Устройство для испытания стыков полотнищ геомембраны на водопроницаемость

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ. Устройство для испытания стыков полотнищ геомембраны на водопроницаемость включает емкость с герметично закрывающейся крышкой (2) и эластичной диафрагмой (4). Емкость снабжена герметично закрывающимся днищем (3) сферической формы, заполненным сыпучим водопроницаемым материалом (9), обладающим известной деформативностью, определяющей значения растягивающих напряжений в стыке элементов геомембраны (11, 12). Применение изобретения повышает достоверность результатов испытаний на водопроницаемость стыков геомембраны. 2 ил.

 

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ.

Известен фильтрационно-компрессионный прибор для определения водопроницаемости защитно-фильтрующих материалов, включающий корпус с установленными внутри него сеткой с образцом и перфорированным поршнем, снабженный шайбой с пьезометрами [А.с. СССР №1538120, МПК G01N 33/24, опубл. 23.01.1990 - аналог].

Прибор не позволяет проводить испытания стыков защитно-фильтрующих материалов, так как при наличии стыка, выполненного внахлест, образец исследуемого материала будет иметь переменную высоту, и под перфорированным поршнем будет оставаться свободное пространство.

Известно устройство для испытания на водопроницаемость геомембраны и ее стыков при появлении локальной просадки основания, включающее открытую сверху прямоугольную емкость, внутри которой между двумя слоями гравия расположена исследуемая мембрана [Mark D. LaGatta, В. Tom Boardman, Bradford H. Cooley, and David E. Daniel. Geosynthetic clay liners subjected to differential settlement. Journal of geotechnical and geoenvironmental engineering, Vol.123, No. 5, May 1997, p. 402-410 - аналог]. В слое гравия под мембраной размещен наполненный жидкостью мешок из эластичного материала, с размерами в плане, меньшими размеров емкости. В ходе испытаний в емкость сверху заливают воду, а через отверстие в днище емкости следят за возможными утечками через мембрану или стык ее полотнищ. Для имитации локальной осадки основания сливают жидкость из мешка, расположенного в слое гравия под геомембраной.

Недостатком устройства является ненадежность стыка геомембраны со стенками емкости, тем более что при локальном оседании геомембраны ее кромки будут смещаться от стенок внутрь емкости, в результате чего в образовавшийся зазор будет проникать вода, а в геомембране растягивающие напряжения будут иметь минимальное значение. Кроме того, устройство позволяет испытывать геомембрану при незначительных напорах воды, определенных высотой стенок емкости, и моделировать лишь локальную осадку основания.

Известно устройство для испытания на водопроницаемость стыков полотнищ геомембраны, в частности бентомата, включающее прямоугольную в плане емкость с герметично закрывающейся крышкой и резиновой диафрагмой [David Ε. Daniel, Stephen J. Trautwein, and Pernendu K. Goswami. Measurment of hydraulic properties of geosynthetic clay liners using a flow box. Testing and acceptance criteria for geosynthetic clay liners, ASTM STP 1308, Larry W. Well, Ed., American Society for testing and materials, 1997. p. 196-207 - прототип]. На дно емкости укладывается дренирующий слой, например, геотекстиля, затем геомембрана, собранная из двух полотнищ, соединенных испытуемым стыком, и сверху отсыпается слой песка. В ходе испытаний для создания сжимающего напряжения на мембрану, в пространство между крышкой и диафрагмой нагнетается жидкость. После достижения заданного значения напряжений в слой песка подают воду, а через отверстия в днище емкости определяют наличие и интенсивность протечек через стык полотнищ геомембраны.

Недостатками устройства являются ненадежный стык геомембраны со стенками емкости, герметизацию которого выполняют с помощью дисперсной глины, например бентонита, а также невозможность моделирования осадки основания, а значит, появления растягивающих усилий в стыке полотнищ, что приводит к недостоверным результатам испытаний на водопроницаемость стыков геомембраны.

Задачей изобретения является повышение достоверности результатов испытаний на водопроницаемость стыков геомембраны, например, бентомата.

Это достигается тем, что устройство для испытаний стыков полотнищ геомембраны на водопроницаемость, включающее круглую в плане емкость с герметично закрывающейся крышкой и эластичной диафрагмой, дополнительно снабжено герметично закрывающимся днищем сферической формы, заполненным сыпучим водопроницаемым материалом, при этом испытуемый образец геомембраны защемлен по контуру в стыке днища и емкости.

Конструкция устройства поясняется чертежами, где на фиг. 1 показан его разрез до начала испытаний, а на фиг. 2 - в ходе испытаний.

Установка содержит круглую в плане емкость, включающую корпус 1 с герметично закрывающейся крышкой 2 и днищем 3 сферической формы. В стыке корпуса 1 и крышки 2 защемлена по контуру эластичная диафрагма 4. В стенке корпуса 1 имеются патрубки с кранами 5 и 6 для подачи воды и стравливания воздуха соответственно. Патрубок с краном 7 в днище предназначен для слива воды, поступившей через испытуемую геомембрану. Патрубок с краном 8 служит для нагнетания воздуха в пространство между крышкой 2 и эластичной диафрагмой 4.

Днище 3 под геомембраной заполнено сыпучим водопроницаемым материалом 9, обладающим известной деформативностью, например, песком с гранулами пенополистирола или резины, песком с включениями торфа и т.п. Внутри корпуса 1 между геомембраной и диафрагмой 4 размещается песок или гравий 10.

В стыке корпуса 1 и днища 3 защемлен по контуру исследуемый образец геомембраны, который состоит из двух элементов - нижнего 11 и верхнего 12. Нижний элемент 11 имеет форму кольца, а верхний элемент 12 - форму круга. Отверстие в нижнем элементе 11 геомембраны перекрыто верхним элементом 12. Элементы соединены стыком внахлест одним из известных способов, например простым перекрытием полотнищ или их прошивкой, проклейкой или подсыпкой между ними порошка глины.

Работает устройство следующим образом.

В днище 3 засыпается водопроницаемый материал 9 и покрывается геомембраной, состоящей из двух элементов 11 и 12, соединенных стыком внахлест одним из известных способов. К днищу присоединяется корпус 1. Корпус заполняется песком или гравием 10 и покрывается диафрагмой 4. Сборка устройства завершается присоединением крышки 2.

Все краны на патрубках 5, 6, 7 и 8 открываются. Через патрубок 8 нагнетается воздух. Под крышкой 2 создается и поддерживается определенное давление. Через эластичную диафрагму давление передается на песок (гравий) 10, геомембрану и материал в днище 9. Последний деформируется на известную величину, которая определяется давлением и свойствами материала 9. Образец геомембраны прогибается, в результате чего в стыке нижнего 11 и верхнего 12 элементов возникают растягивающие напряжения. Благодаря днищу сферической формы перемещение геомембраны плавно увеличивается от нуля на периферии до максимального значения в центре.

Для проверки водопроницаемости стыка в корпус 1 через патрубок 5 подают воду. Кран на патрубке 6 перекрывают после появления в нем воды. Создав определенный напор, следят с помощью патрубка 7 за утечками и расходом воды через геомембрану.

В предлагаемом устройстве благодаря надежному защемлению образца геомембраны по контуру исключаются случайные утечки воды между мембраной и корпусом, а в стыке элементов геомембраны возникают растягивающие напряжения. Значения напряжений регулируют, задавая в ходе испытаний нужную величину деформаций материала в днище под геомембраной. Тем самым повышается достоверность результатов испытаний стыка полотнищ геомембраны.

Устройство для испытания стыков полотнищ геомембраны на водопроницаемость, включающее емкость с герметично закрывающейся крышкой и эластичной диафрагмой, отличающееся тем, что емкость снабжена герметично закрывающимся днищем сферической формы, заполненным сыпучим водопроницаемым материалом.



 

Похожие патенты:

Изобретение относится к химической технологии, а именно к технологии производства битум-полимерных композиций, и может быть использовано для контроля и прогнозирования их параметров качества в процессе производства. Способ характеризуется тем, что в кондиционном и исследуемом образцах битум-полимерной композиции измеряют величины эффективной вязкости при температурах t=20°C, t=80°C и t=150°C и градиентах скорости сдвига Dr=5,56 с-1, Dr=11,1 с-1 и Dr=16,67 с-1, через τ=5,0 сек, τ=15,0 сек, τ=30,0 сек после начала ее приложения, и предварительно определяют доверительные интервалы относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции и комплекс параметров качества, который соответствует технологической инструкции на данный кондиционный продукт, методика определения доверительных интервалов относительных отклонений эффективной вязкости Δηэф, определяемых методами экспертной оценки, сводится в общем виде к расчету относительного ее изменения на основании заданного соотношения с последующим формированием доверительного интервала ее отклонения для данных условий получения, причем значение Δηэф предварительно рассчитывают на основе полученных экспериментальных величин эффективной вязкости кондиционной битум-полимерной композиции, а контроль параметров качества исследуемой битум-полимерной композиции проводят, сравнивая значения полученных величин относительных изменений эффективной вязкости исследуемой битум-полимерной композиции Δηэф с соответствующими доверительными интервалами относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции, полученных при одинаковых условиях исследований композиций, на основании результатов сравнения делают вывод о соответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции, а именно, если полученные значения относительного изменения величин эффективной вязкости Δηэф исследуемой битум-полимерной композиции дважды подряд входят в соответствующие различные доверительные интервалы ее относительного изменения для кондиционной битум-полимерной композиции при частично или полностью различных условиях получения исходных значений эффективной вязкости, используемых для расчета Δηэф и формирования интервалов ее доверительного отклонения для кондиционной битум-полимерной композиции, значит, испытуемая битум-полимерная композиция обладает комплексом физико-механических свойств, соответствующим технологической инструкции на данный продукт, и является кондиционной битум-полимерной композицией, если полученная величина изменения эффективной вязкости Δηэф исследуемой битум-полимерной композиции не входит в имеющийся интервал доверительного ее изменения для кондиционной битум-полимерной композиции, делают вывод о несоответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции по комплексу физико-механических свойств.
Изобретение предназначено для определения прочности сцепления на сдвиг между слоями мостового полотна мостового сооружения и слоем его гидроизоляции. Изготавливают, по крайней мере, два опытных образца - модели мостового полотна мостового сооружения.

Изобретение относится к способу исследования загрязнений поверхности линейных сооружений и предназначено, в частности, для исследования загрязненной территории на поверхности железнодорожного пути.

Изобретение относится к области дорожного строительства, а именно к оборудованию для испытаний материалов, в частности асфальтобетона, на усталость при циклических динамических воздействиях, и может быть использовано в автодорожном хозяйстве, строительстве аэродромов, строительной индустрии.

Изобретение относится к испытательной технике, а именно к способам определения характеристик механических свойств дорожностроительных материалов. .

Изобретение относится к испытательной технике, а именно к способам определения характеристик механических свойств дорожно-строительных материалов. .

Изобретение относится к контролю содержания битума в дорожных эмульсиях. .

Изобретение относится к области испытаний и определения свойств материалов и может быть использовано в технологии строительных конгломератных материалов и изделий на их основе.

Изобретение относится к устройствам для испытания спасательного оборудования и снаряжения. Устройство содержит основное устройство в виде трубы диаметром не менее 300 миллиметров со съемными креплениями к поверхности, имеющее 4 независимых места на основном устройстве, в том числе ролик и крепление для зацепления спасательных веревок длиной 30 и 50 метров, рукавных задержек, пожарных поясов, карабинов и два отдельных крепления, одно из которых предназначено для испытания спасательных веревок длиной 30 и 50 метров, состоящее из опорной плиты, малой опорной плиты, квадратного металлического стержня, 2-х креплений - Ушко, закрепленных на металлическом стержне, и косынки, а второе - для испытания пожарных поясов, карабинов и рукавных задержек, состоящее из металлического листа, крепления в виде ушка и уголка.

Изобретение относится к компактному зажимному устройству (50) для трубы, пригодному для использования в установке для гидравлических испытаний под давлением с целью контроля качества трубы, полученной электросваркой методом сопротивления.

Изобретение относится к строительству, в частности к контролю уплотнения насыпных строительных грунтов. Устройство автоматического управления исполнительным механизмом рабочего органа грунтоуплотняющей машины состоит из акселерометра, усилителя, полосового фильтра, усилителя с регулируемым коэффициентом усиления, фильтра первой гармоники, преобразователя частоты в аналоговый сигнал, алгебраического сумматора, задатчика степени уплотнения грунта, аналого-цифрового преобразователя, компаратора, триггера, формирователя импульсов, блока памяти.

Использование: заявляемое изобретение относится к области специального испытательного оборудования, предназначенного для испытания изделий, содержащих взрывчатые материалы (ВМ), на стойкость к воздействию ударных нагрузок на копровых стендах.

Изобретение относится к области испытательной техники и может быть использовано для проведения механических испытаний материала, в частности испытаний на растяжение и ползучесть образцов в канале ядерного реактора.

Изобретение относится к области измерительной техники и предназначено для использования при определении прочности бетонных и железобетонных конструкций. Сущность: осуществляют крепление прибора с заданием направления приложения нагрузки к скалывающему элементу под углом к поверхности участка измерения.

Изобретение относится к области измерительной техники и предназначено для определения прочности бетонных и железобетонных конструкций. .

Изобретение относится к устройствам для исследования прочностных свойств конструкций, в частности крыла воздушного судна, и может быть использовано для контроля его прочности путем замера вибраций консоли крыла непосредственно в полете.

Изобретение относится к области судостроения (прочности конструкции корпусов судов), касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания, сварные конструкции которых находятся под воздействием циклических нагрузок и низких температур.

Изобретение относится к области компьютерных сетей. .

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют.

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ. Устройство для испытания стыков полотнищ геомембраны на водопроницаемость включает емкость с герметично закрывающейся крышкой и эластичной диафрагмой. Емкость снабжена герметично закрывающимся днищем сферической формы, заполненным сыпучим водопроницаемым материалом, обладающим известной деформативностью, определяющей значения растягивающих напряжений в стыке элементов геомембраны. Применение изобретения повышает достоверность результатов испытаний на водопроницаемость стыков геомембраны. 2 ил.

Наверх