Радиальная лопаточная решётка центробежной ступени



Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени
Радиальная лопаточная решётка центробежной ступени

 


Владельцы патента RU 2579525:

Акционерное общество "Научно-производственная фирма "Невинтермаш" (RU)

Изобретение относится к турбомашинам и может использоваться в рабочих колесах, лопаточных диффузорах и обратно-направляющих аппаратах центробежных компрессоров, нагнетателей, вентиляторов и насосов. Рекомендуемый оптимальный угол наклона наклонных кромок определяется путем численного решения трансцендентного уравнения, в которое, помимо искомого угла наклона наклонных кромок, входят шесть известных главных геометричеких параметров лопаточной решетки. Уменьшение градиента параметров рабочей среды по ширине решетки на выходе из нее достигается благодаря равенству густот лопаточной решетки на обеих ограничивающих поверхностях и во всех струйках тока рабочей среды. Изобретение позволяет уменьшить градиент параметров рабочей среды по ширине решетки на выходе из нее за счет оптимизации угла наклона кромок, не параллельных оси решетки. 9 ил.

 

Изобретение относится к энергетическим турбомашинам и может использоваться в рабочих колесах, лопаточных диффузорах и обратно-направляющих аппаратах центробежных компрессоров, нагнетателей, вентиляторов и насосов.

Известны радиальные лопаточные решетки центробежных ступеней, имеющие расположенные между плоской и конической ограничивающими поверхностями радиусные лопатки с входными и выходными кромками, параллельными оси решетки (см. рабочее колесо на с. 174 отраслевого каталога "Тягодутьевые машины", М., 1984; лопаточные диффузоры на рис.1 с. 50 Трудов международного симпозиума "Потребители-производители компрессоров и компрессорного оборудования", С-Петербург, 2010; обратно-направляющие аппараты на рис.3 с. 11 журнала "Химическая техника", №11, 2012 г.). Недостатком таких лопаточных решеток является большой градиент параметров рабочей среды по ширине решетки на выходе из нее вследствие того, что густота лопаточной решетки на плоской ограничивающей поверхности меньше, чем на конической.

Отмеченный недостаток отчасти устранен в радиальных лопаточных решетках, входные или выходные кромки лопаток которых наклонены к оси решетки. Известная радиальная лопаточная решетка центробежной ступени (см. рабочие колеса на рис. 3 с. 55 Трудов международного симпозиума "Потребители-производители компрессоров и компрессорного оборудования", С-Петербург, 2012) содержит расположенные между плоской и конической ограничивающими поверхностями радиусные лопатки с прямолинейными входными и выходными кромками. При этом выходные кромки параллельны оси решетки, а входные наклонены к этой оси.

Недостаток известной лопаточной решетки заключается в том, что градиент параметров рабочей среды по ширине решетки на выходе все же велик, так как густота лопаточной решетки на плоской ограничивающей поверхности больше, чем на конической, из-за слишком большого наклона входных кромок лопаток.

Задачей настоящего изобретения является уменьшение градиента параметров рабочей среды на выходе из лопаточной решетки за счет задания такого наклона кромок, не параллельных оси ступени, который обеспечивает равенство густот лопаточной решетки на обеих ограничивающих поверхностях.

Указанная задача достигается тем, что в известной радиальной лопаточной решетке центробежной ступени, содержащей расположенные между плоской и конической ограничивающими поверхностями радиусные лопатки с прямолинейными входными и выходными кромками, одни из которых параллельны оси решетки, а другие наклонены к этой оси, угол γ наклона наклонных кромок определяется из уравнения

в котором Rп - радиус решетки по кромкам, параллельным ее оси;

Rн.ср - средний радиус решетки по наклонным кромкам;

bп - ширина решетки по кромкам, параллельным ее оси;

bн - ширина решетки по наклонным кромкам;

где βн.ср - лопаточный угол на окружности радиуса Rн.ср;

βп - лопаточный угол на окружности радиуса Rп.

Данное изобретение в отличие от известных технических решений однозначно определяет угол наклона наклонных кромок лопаток, гарантирующий равенство густот лопаточной решетки на обеих ограничивающих поверхностях. Тем самым обеспечивается уменьшение градиента параметров рабочей среды по ширине лопаточной решетки на выходе из нее.

На фиг. 1 изображена радиальная лопаточная решетка рабочего колеса центробежной ступени, меридиональный разрез; на фиг. 2 - вид А на фиг. 1; на фиг. 3 - разрез Б-Б на фиг. 1; на фиг. 4 - радиальная лопаточная решетка лопаточного диффузора центробежной ступени, меридиональный разрез; на фиг. 5 - вид В на фиг. 4; на фиг. 6 - разрез Г-Г на фиг. 4; на фиг. 7 - лопаточная решетка обратно-направляющего аппарата центробежной ступени, меридиональный разрез; на фиг. 8 - вид Д на фиг. 7; на фиг. 9 - разрез Е-Е на фиг. 7.

Лопаточная решетка содержит лопатки 1 с прямолинейными входными и выходными кромками 2, 3. Кромки 2 параллельны оси 4 решетки. Кромки 3 наклонены к оси 4. Лопатки 1 - радиусные (в радиальной плоскости изогнуты по дуге окружности радиуса Rл) и расположены между плоской 5 и конической 6 ограничивающими поверхностями. Угол γ наклона наклонных кромок 3 к оси 4 соответствует изобретению, т.е. обеспечивает равенство густот лопаточной решетки на ограничивающих поверхностях 5 и 6.

Лопаточная решетка работает следующим образом.

Рабочая среда движется между лопатками 1 и ограничивающими поверхностями 5, 6 в направлении от входа в решетку к выходу из нее по струйкам тока. Лопатки 1, воздействуя на струйки тока, изменяют параметры рабочей среды в них, а именно давление, скорость и температуру. Изменение этих параметров в каждой струйке зависит от густоты лопаточной решетки в данной струйке.

При равенстве густот лопаточной решетки на ограничивающих поверхностях 5 и 6 имеет место равенство ее густот во всех струйках тока, поскольку кромки 2 и 3 лопаток 1 прямолинейны. Следовательно, изменение давления, скорости и температуры рабочей среды во всех струйках тока одинаково. Благодаря этому градиент параметров рабочей среды по ширине решетки на выходе из нее такой же как на входе и, если последний отсутствует, то вовсе равен нулю.

То, что задание угла γ в соответствии с изобретением обеспечивает равенство густот лопаточной решетки на плоской и конической ограничивающих поверхностях, доказывается следующим образом.

Так как густота лопаточной решетки - это отношение длины l лопатки к среднему шагу tcp лопаток, то условие равенства густот лопаточной решетки на плоской и конической ограничивающих поверхностях имеет вид

Длины lпл и lкон соотносятся с длинами лопатки в радиальной плоскости lпл.рад и lкон.рад следующим очевидным образом:

Здесь θ - угол конусности конической ограничивающей поверхности.

Поскольку лопатки радиусные, lрад=Rл·υ, где Rл - радиус изгиба лопатки, а υ - угол изгиба лопатки в радианах. Значит,

По определению понятия шага лопаток в решетке

где z - число лопаток в решетке, a Rср.пл и Rср.кон - средние радиусы решетки на плоской и конической ограничивающих поверхностях.

Подстановка (6), (7), (8) и (9) в (5) дает

Применяя формулу IV-120 на с.594 книги Е. Tuliszka "Sprezarki, dmucbavy i ventyla-tory", 1976 для угла изгиба радиусной лопатки, имеем выражения для входящих в (10) углов υпл и υкон:

Из фиг. 1, 4 и 7 ясно, что входящие в (10) Rср.пл и Rср.кон могут быть выражены через известные Rп, Rн.ср и размер Δ:

Из треугольника KLM на фиг. 1, 4 и 7 следует, что входящий в (10) cosθ может быть выражен через известные величины Rп, Rн.ср, bп, bн и размер Δ:

Подстановкой (11)…(15) в (10) получаем уравнение

Присутствующий здесь cosβн.пл выражаем, используя формулу IV-90b на с.574 вышеупомянутой книги Е. Tuliszka:

Так как согласно тригонометрии sin = 1 cos 2 , то с учетом (17) для присутствующего в (16) sinβн.пл имеем выражение

По аналогии с (17) и (18) для присутствующих в (16) cosβн.кон и sinβн.кон имеем выражения

Подставляя (17)…(20) в (16), после некоторых упрощений и преобразований аргументов арктангенсов получаем

С учетом обозначений (2), (3) и (4) данное уравнение принимает вид

Заменяя Rн.пл и Rн.кон, содержащиеся в аргументах арктангенсов, на очевидные (Rн.ср-Δ) и (Rн.ср+Δ) соответственно, получаем

Из треугольника FGH на фиг. 1, 4 и 7

Δ=0.5bнtgγ.

Подстановка этого выражения Δ в (23) и дает фигурирующее в изобретении уравнение (1).

Радиальная лопаточная решетка центробежной ступени, содержащая расположенные между плоской и конической ограничивающими поверхностями радиусные лопатки с прямолинейными входными и выходными кромками, одни из которых параллельны оси решетки, а другие наклонены к этой оси, отличающаяся тем, что угол наклона наклонных кромок определяется из уравнения

в котором γ - угол наклона наклонных кромок к оси решетки;
Rп - радиус решетки по кромкам, параллельным ее оси;
Rн.ср - средний радиус решетки по наклонным кромкам;
bп - ширина решетки по кромкам, параллельным ее оси;
bн - ширина решетки по наклонным кромкам;

c=Rпsinβп;
d=Rн.cpcosβн.ср,
где βн.ср - лопаточный угол на окружности радиуса Rн.cp;
βп - лопаточный угол на окружности радиуса Rп.



 

Похожие патенты:

Группа изобретений относится к области насосостроения. Ротор центробежного нагнетателя состоит из множества рабочих дисков, плотно, без зазоров соединенных между собой торцами.

Изобретение относится к компрессоростроению. Рабочее колесо, в котором лопатки соединены с опорным кольцом, передним и задним фланцами, хвостовик лопатки защемлен межлопаточным креплением.

Изобретение относится к способу изготовления рабочих колес центробежного компрессора. Способ изготовления рабочего колеса из композиционного материала, включающий раскрой слоев материала лопаток, прессование их в пресс-форме и прессование колеса.

Изобретение относится к области турбинного машиностроения, а именно к способу изготовления рабочих колес центробежного компрессора. Способ изготовления рабочего колеса из композиционного материала, включающий раскрой слоев материала лопаток, прессование их в пресс-форме и прессование колеса.

Изобретение относится к конструкциям рабочих колес центробежных компрессоров. Способ изготовления рабочего колеса центробежного компрессора включает раскрой слоев материала лопаток, наружные поверхности опорного кольца покрывного диска выполняют эквидистантно аэродинамическим поверхностям газового тракта, аэродинамический профиль лопаток оформляют в пресс-форме, лопатки укладывают в сепаратор пресс-формы и в полостях сепаратора предварительно формируют опорное кольцо и покрывной диск, сепаратор укладывают в пресс-форму и производят прессование, при этом в матрице формируют наружные поверхности покрывного диска, в сепараторе формируют внутренние аэродинамические поверхности газового тракта покрывного диска и опорного кольца.

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов с загнутыми вперед лопатками. Рабочее колесо содержит несущий и покрывной диски и установленные между ними загнутые вперед основные и дополнительные укороченные лопатки.

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад профильные лопатки (5).

Изобретение относится к вентиляторостроению. Сущность изобретения заключается в следующем.

Предложены способ и покрывающий элемент (50) для защиты рабочего колеса (14) от повреждений. Покрывающий элемент (50) содержит съемную основную часть (50), имеющую первую поверхность (52), вторую поверхность (54), противоположную первой поверхности (52) и выполненную так, что она соответствует передней поверхности (14а) рабочего колеса (14) компрессора (10), и переднюю часть (56), покрывающую всю переднюю часть рабочего колеса (14) компрессора (10), и крепежное приспособление (58, 80, 82, 84, 86), присоединенное к съемной основной части (50) и выполненное с возможностью крепления покрывающего элемента (50) к рабочему колесу (14) компрессора (10).

Изобретение относится к области компрессоростроения, в частности к роторам высокоскоростных центробежных компрессоров. Ротор центробежного компрессора содержит вал с установленным на нем рабочим колесом с кольцевой полостью в его ступице, разделяющей ступицу на внутреннее и наружное кольца и ограниченной с одной стороны кольцевой перегородкой, соединяющей внутреннее и наружное кольца и выполненной со стороны входа потока в рабочее колесо.

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Погружной многоступенчатый центробежный насос содержит корпус (1), вал (2), ступени (3), состоящие из рабочего колеса (4) и направляющего аппарата (5), выполненные литьем из чугуна следующего состава, масс.

Изобретение относится к машиностроению и может быть использовано в способах изготовления рабочих колес и направляющих аппаратов ступеней погружных многоступенчатых электроцентробежных насосов для добычи нефти.

Группа изобретений относится к области насосостроения. Ротор центробежного нагнетателя состоит из множества рабочих дисков, плотно, без зазоров соединенных между собой торцами.

Изобретение относится к электропогружным центробежным насосам для добычи высоковязких жидкостей, используемым в нефтяной промышленности. Насос содержит ступени, каждая из которых состоит из рабочего колеса с ведущим диском и спиральными лопатками и направляющего аппарата.

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5).

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад профильные лопатки (5).

Изобретение относится к циркуляционному центробежному насосу с неизменной скоростью вращения. Центробежный насос имеет по меньшей мере одно рабочее колесо, кожух насоса и электрический двигатель с постоянным магнитом с пуском от сети.

Изобретение относится к насосостроению и может быть использовано в турбонасосных агрегатах авиационной и ракетной техники. Центробежный насос содержит корпус 1, внутри которого на валу 2 размещено центробежное колесо 3 с щелевыми уплотнениями 4 и каналами 5 перепуска утечек во входную зону 6 колеса 3 и дисковый обтекатель 7 с лопаточной решеткой 10 со стороны каналов 5 перепуска утечек.

Группа изобретений относится насосостроению, а именно к погружному центробежному многоступенчатому насосу. Центробежный насос, включающий лопастные колеса, которые не соединены центральным валом.

Изобретение относится к лопастным радиальным турбомашинам, перекачивающим жидкую или газообразную среды. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает формирование циркуляционного течения среды вокруг объемных лопаток в межлопаточных каналах рабочего колеса, создающего прирост давления на рабочей поверхности 8 лопаток по отношению к тыльной их поверхности 9.

Изобретение относится к рабочему колесу центробежного насоса, содержащему, по меньшей мере, две лопасти (4) для перекачки сред, содержащих твердые тела. Согласно настоящему изобретению угол (β1) подъема передней кромки лопасти является меньшим чем 0 градусов. На первом участке (9) угол (β) лопасти увеличивается до тех пор, пока не будет достигнута величина 0 градусов. На втором участке (10) происходит другое увеличение до тех пор, пока не будет достигнута максимальная величина. На третьем участке (11) угол (β) лопасти снова уменьшается. Изобретение направлено на создание рабочего колеса с высоким коэффициентом полезного действия, в котором предотвращено образование отложений и возникновение кавитации. 10 з.п. ф-лы, 7 ил.
Наверх