Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины



Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины
Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины
Способ автоматического регулирования величины ph циркуляционной воды контура охлаждения статора электрогенератора паровой турбины

 


Владельцы патента RU 2578045:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) (RU)

Использование: для автоматического регулирования величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины. Сущность изобретения заключается в том, что изменяют подачу щелочи в циркуляционную воду, организуют линию рециркуляции после фильтра через дозировочный бачек с регулировочным краном на всас циркуляционного насоса, измеряют удельную электропроводность в потоке пробы циркуляционной воды до входа в обмотку статора, имеющую функциональную зависимость с концентрацией дозируемой щелочи и с величиной рН циркуляционной воды, которую используют в структуре системы автоматического регулирования для расчетного определения нижнего и верхнего пределов значений электропроводности, по которым формируют команду на открытие или закрытие регулировочного крана на линии рециркуляции. Технический результат: обеспечение возможности поддержания высокой точности заданной величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины. 1 ил., 2 табл.

 

Изобретение относится к области теплоэнергетики и может быть использовано в оборотных системах водяного охлаждения статора электрогенератора с приводом от паровой турбины на энергоблоках ТЭС и АЭС.

Известен способ измерения рН среды путем измерения ЭДС пары электродов, контактирующих с контролируемым раствором, для автоматического определения значений рН в широких пределах (7,5-13,0) (авторское свидетельство СССР №123751, МПК G01N 27/416, 1959 г.).

Недостатком способа является невозможность его использования для предельноразбавленных растворов в слабощелочной и слабокислой среде при протоке пробы.

Известен «Способ и устройство для измерения рН слабощелочных растворов» (Патент на изобретение РФ №2456578, МПК G01N 21/27, 2012 г.) экстраполяцией спектрофотометрических измерений от многих чувствительных элементов - индикаторов рН, в котором сначала посредством индикаторов, контактирующих с раствором и имеющих известную величину рН, строят калибровочную кривую, а затем измеряют рН испытуемого раствора, используя калибровочную кривую.

Недостатком указанного способа является использование многочисленных колориметрических индикаторов рН и измерения рН - отклика колориметром или спектрофотометром, что в условиях оперативного химического контроля качества пара, конденсата пара и питательной воды энергоблока ТЭС и АЭС с протоком проб представляется малопригодным.

Известен «Способ автоматического регулирования величины рН водных растворов» (патент на изобретение РФ №2284048, МПК G05D 21/00, C02F 1/66, C02F 103/06, 2006 г.), принятый за прототип, путем изменения подачи кислоты или щелочи в реакторы - смесители включает использование в структуре автоматической системы регулирования в качестве регулируемой величины и величины задания - линеаризованной обратной функции нелинейной зависимости величины рН от концентрации кислоты или щелочи.

Недостатком указанного способа является невозможность обеспечить заданную точность поддержания рН в диапазоне 7,0-9,0 в предельно разбавленном малобуферном водном растворе, каким является циркуляционная вода контура охлаждения статора электрогенератора энергоблока ТЭС и АЭС.

Технический результат заключается в создании способа, позволяющего обеспечить высокую точность поддержания заданной величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины.

Технический результат достигается тем, что в способе автоматического регулирования величины рН циркуляционной воды контура охлаждения статора электрогенератора паровой турбины путем изменения подачи щелочи в циркуляционную воду, включающем использование в структуре системы автоматического регулирования функциональной зависимости рН от концентрации дозируемой щелочи, организуют линию рециркуляции после фильтра через дозировочный бачек с регулировочным краном на всас циркуляционного насоса, измеряют удельную электропроводность в потоке пробы циркуляционной воды до входа в обмотку статора, имеющую функциональную зависимость с концентрацией дозируемой щелочи и с величиной рН циркуляционной воды, которую используют в структуре системы автоматического регулирования для расчетного определения нижнего и верхнего пределов значений электропроводности, по которым формируют команду на открытие или закрытие регулировочного крана на линии рециркуляции.

На чертеже представлена схема контура охлаждения статора электрогенератора паровой турбины, поясняющая сущность заявляемого способа.

Контур охлаждения статора электрогенератора паровой турбины содержит напорную линию, включающую циркуляционный бак 1, насос 2, теплообменник 3, фильтр 4, обмотки статора электрогенератора 5. Линия рециркуляции, расходом не более 0,005% от расхода циркуляционной воды, организована в контуре после фильтра 4 через запорный кран 6, дозировочный бачек 7 и регулировочный кран 8 на всас насоса 2. Поступающая в циркуляционную воду щелочь из дозировочного бачка 7 повышает величину рН и удельную электропроводность, которую измеряют датчиком 9, соединенным через систему автоматического регулирования 10, с регулировочным краном 8. Дозировочный бачек 7 снабжен кранами 11 и 12.

Способ реализуется следующим образом. Вода из циркуляционного бака 1 насосом 2 прокачивается через теплообменник 3, где охлаждается, и через фильтр 4 подается на охлаждение обмоток статора электрогенератора 5 и возвращается в циркуляционный бак 1. С напорной линии после фильтра 4 трубопроводом малого диаметра с запорным краном 6 вода подается на дозировочный бачок 7, объемом 0,1-0,2 м3, загруженный раствором щелочи 1-2%-ной концентрации. Откуда вытесняет малое количество щелочи через открытый регулировочный кран 8 на всас насоса 2. Запорный кран 6 открыт в рабочем режиме и закрыт в режиме перегрузки дозировочного бачка 7 щелочью. В режиме перезагрузки дозировочного бачка 7 через кран 11 отводят воздух, кран 12 используют для слива из дозировочного бачка 7 бачка воды и заполнения его раствором щелочи. Регулировочный кран 8 открывается и закрывается автоматически по команде системы автоматического регулирования 10. Поступающая в циркуляционную воду щелочь повышает величину рН и удельную электропроводность, которая измеряется датчиком 9, сигнал от которого с заданной дискретностью поступает в систему автоматического регулирования 10, где формируется сигнал на открытие или закрытие регулирующего крана 8.

Взаимосвязь величины рН и удельной электропроводности циркуляционной воды определяется из следующего:

, при или

Удельная электропроводность χ складывается из удельных электропроводностей конденсата χконд и щелочи χNaOH

Согласно уравнению электропроводности

или в нашем случае:

где λNaOH - эквивалентная электропроводность NaOH, при 25°С в предельно разбавленном водном растворе, равная 248,4 Ом-1·см2·экв-1.

Тогда при t=25°С, получим

Так как , моль/дм3, то получим

Тогда,

И, обратно,

Здесь, χ измерена в См/см, концентрация ионов водорода - в моль/дм3.

Согласно циркуляра Ц10/85(Э) (Об организации водно-химического режима системы охлаждения обмоток статоров турбо- и гидрогенераторов / М. СПО ОРГРЭС. 1985) величина рН циркуляционной воды системы охлаждения обмоток статора электрогенератора нормируется в пределах 8,0-9,0 (8,5±0,5). Тогда, нижний предел нормируемой величины рН определяется выражением

или при измерении удельной электропроводности в мкСм/см

Верхний предел нормируемой величины рН определяется выражением

При измеренных значениях удельной электропроводности χ циркуляционной воды ниже или равных χн система автоматического регулирования 10 дает команду на открытие регулировочного крана 8, при значениях χ равных или больших χв - на закрытие регулировочного крана 8. Частота открытия-закрытия регулировочного крана 8 зависит от концентраций NaOH в дозировочном бачке 7 и пропускной способности регулировочного крана 8. По мере вытеснения щелочи из дозировочного бачка 7 водой происходит разбавление щелочи, и периоды открытия регулировочного крана 8 увеличиваются, а отсутствие увеличения электропроводности циркуляционной воды при открытом регулировочном крана 8 свидетельствует об отсутствии щелочи и необходимости перезарядки дозировочного бачка 7 раствором щелочи, для чего используются краны 11 и 12 при закрытых запорном кране 6 и регулировочном кране 8.

Ниже приведены примеры осуществления способа.

Пример 1.

В табл. 1 приведены результаты анализа циркуляционной воды систем охлаждения обмоток статоров электрогенераторов (СОСГ) энергоблоков №№3, 4, 5 Конаковской ГРЭС.

Значения рН циркуляционной воды находятся на пределе нормы, временами выходят за нижний предел. Дозировка NaOH по предлагаемому способу обеспечит устойчивое регулирование рН при среднем значении χконд=0,55 мкСм/см в пределах удельной электропроводности (формулы 7 и 8), равных

χн=0,8 мкСм/см, χв=3,0 мкСм/см.

При измеренных значениях χ циркуляционной воды ниже или равных 0,8 мкСм/см система автоматического регулирования 10 дает команду на открытие регулировочного крана 8, при значениях χ равных или больших 3,0 - на закрытие регулировочного крана 8.

Текущие значения рН циркуляционной воды, вычисленные по формуле (5) на основании измеренных значений электропроводности, приведены в табл. 2.

Значения рН, измеренные промышленными автоматическими рН-метрами в водах типа конденсата и циркуляционной воды, характеризуются невысокой точностью и воспроизводимостью, особенно, при уменьшении рН от 8,5 до 7,5 единиц рН. Это подтверждается данными табл. 2. Приведенное обстоятельство не позволяет использовать промышленные рН-метры в системах автоматического регулирования рН малобуферных предельноразбавленных водных растворов, какими является и циркуляционная вода контура охлаждения статора электрогенератора.

Способ автоматического регулирования величины pH циркуляционной воды контура охлаждения статора электрогенератора паровой турбины путем изменения подачи щелочи в циркуляционную воду, включающий использование в структуре системы автоматического регулирования функциональной зависимости pH от концентрации дозируемой щелочи, отличающийся тем, что организуют линию рециркуляции после фильтра через дозировочный бачек с регулировочным краном на всас циркуляционного насоса, измеряют удельную электропроводность в потоке пробы циркуляционной воды до входа в обмотку статора, имеющую функциональную зависимость с концентрацией дозируемой щелочи с величиной pH циркуляционной воды, которую используют в структуре системы автоматического регулирования для расчетного определения нижнего и верхнего пределов значений электропроводности, по которым формируют команду на открытие или закрытие регулировочного крана на линии рециркуляции.



 

Похожие патенты:

Изобретение относится к системам и способам для снятия характеристик и для количественного определения параметров дисперсной среды, в частности для измерения концентрации частиц или тенденции к формированию дисперсной фазы в образце текучей среды.

Изобретение относится к способу работы водоумягчительной установки. Водоумягчительная установка содержит автоматически регулируемое смесительное устройство для смешивания потока V(t)verschnitt смешанной воды из первого умягченного частичного потока V(t)teil1weich и второго содержащего исходную воду частичного потока V(t)teil2roh, и электронное управляющее устройство, которое подстраивает с помощью одной или нескольких определенных экспериментально моментальных измерительных величин положение регулирования смесительного устройства так, что жесткость воды смешанного потока V(t)verschnitt устанавливается на заданное номинальное значение (SW), при этом управляющее устройство в одной или нескольких заданных рабочих ситуациях игнорирует по меньшей мере одно из одной или нескольких моментальных измерительных величин для подстройки положения регулирования смесительного устройства и вместо этого исходит из последней значащей соответствующей измерительной величины перед возникновением заданной рабочей ситуации или находящегося в памяти электронного управляющего устройства стандартного значения для соответствующей измерительной величины.

Изобретение относится к способу работы установки умягчения воды ионообменным устройством, содержащим ионообменную смолу, питающим резервуаром для подачи раствора регенерирующего средства для регенерирования ионообменной смолы, смесительным устройством, а также по меньшей мере одним расходомером, причем поступающий на установку (1) умягчения воды объемный поток V(t) исх исходной воды разделяют на первый частичный объемный поток и второй частичный объемный поток в установке (1) умягчения воды или до нее, и первый частичный объемный поток направляют через ионообменную смолу (5), и этот умягченный частичный объемный поток V(t)част1мяг смешивают со вторым, несущим исходную воду частичным объемным потоком V(t)част2исх, в результате чего в установке (1) умягчения воды или после нее образуется выходящий объемный поток V(t)смеш смешанной воды.

Изобретение относится к области защиты металлов от коррозии. .

Изобретение относится к способу и устройству (100) измерения, контроля и регулирования оптимального дозируемого расхода химреагентов (114), вводимых в непрерывно текущие обрабатываемые жидкости (102), в частности химреагентов для обработки технологических и сточных вод, эмульсий и водных дисперсий, содержащих масла, поверхностно-активные вещества, лаки, краски и тяжелые металлы.

Изобретение относится к области автоматики и может быть использовано в автоматических системах регулирования в химической, нефтехимической, металлургической и других отраслях промышленности для регулирования дросселирующих органов.

Изобретение относится к технике измерения и регулирования состава высокотемпературных газовых сред, в частности к устройствам для регулирования газового состава в камерах сгорания двигателей, печах химико-термической обработки, печах стекольной промышленности и др., где в качестве первичного преобразователя используется твердоэлектролитный датчик.

Изобретение относится к системам автоматического регулирования величины PH в воде, подаваемой насосными станциями для орошения с/х культур, и может быть использовано на гидромелиоративных системах, использующих машинный подъем воды на орошение.

Изобретение относится к устройствам для регулирования и стабилизации физико-химических параметров водных сред /например, величины PH/ с использованием электрических средств и может быть использовано для поддержания в заданных пределах величины PH или окислительно-восстановительного потенциала газового состава водной среды в рыбоводстве, аквариумистике, гидропонике, при проведении научно-исследовательских работ, в лабораторных и промышленных установках.
Наверх