Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции



Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции
Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции
Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции
Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

 


Владельцы патента RU 2581281:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость закрутки КА изменяют с учетом взаимообусловленных изменений указанных измеряемых параметров. Техническим результатом изобретения является обеспечение возможности изучения влияния уровня микроускорений на процесс конвекции при управлении ориентацией КА.

 

Изобретение относится к космической технике и может быть использовано для управления ориентацией космического аппарата (КА) при выполнении экспериментов и исследований.

Известен способ управления ориентацией КА, включающий выставку осей аппарата и поддержание углового положения с помощью двигателей ориентации [1] Алексеев К.Б., Бебенин Г.Г. «Управление космическими летательными аппаратами», М.: Машиностроение, 1974.

Однако для использования данного способа необходимо расходовать рабочее тело, что приводит, кроме того, к загрязнению оптических поверхностей КА и вызывает микроускорения на борту КА.

Наиболее близким к предлагаемому, прототипом, является способ, включающий закрутку КА вокруг оси КА, соответствующей минимальному или максимальному моменту инерции [2] Беляев М.Ю. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: Машиностроение, 1984.

Данный способ используется для КА, имеющих вытянутую форму, т.е. когда момент инерции относительно продольной оси значительно (в 7 и более раз) меньше максимального момента инерции относительно поперечной оси.

В этом случае обеспечивается ориентация оси КА, вокруг которой осуществляется закрутка и не требуется для ее поддержания расхода рабочего тела и, следовательно, при этом не загрязняются оптические поверхности КА и не возникают ускорения из-за работы двигателей управления ориентацией.

Однако при проведении экспериментов с научной аппаратурой (НА) по изучению конвекции данный способ управления ориентацией не всегда может быть использован. Это связано с тем, что при изучении конвекции возникает задача по исследованию влияния микроперегрузок на процесс конвекции. Выполняемая же закрутка КА не обеспечивает изменения уровня микроперегрузок на КА.

Техническим результатом предлагаемого способа является обеспечение возможности изучения влияния уровня микроускорений на процесс конвекции при управлении ориентацией КА в процессе выполнения экспериментов.

Технический результат достигается тем, что в способе управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции, включающем закрутку космического аппарата, в отличие от известного измеряют расстояние от научной аппаратуры до оси закрутки, в процессе закрутки космического аппарата измеряют и фиксируют температуру в научной аппаратуре по изучению конвекции и угловую скорость космического аппарата, и изменяют скорость закрутки космического аппарата с учетом изменения измеряемых параметров.

Запишем уравнения вращательного движения КА.

КА считается твердым телом. Для записи уравнений движения корабля относительно центра масс и соотношений, используемых при обработке данных измерений, вводятся три правые декартовы системы координат. Строительная система Oy1y2y3 жестко связана с корпусом КА. Точка О - центр масс КА (корабль «Прогресс»), ось Oy1 параллельна его продольной оси и направлена от стыковочного узла к агрегатному отсеку, ось Oy2 перпендикулярна плоскости солнечных батарей (СБ). В этой системе интерпретируются данные измерений угловой скорости. Светочувствительная сторона СБ обращена к полупространству y2>0. Система Ox1x2x3 образована главными центральными осями инерции КА. Оси Oxi составляют малые углы с осями Oyi (i=1, 2, 3). Система CY1Y2Y3 близка второй геоэкваториальной системе координат эпохи даты. Ее начало находится в центре масс Земли, плоскость CY1Y2 совпадает с плоскостью экватора, ось CY3 направлена в северный полюс мира, ось CY1 направлена приблизительно в точку весеннего равноденствия - повернута от плоскости гринвичского меридиана на среднее звездное время против вращения Земли. В системе CY1Y2Y3 задаются двухстрочные элементы NORAD, которые использованы для задания орбитального движения КА. Эту систему CY1Y2Y3 считаем инерциальной.

Положение системы Ox1x2x3 относительно системы Oy1y2y3 будем задавать углами γ, α и β, которые введем посредством следующего условия. Система Oy1y2y3 может быть переведена в систему Ox1x2x3 тремя последовательными поворотами: 1) на угол α вокруг оси Oy2, 2) на угол β вокруг новой оси Oy3, 3) на угол γ вокруг новой оси Oy1, совпадающей с осью Ox1. Матрицу перехода от системы Ox1x2x3 к системе Oy1y2y3 обозначим a i j i , j = 1 3 , где a ij - косинус угла между осями Oyi и Oxj. Элементы этой матрицы выражаются через введенные углы с помощью формул

Матрицу перехода от системы Ox1x2x3 к системе CY1Y2Y3 обозначим b i j i , j = 1 3 . Здесь bij - косинус угла между осями CYi и Oxj. Элементы этой матрицы параметризуем углами γb, δb и βb. Соответствующие формулы для bij получаются из приведенных формул для a ij подстановкой γ=γb, α=δb+π/2 и β=βb.

Уравнения движения КА относительно центра масс образованы динамическими уравнениями Эйлера для компонент ωi угловой скорости КА в системе Ox1x2x3 и кинематическими уравнениями Пуассона для первой и второй строк матрицы b i j . В уравнениях Эйлера учитываются действующие на КА гравитационный и восстанавливающий аэродинамический моменты. Эта подсистема имеет вид

Здесь xi и νi - компоненты в системе Ox1x2x3 геоцентрического радиус-вектора точки O и скорости этой точки относительно поверхности Земли, pi - параметры аэродинамического момента, Ji - моменты инерции спутника относительно осей Oxi, µe - гравитационный параметр Земли, ρa - плотность атмосферы в точке O (рассчитывается согласно модели ГОСТ Р 25645.166-2004), E - масштабирующий множитель.

При численном интегрировании уравнений (1) единицами измерения времени и длины служат 1000 с и 1000 км, единицы измерения других величин: [νi]=км/с, [ωi]=10-3 с-1, [pi]=см/кг, [pa]=кг/м3, E=1010. Третья строка матрицы b i j вычисляется как векторное произведение ее первой и второй строк. Значения величии b1i, b2i в начальной точке интегрирования параметризуются углами γb, δb и βb. Величины xi, νi задаются формулами

, ,

где

координаты V 1 = Y ˙ 1 + ω e Y 2 , V 2 = Y ˙ 2 ω e Y 1 , V 3 = Y ˙ 3 , Yk и скорости Y ˙ k центра масс КА в системе CY1Y2Y3 вычисляются в функции времени с помощью модели SGP4 по подходящему набору двухстрочных элементов, ωe - угловая скорость вращения Земли.

Параметры µ, µ′ в уравнениях (1), а также углы γ, α, β можно считать заданными: их проектные значения µ=0.14, µ′=0.87, γ=α=β=0. Однако ниже эти величины и параметры pi определяются из обработки данных измерений наряду с неизвестными начальными условиями движения КА, т.е. служат параметрами согласования.

Полученные уравнения (1) позволяют оценить вращательные движения КА при различных начальных условиях и иллюстрируют сформулированные понятия и положения.

В настоящее время технически проработана реализуемость предложенного способа на грузовом корабле «Прогресс» при проведении экспериментов с гравитационно-чувствительной аппаратурой. Для закрутки КА вокруг оси, соответствующей максимальному или минимальному моменту инерции, могут использоваться штатные средства системы управления корабля «Прогресс» - штатные датчики угловой скорости (ДУС), система управления ориентацией корабля «Прогресс», двигатели ориентации. Научная аппаратура для изучения конвекции «Дакон-П» в настоящее время создается. Для измерения и фиксации температуры в НА «Дакон-П» будут использоваться датчики температуры, телеметрическая система и БЦВМ ТГК «Прогресс». Для изменения скорости закрутки космического аппарата на орбите могут использоваться штатные средства системы управления ориентацией корабля «Прогресс». Для измерения угловой скорости КА могут использоваться штатные бортовые датчики и вычислительные устройства.

Предлагаемый способ позволяет использовать космические аппараты при выполнении экспериментов с научной аппаратурой по изучению конвекции и обеспечивать возможность исследования влияния микроперегрузок на процесс протекания конвекции.

Список литературы

1. Алексеев К.Б., Бебенин Г.Г. «Управление космическими летательными аппаратами», М.: Машиностроение, 1974.

2. Беляев М.Ю. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: Машиностроение, 1984.

3. Белецкий В.В. Движение искусственного спутника относительно центра масс. М., Наука, 1965.

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции, включающий закрутку космического аппарата, отличающийся тем, что измеряют расстояние от научной аппаратуры до оси закрутки, в процессе закрутки космического аппарата измеряют и фиксируют температуру в научной аппаратуре по изучению конвекции и угловую скорость космического аппарата, и изменяют скорость закрутки космического аппарата с учетом изменения измеряемых параметров.



 

Похожие патенты:

Изобретение относится к системам автоматического регулирования, поддерживающим ориентацию солнечных батарей. Технический результат заключается в повышении точности ориентации и слежения солнечных батарей.

Изобретение относится к усовершенствованному способу получения уксусной кислоты, включающему стадии: взаимодействия метанола с монооксидом углерода в реакционной среде, содержащей воду, йодистый метил и метилацетат в присутствии катализатора карбонилирования на основе металла VIII группы; выделения продуктов указанной реакции в летучую фазу продукта, содержащую уксусную кислоту, и менее летучую фазу; дистиллирования указанной летучей фазы в аппарате дистилляции для получения очищенного продукта уксусной кислоты и первого верхнего погона, содержащего йодистый метил и ацетальдегид; конденсации, по меньшей мере, части указанного верхнего погона; измерения плотности указанного сконденсированного первого верхнего погона; определение относительной концентрации йодистого метила, ацетальдегида или обоих в первом верхнем погоне на основании измеренной плотности; и регулирования, по меньшей мере, одного регулирующего технологического параметра, связанного с дистилляцией указанной летучей фазы, в качестве ответной реакции на указанную относительную концентрацию.

Изобретение относится к вариантам способа стабилизации процесса гидроформилирования и устройству для их осуществления. .

Изобретение относится к машиностроению, где необходимо регулировать скорость в широких пределах. .

Изобретение относится к вариантам способа отделения ацетальдегида от йодистого метила с помощью дистилляции в ходе процесса карбонилирования метанола с целью получения уксусной кислоты.

Изобретение относится к машиностроению и может использоваться в индустрии развлечений для создания транспортного средства с новыми потребительскими свойствами. .

Изобретение относится к технической кибернетике для атоматического управления объектами с электроприводами постоянного тока, преимущественно в оптико-электронных обзорных системах.

Изобретение относится к области авиации, в частности к системам управления, и может быть использовано в системах управления вертолетами. .

Изобретение относится к области автоматического регулирования авиационных газотурбинных двигателей (ГТД), а именно к регулированию частоты вращения винтов турбовинтовых двигателей (ТВД).

Изобретение относится к транспортному машиностроению и может быть использовано в прироре транспортного средства. .

Изобретение относится к космической области, а именно к радиоэлектронным устройствам космического модуля. Технический результат - расширение функциональных возможностей радиоэлектронного блока за счет крепления устройств жизнеобеспечения и полезной нагрузки космического модуля непосредственно на его корпусе, что уменьшает объем и массу модуля.

Изобретение относится к методам снижения угрозы для Земли от опасных космических объектов (ОКО): астероидов, комет и т.п. Способ включает посылку к ОКО космического аппарата с оборудованием для разрушения ОКО и посадку на ОКО.

Изобретение относится к космической технике и может быть использовано для маскировки космических объектов путем формирования ложных целей. Надувная ложная цель содержит надувную трансформируемую оболочку с остаточным газом, газогенератором с электрозапалом, источником тока с выключателем, гибкие упругие связи.

В виброзащитной платформе крепление и расфиксация подвижной части (2) с основанием (1) осуществляется автоматически с помощью системы, содержащей фиксаторы с реверсивными электромоторами-редукторами (6) и концевыми выключателями (15), срабатывающими в крайних положениях подвижной части виброзащитной платформы и отключающими электромоторы-редукторы.

Изобретение относится к космической отрасли и касается узлов и элементов крепления оборудования космического аппарата (КА) на его силовой конструкции из полимерных композиционных материалов (ПКМ).

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА.

Изобретение относится к области машиностроения. Шариковый замок содержит рабочую поверхность, выполненную в виде конической поверхности.

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности и безопасности космонавтов в процессе работы в открытом космосе. Страховочное устройство для условий невесомости содержит страховочный фал (СФ), гильзы с резьбой на наружной поверхности, пальцы, пружина растяжения (ПР), накидные гайки, чехол из мягкого материала, обоймы.

Изобретение относится к космической технике, а именно к средствам обеспечения деятельности космонавтов в условиях невесомости. Устройство фиксации предметов в невесомости содержит фиксатор в виде проволоки (из материала, обладающим свойством остаточной пластической деформации) в неметаллической оболочке, рычаг (с возможностью вращения и поступательного движения относительно фиксатора) с щелевым отверстием шириной, соизмеримой с диаметром фиксатора.

Изобретение относится к измерительной технике и может быть использовано для измерения состояния поверхности космического аппарата, а также других поверхностей в нанометровом диапазоне.

Изобретение относится к космической технике и может быть использовано для управления космическим аппаратом (КА). Устройство орбитального гирокомпаса (ОГК) для управления угловым движением КА содержит прибор ориентации по Земле (ПОЗ), сумматоры, интеграторы, вновь введенные сумматоры и интеграторы, модули коррекции, модули компенсации взаимовлияний каналов, гироскопический блок измерителей угловых скоростей (БИУС).
Наверх