчики акустически связывают гипсовым раствором с эксплуатационной колонной. Проводят излучение акустических импульсов и регистрацию вторичных сигналов. После излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 90° по окружности эксплуатационной колонны скважины, устанавливают их диаметрально-противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 4 замера по окружности, интерпретацию результатов исследований ведут путем суммирования данных, полученных с применением двух рабочих частот 2 и 5 кГц и двух периодов 3 Т и 5 Т, выполняют построение развертки в 360° поверхности контакта элемента конструкции скважины колонна-цемент с получением картины сцепления цемента с колонной по всему периметру скважины и выделением вертикальных дефектных нарушений цемента.

На фиг. 3 представлен результат исследований - цементограмма в секторальной развертке по окружности исследуемого элемента скважины. Цементограмма отображает значения относительной амплитуды отраженного сигнала, соответствующие качественному и дефектному сцеплению заколонного цемента. На примере нарушение сцепления цемента с породой имеет место в интервалах 18-22 м, 27,3-33 м, 35-45,1 м, 47,2-51,5 м, 53-57,5 м, 59-61,5 м, 65,5-71,4 м, 72,2-83 м, 85,7-101 м. Присутствие сквозных дефектов цементного камня обуславливает негерметичность затрубного пространства даже в случае небольших по мощности интервалов дефектов.

На фиг. 4 представлено сравнение результатов прототипа - способа ВАЦ с предложенным акустическим способом высокого разрешения 6-секторного контроля качества цемента. Цементограмма известного способа а) отображает картину отраженного сигнала в одном положении датчиков, качество цементного камня затрубного пространства оценивается субъективно на все околоскважинное пространство. Цементограмма предложенного способа б) отображает объективную картину контакта сцепления цемента с колонной по всему периметру скважины в развертке 360° и выделяет вертикальные дефекты нарушения цемента.

Пример 2. Выполняют как пример 1. После излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 60° по окружности эксплуатационной колонны скважины, устанавливают их диаметрально-противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 6 замеров по окружности.

Результаты аналогичны результатам примера 1.

Таким образом, в предложенном изобретении решается задача расширения информационной возможности, повышения достоверности результатов исследований и определения вертикальных зон плохого качества сцепления цемента с колонной.

Технико-экономическая эффективность от применения предлагаемого способа достигается за счет повышения достоверности информации о состоянии заколонного цемента, что положительно влияет на эффективность работ по ликвидации источников техногенного загрязнения водоносных горизонтов в нефтедобывающих регионах.

Применение предложенного способа позволит решить задачу расширения информационной возможности, повышения достоверности результатов исследований и определения вертикальных зон плохого качества сцепления цемента с колонной.

Акустический способ контроля качества цементирования элементов конструкции скважины, включающий размещение на верхнем торце исследуемого элемента конструкции скважины датчиков излучателя и приемника акустических импульсов, акустически связанных с элементом конструкции, излучение акустических импульсов и регистрацию вторичных сигналов, отличающийся тем, что после излучения и регистрации акустических импульсов перемещают датчики излучателя и приемника последовательно через каждые 90-60° по окружности изучаемого элемента скважины, устанавливают их диаметрально-противоположно друг другу, формируют зондирующие акустические импульсы на двух частотах 2 кГц и 5 кГц, проводят запись отраженного сигнала на двух 3-х и 5-ти периодах Т и выполняют 4-6 замеров по окружности, интерпретацию результатов исследований ведут путем суммирования данных, полученных с применением двух рабочих частот 2 и 5 кГц и двух периодов 3 Т и 5 Т, выполняют построение развертки в 360° поверхности контакта элемента конструкции скважины колонна-цемент с получением картины сцепления цемента с колонной по всему периметру скважины и выделением вертикальных дефектов нарушения цемента.



 

Похожие патенты:

Группа изобретений относится к нефтегазовой отрасли и может быть использована для мониторинга и обработки скважинной среды. Патронный скважинный фильтр содержит цилиндрическую стенку, внутреннюю и наружную поверхность, отверстие, проходящее во внутреннее пространство через цилиндрическую стенку между наружной поверхностью и внутренней поверхностью для создания доступа текучей среды от наружной поверхности во внутреннее пространство, фильтрующий текучую среду материал, исключающий проход слишком крупных частиц через отверстие, и материал трассера текучей среды, который перемещается в скважинном трубном изделии и расположенный на установочной площадке, размещенной на расстоянии от отверстия, проходящего к внутреннему пространству, снаружи от внутреннего пространства.

Изобретение относится к области эксплуатации нефтедобывающего оборудования, а именно, к способу и устройству, применяемым для контроля состояния насосных штанг нефтедобывающих скважин.

Предлагаемые технические решения относятся к нефтедобывающей промышленности, а именно к системам и устройствам приема/передачи информации и электрической энергии к исполнительным приборам и механизмам при эксплуатации скважин для добычи флюида.

Изобретение относится к области нефтедобычи и позволит повысить точность и объективность контроля при эксплуатации нефтяных месторождений. Технический результат заключается в точности, устойчивости контроля обводненности скважинных продуктов в процессе эксплуатации без сепарации, с возможностью использования этих данных при управлении нефтедобычей.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для обоснования технологических режимов газовых промыслов, включающих системы добычи и подготовки газа к транспорту.

Изобретение относится к области проектирования нефтяного коллектора управления им и его отдачей. Технический результат - более точная оценка фактических условий в существующем коллекторе, разработка и реализация разумного плана мероприятий для увеличения краткосрочных рабочих дебитов и долгосрочной нефтеотдачи коллектора.

Изобретение относится к газодобывающей промышленности и может быть использовано для определения динамического уровня жидкости в затрубном пространстве, между эксплуатационной колонной и насосно-компрессорными трубами, обводненных газовых скважин в процессе откачки пластовой жидкости погружными электроцентробежными насосами.

Изобретение относится к средствам измерения в скважинах в процессе бурения, в частности к средствам передачи сейсмических данных в реальном времени. Техническим результатом является повышение точности и скорости передачи данных.

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине.
Изобретение относится к области нефтегазодобывающей промышленности, в частности к области эксплуатации промысловых скважин, и может быть использовано при разработке нефтяных, газовых и газоконденсатных месторождений.

Изобретение относится к бурению скважин, в частности к средствам направленного бурения и корректировки траектории скважины. Техническим результатом является обеспечение предотвращения прямых или косвенных пересечений стволов скважины. Предложен способ для планирования и/или бурения стволов скважин, содержащий этапы, на которых получают данные, указывающие на положение первого ствола скважины, причем получение выполняют посредством компьютерной системы; считывают данные, указывающие на положение соседнего ствола скважины; считывают данные, указывающие на диаметр разрыва для соседнего ствола скважины; рассчитывают первую неопределенность положения первого ствола скважины; рассчитывают вторую неопределенность положения соседнего ствола скважины с учетом данных, указывающих на положение, и данных, указывающих на диаметр разрыва; и генерируют показатель близости неопределенностей положения. Предложены также компьютерная система и энергонезависимый машиночитаемый носитель для осуществления указанного способа. 3 н. и 21 з.п. ф-лы, 12 ил.

Изобретение относится к способам получения характеристик трехмерных (3D) образцов породы пласта, в частности к укрупнению масштаба данных цифрового моделирования. Технический результат - более точное моделирование потока. Модели в масштабе скважины используют МТС (многоточечную статистику) для комбинирования сеток минипроницаемости и сканограмм традиционной КТ полноразмерного керна с электрическими изображениями скважины для создания 3-мерных численных псевдокернов для каждого ТПП (типа породы пласта). Эффективные свойства САК (специальный анализ керна), вычисленные из различных реализаций или моделей МТС в масштабе скважины, используются для заполнения моделей в межскважинном масштабе для каждого ТПП. В межскважинном масштабе сейсмические параметры и вариограммная статистика из данных КВБ (каротаж во время бурения) используются для заполнения цифровых моделей породы. Эффективные свойства, вычисленные из моделирования потока для межскважинных объемов, используются для заполнения моделей в масштабе всего месторождения. 8 н. и 26 з.п. ф-лы, 13 ил.

Изобретение относится к средствам для выполнения скважинного каротажа. Техническим результатом является повышение чувствительности и точности информации в процессе измерений в скважине. Предложен способ проведения измерений в скважине, содержащий этапы, на которых: управляют активацией прибора, расположенного в скважине и имеющего компоновку излучающих антенн и приемных антенн, разнесенных на расстояния, способных работать выбираемыми парами излучатель-приемник. При этом регистрируют глубинный сигнал из глубинного измерения, используя пару излучатель-приемник, и один или несколько малоглубинных сигналов из одного или нескольких малоглубинных измерений, используя одну или несколько других пар излучатель-приемник; обрабатывают один или несколько малоглубинных сигналов, образуют модельный сигнал относительно областей, прилегающих к боковым сторонам и задней стороне прибора; и формируют сигнал опережающего просмотра по существу без вкладов из областей, прилегающих к прибору, путем обработки глубинного сигнала в зависимости от модельного сигнала. Предложены также устройство для проведения измерений в скважине и машиночитаемое запоминающее устройство, имеющее инструкции выполнения действий указанного способа. 6 н. и 25 з.п. ф-лы, 41 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля заколонных перетоков жидкости в скважине. Устройство для контроля заколонных перетоков между двумя пластами содержит спускаемый на геофизическом кабеле контейнер для "меченой" жидкости с узлами подачи и разгерметизации, а также измерительным датчиком. В качестве "меченой" жидкости используется ферромагнитная жидкость, а в качестве измерительных датчиков - устройства для измерения магнитного поля. Контейнер помещен в колонну труб, снабженную снаружи пакером, установленным между верхним и нижним пластами. Узел подачи установлен в колонне труб выше пакера напротив верхнего пласта и выполнен в виде заглушенного снизу фильтра и перфорированной заглушки, жестко установленной в колонне труб выше фильтра. Причем узел разгерметизации выполнен в виде ступенчатого штока с большим диаметром D сверху и меньшим диаметром d снизу. В транспортном положении ступенчатый шток большим диаметром D герметично установлен в центральное отверстие, выполненное в дне контейнера, а в рабочем положении при взаимодействии ступенчатого штока с перфорированной заглушкой узла подачи ступенчатый шток имеет возможность осевого перемещения вверх относительно контейнера с размещением ступенчатого штока меньшим диаметром d напротив центрального отверстия контейнера. Измерительный датчик установлен на нижнем конце колонны труб напротив нижнего пласта. Предлагаемое устройство позволяет: повысить надежность работы устройства; повысить эффективность работе устройства; повысить точность наличия заколонного перетока между двумя пластами; исключить герметизацию геофизического кабеля на устье скважины. 3 ил.

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной колонны, что обеспечивает более точное управление направленным бурением. Предложены способ и система для получения опережающих измерений профиля, при этом способ включает в себя расположение излучателя энергии, такого как излучающая антенна, вблизи инструмента компоновки низа бурильной колонны. При этом один или несколько приемников энергии, таких как приемные антенны, располагают по длине компоновки низа бурильной колонны. Затем излучают энергию для выполнения опережающих сканирований относительно инструмента компоновки низа бурильной колонны. Образуют данные графика опережающего просмотра с осью x, являющейся функцией времени относительно положения инструмента компоновки низа бурильной колонны. Строят график опережающего просмотра и отображают его на дисплейном устройстве. На основании моделей геологической среды по графику опережающего просмотра можно прослеживать оцененные пластовые значения. Оцененные пластовые значения отображают ниже линии изменения во времени положения инструмента, которая является частью графика опережающего просмотра. Причем оцененные пластовые значения на графике опережающего просмотра могут быть основаны на инверсиях данных об удельном сопротивлении из опережающих сканирований. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к закладке взрывчатого вещества в стволы взрывных скважин и/или соответствующим устройствам или инструментам осуществления контроля правильности заполнения взрывчатым веществом в стволах скважин. Техническим результатом является повышение безопасности и производительности взрыва. Устройство содержит трубчатый корпус, осветительное средство и средство получения изображения, размещенные в корпусе, по меньшей мере один канал циркуляции для текучей среды и распыляющий элемент, предназначенный для набрызгивания текучей среды под давлением циркулирующей по меньшей мере через один канал циркуляции, на прозрачную крышку, обеспечивающую освещение и получение изображения, через нее, гибкую трубу для технологических линий с требуемой жесткостью на кручение, и центрирующий элемент, выполненный в виде удлиненного элемента, деформирующегося под действием силы и с памятью формы, который имеет верхний сектор, нижний сектор и два изгиба в противоположных направлениях на центральном участке, причем верхний сектор выполнен с возможностью оставаться, по существу, в контакте со стенкой ствола скважины, и нижний сектор выполнен с возможностью оставаться, по существу, по центру в стволе скважины. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области геофизики и может быть использовано для моделирования пласта-коллектора. Описывается способ моделирования месторождения. В одном аспекте открытия способ включает в себя инициирование работы механизма моделирования пласта-коллектора и, следом за инициированием работы механизма моделирования, извлечение данных о месторождении из внешнего источника данных через сеть передачи данных и использование извлеченных данных как части выполняющегося моделирования. В некоторых вариантах осуществления, колода с данными может предоставляться механизму моделирования, прежде чем будет инициирована работа механизма моделирования. Колода с данными может включать в себя информацию для установления сетевых линий связи между механизмом моделирования пласта-коллектора и внешним сервером данных. Технический результат - повышение точности данных моделирования. 3 н. и 17 з.п.ф-лы, 3 ил.

Изобретение относится к газовой и нефтяной промышленности, в частности к способам исследования скважин и межскважинного пространства при разработке нефтяных и газовых месторождений. Технический результат заключается в повышении точности определения причин высокого содержания попутной воды в добываемой продукции по скважинам с отсутствующим зумпфом. Способ содержит этапы, на которых: выбирают нагнетательные и наблюдательные добывающие скважины. Оценивают условия использования веществ, применяемых в качестве индикаторов фильтрационных потоков. Определяют необходимый объем меченой жидкости и количества индикатора. Закачивают меченную стабильным или радиоактивным индикатором воду или водный раствор реагента в нагнетательную скважину. Запускают скважину, с устья контрольных добывающих скважин периодически отбирают пробы пластовой воды и делают их физико-химический анализ на содержание индикаторов. Интерпретируют полученные данные: при обнаружении в добываемой продукции трассеров делают вывод о наличии обводнения скважины, заколонных перетоков, нарушении герметичности колонны. Путем сравнения относительного выхода индикатора с относительным отбором жидкости из добывающей скважины определяют обводнение скважины за счет постороннего источника: заколонных перетоков, нарушения герметичности колонны, от другой смежной нагнетательной скважины, в которую не закачивался индикатор. Причем относительным отбором жидкости QЖi является отношение суммарного объема жидкости, отобранной из i-й добывающей скважины за период исследований, к общему количеству воды, закачанной в пласт за то же время. Относительным выходом индикатора МOTi является отношение суммарной массы индикатора, извлеченной из данной скважины за период исследований, к исходной массе индикатора Mo, закачанной в пласт. Если QЖi/MOTi>1, то в скважину поступает вода от постороннего источника. 21 з.п. ф-лы, 2 ил.

Изобретение относится к газодобывающей промышленности и может быть использовано для защиты погружных телеметрических систем. Технический результат заключается в повышении надежности защиты погружных блоков системы телеметрии, сокращении затрат на спуско-подъемные операции при выходе из строя погружного блока системы телеметрии. Устройство для крепления и защиты погружных блоков системы телеметрии включает корпус, содержащий два погружных блока системы телеметрии. При этом корпус представляет собой патрубок насосно-компрессорных труб с двумя наклонными отверстиями и упорами под ними, сверху которого закреплена пластина, с двух концов патрубка насосно-компрессорных труб расположены резьбовые части. Для крепления погружных блоков системы телеметрии используют шайбы крепления и фиксации, в одной из которых предусмотрена прорезь. 1 ил.

Изобретение относится к области нефтегазодобывающей промышленности и найдет применение при изоляции водопритоков в горизонтальном или наклонном участках стволов добывающих скважин. Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины включает извлечение из скважины насосного оборудования, спуск колонны труб в скважину, закачку через них водоизоляционного раствора с твердеющими свойствами, создание непроницаемого экрана в интервале водопроявляющего пласта и последующее вымывание водоизоляционного раствора из скважины обратной циркуляцией после начала схватывания водоизоляционного состава. После извлечения из добывающей скважины насосного оборудования проводят геофизические исследования и определяют длину интервала водопроявляющего пласта в необсаженном горизонтальном участке ствола скважины. Затем в необсаженный горизонтальный участок ствола скважины спускают дополнительную колонну труб, оборудованную сверху направляющей воронкой и уплотнительным пакером. Ниже уплотнительного пакера дополнительную колонну труб оснащают двумя водонабухающими пакерами длиной по 1 м каждый, соединенными между собой перфорированным патрубком длиной, равной длине интервала водопроявляющего пласта. Внутри дополнительной колонны труб за перфорированным патрубком устанавливают фиксатор. При этом после спуска дополнительной колонны труб в необсаженный горизонтальный участок ствола скважины и посадки уплотнительного пакера набухающие пакеры размещают на границах интервала водопроявляющего пласта. После ожидания набухания пакеров спускают колонну труб в скважину. Производят закачку водоизоляционного раствора по колонне труб через отверстия перфорационного патрубка в интервал водопроявляющего пласта с образованием водоизоляционного экрана. После чего закачиванием промывочной жидкости с созданием обратной циркуляции вымывают водоизоляционный раствор из дополнительной колонны труб скважины. Производят перфорацию дополнительной колонны труб до и после границ интервала водопроявляющего пласта. Затем в скважину на конце колонны труб спускают гидравлический разъединитель с расширяемой втулкой и обратным клапаном, пропускающим от забоя к устью скважины. При этом расширяемая втулка на концах оснащена уплотнительными кольцами. Спуск технологической колонны труб в скважину осуществляют до взаимодействия расширяемой втулки с фиксатором. После чего в технологической колонне труб создают избыточное давление и производят радиальное расширение наружу втулки до герметизации уплотнительными кольцами концов перфорированного патрубка дополнительной колонны труб. После чего производят отсоединение гидравлического разъединителя от расширяемой втулки и производят извлечение технологической колонны труб с гидравлическим разъединителем из скважины, спускают в скважину насосное оборудование и запускают скважину в работу. Техническим результатом является повышение надежности и эффективности реализации способа, повышение качества водоизоляционных работ, исключение обводнения горизонтального участка ствола скважины из интервала водопроявляющего пласта. 5 ил.
Наверх