Жаропрочный сплав на основе никеля для литья с равноосной структурой интегральных колес и рабочих лопаток

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем изделий с равноосной структурой, работающих в агрессивных средах при температурах 600-800°C, например интегральных колес и лопаток турбокомпрессоров турбонаддува дизелей, а также рабочих лопаток горячего тракта. Жаропрочный сплав на основе никеля для литья интегральных колес и рабочих лопаток турбокомпрессоров турбонаддува дизелей с равноосной структурой содержит, мас.%: углерод 0,06-0,12; хром 14,7-15,2; кобальт 7,8-8,2; молибден 4,2-4,5; алюминий 3,2-3,5; титан 4,2-4,5; бор 0,008-0,012; кремний ≤0,30; церий 0,005-0,015; марганец ≤0,15; вольфрам 0,4-0,6; ниобий 0,15-0,3; гафний 0,10-0,20; железо ≤0,5; медь ≤0,05; сера ≤0,005; фосфор ≤0,005; азот ≤20 ppm; кислород ≤15 ppm; никель остальное. Суммарное содержание ниобия и гафния составляет ≤0,4 мас. %, а суммарное содержание алюминия и титана - 7,4-8,0 мас. % при отношении содержания титана к содержанию алюминия ≥1,27. Повышается длительная прочность в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также обеспечивается возможность сварки трением. 2 табл.

 

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам (КЖС) на основе никеля, и может быть использовано для изготовления литьем изделий с равноосной структурой, работающих в агрессивных средах при температурах 600-800°С, например интегральных колес и лопаток турбокомпрессоров (ТКР) турбонаддува дизелей, а также рабочих лопаток горячего тракта.

Рассматриваемая группа КЖС имеет специфику, связанную с тем, что отлитые из них интегральные колеса и лопатки будут вращаться с очень высокими скоростями, поэтому плотность сплавов должна быть минимальной (~8,0 Т/м3) при обеспечении повышенных прочностных характеристик.

Так как колеса ТКР необходимо соединять с валом сваркой трением, то, как показала практика, в сплаве должно быть молибдена ≥4,0 мас. %. При том, что колеса ТКР работают при повышенных температурах (600-700°C) в условиях агрессивного дизельного топлива (содержащего серу, ванадий и др.), а тот же молибден резко снижает сопротивление сплавов коррозионным воздействиям, но определяет повышенные характеристики жаропрочности.

Известен жаропрочный сплав IN713LC на основе никеля для литья интегральных колес и лопаток с равноосной структурой ТКР дизелей, содержащий углерод, хром, молибден, бор, алюминий, титан, цирконий, ниобий, марганец, кремний, железо, медь и серу при следующем соотношении компонентов, мас. %: углерод 0,05-0,12, хром 12,0-14,0, молибден 3,8-5,2, бор 0,005-015, алюминий 5,5-6,5, титан 0,5-1,0, цирконий 0,05-0,15, ниобий 1,8-2,2, марганец ≤0,25, кремний ≤0,5, железо ≤2,5, медь ≤0,5, сера ≤0,015, никель остальное.

(сб. Superalloys, A Technical Guide, стр. 36, 1988)

Литые рабочие лопатки (РЛ) и интегральные колеса ТКР с равноосной структурой, изготовленные из известного сплава, имеют достаточно высокие значения жаропрочности в области рабочих температур 600-750°C и пониженную плотность (~8,0 Т/м3), но очень низкую коррозионную стойкость и, как следствие, невысокие значения термической усталости изделий из этого сплава. Более того, сплав имеет пониженную структурную стабильность (в нем выделяется ~4-5% охрупчивающей σ-фазы) и склонен к деформационному разупрочнению в процессе наработки. Оба этих фактора снижают пластичность сплава и, как следствие, приводят к понижению характеристик выносливости и преждевременному разрушению изделий.

Наиболее близким по технической сущности является жаропрочный сплав на основе никеля Rene 77 для литья с равноосной структурой интегральных колес ТКР и рабочих лопаток. Известный сплав содержит углерод, хром, кобальт, молибден, алюминий, титан, бор, кремний, церий, иттрий, марганец и никель, при следующем соотношении компонентов, мас. %: углерод 0,05-0,09, хром 14,0-15,5, кобальт 14,25-15,75, молибден 3,0-4,5, алюминий 4,0-4,6, титан 3,0-3,7, бор 0,01, кремний 0,10, церий 0,015, иттрий 0,02, марганец 0,10, никель остальное.

(сб. Superalloys, A Technical Guide, стр. 36, 1988)

Однако данный известный сплав при достаточно высоких показателях жаропрочности и пониженной плотности имеет умеренною коррозионную стойкость. Сплав имеет пониженную структурную стабильность на ресурс (в нем выделяется 3-4% охрупчивающей σ-фазы) и склонен к деформационному старению с значительным снижением пластичности, ограничивающему его применение для литья интегральных колес и рабочих лопаток с равноосной структурой, работающих при температурах 600-800°C.

Целью изобретения и его техническим результатом является сплав на основе никеля для литья с равноосной структурой интегральных колес и рабочих лопаток, обеспечивающий повышение длительной прочности в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, повышение структурной стабильности на ресурс, обеспечение возможности сварки трением.

Технический результат достигается тем, что жаропрочный сплав на основе никеля для литья с равноосной структурой интегральных колес и рабочих лопаток содержит углерод, хром, кобальт, молибден, алюминий, титан, бор, кремний, церий, марганец, вольфрам, ниобий, гафний, железо, медь, серу, фосфор, азот, кислород и никель при следующем соотношении компонентов, мас. %:

углерод 0,06-0,12
хром 14,7-15,2
кобальт 7,8-8,2
молибден 4,2-4,5
алюминий 3,2-3,5
титан 4,2-4,5
бор 0,008-0,012
кремний ≤0,30
церий 0,005-0,015
марганец ≤0,15
вольфрам 0,4-0,6
ниобий 0,15-0,3
гафний 0,10-0,20
железо ≤0,5
медь ≤0,05
сера ≤0,005
фосфор ≤0,005
азот ≤20 ppm
кислород ≤15 ppm
никель остальное,

причем суммарное содержание ниобия и гафния составляет ≤0,4 мас. %, а суммарное содержание алюминий и титана - 7,4-8,0 мас. % при отношении содержания титана к содержанию алюминия ≥1,27.

Ограничение содержания в сплаве железа, меди, серы, фосфора, азота и кислорода приводит к повышению пластичности сплава, притом что количество упрочняющей γ'-фазы (Ni3Al) в сплаве по изобретению составляет 44-47 ат. %, обеспечивает высокий и стабильный уровень служебных характеристик, например жаропрочность около 450 МПа за 103 часов при 760°C.

Оптимальное содержание молибдена, вольфрама и ограничение суммарного содержания алюминий и титана в диапазоне 7,4-8,0 мас. % при отношении содержания титана к содержанию алюминия ≥1,27 дает повышенную жаропрочность литого сплава, обеспечивает возможность сварки трением интегрального колеса и вала. Дальнейшее увеличение суммарного содержания алюминия, титана и вольфрама вызывает значительный рост температуры растворения γ'-фазы (Сольвус Тγ') и снижение технологических показателей литого изделия. Кроме того, высокая величина отношения содержания титана к содержанию алюминия ≥1,27 в сочетании с высоким содержанием хрома, присутствием редкоземельного металла церия, а также кремния и марганца способствует повышению коррозионной стойкости предлагаемого сплава.

Гафний и ниобий при их суммарном содержании ≤0,4 мас. % обеспечивают оптимальную морфологию карбидов и достаточную высокую пластичность литого сплава на длительный ресурс.

При этом заявленные концентрации и соотношения компонентов в сплаве исключают в процессе наработки появление охрупчивающих фаз и ограничивают выделение неравновесной эвтектической γ'-фазы, что обеспечивает заметное снижение объема газо-усадочной пористости и повышает устойчивость изделия к образованию трещин при литье и в процессе наработки.

Для получения интегральных колес ТКР и литых рабочих лопаток из сплава по изобретению используют известные способы и устройства для литья турбинных лопаток из жаропрочных сплавов с равноосной структурой.

Достижение поставленного технического результата можно проиллюстрировать данными из таблиц 1 и 2.

Служебные характеристики сравниваемых сплавов были оценены с использованием известной методики ФАКОМП и других известных методик расчета свойств жаропрочного сплава на основе никеля по его химическому составу. Известные методики позволяют с высокой степенью достоверности оценить структурную стабильность сплава на ресурс (образование охрупчивающих фаз), склонность к выделению в литом состоянии неравновесных эвтектических фаз, на месте которых при термообработке в литых изделиях образуются поры и трещины, характеристики длительной прочности, критические точки сплава и другие его физико-механические свойства.

(H. Harada и др., Сб. Superalloys, 1988; p.p. 733-742; H. Harada и др., Сб. Superalloys, 2000; p.p. 729-736; H. Harada, Сб. Alloys Design for Nickel-base Superalloys, 1982, p.p. 721-735)

Из представленных данных видно, что сплав по изобретению на ≈5% превосходит прототип по жаропрочности при рабочих температурах 600-700°C и в 1,2 раза превосходит известный сплав по коррозионной стойкости.

Предлагаемый сплав в процессе наработки не склонен к деформационному старению, снижению пластичности и в нем не прогнозируется выпадение охрупчивающих фаз.

Достигаемое повышенное сопротивление агрессивным воздействиям среды предлагаемого сплава (по сравнению с известным аналогом) позволяют увеличить эксплуатационную надежность и срок службы изделий и, как следствие, приводит к снижению годовой потребности в металле.

Жаропрочный сплав на основе никеля для литья интегральных колес и рабочих лопаток турбокомпрессора турбонаддува дизелей с равноосной структурой, содержащий углерод, хром, кобальт, молибден, алюминий, титан, бор, кремний, церий, марганец и никель, отличающийся тем, что он дополнительно содержит вольфрам, ниобий, гафний, железо, медь, серу, фосфор, азот и кислород при следующем соотношении компонентов, мас. %:

углерод 0,06-0,12
хром 14,7-15,2
кобальт 7,8-8,2
молибден 4,2-4,5
алюминий 3,2-3,5
титан 4,2-4,5
бор 0,008-0,012
кремний ≤ 0,30
церий 0,005-0,015
марганец ≤ 0,15
вольфрам 0,4-0,6
ниобий 0,15-0,3
гафний 0,10-0,20
железо ≤ 0,5
медь ≤ 0,05
сера ≤ 0,005
фосфор ≤ 0,005
азот ≤ 20 ppm
кислород ≤ 15 ppm
никель остальное,

причем суммарное содержание ниобия и гафния составляет ≤ 0,4 мас. %, а суммарное содержание алюминия и титана - 7,4-8,0 мас. % при отношении содержания титана к содержанию алюминия ≥ 1,27.



 

Похожие патенты:

Изобретение относится к оправке прошивного стана. Прошивная оправка содержит корпус оправки, Ni-Cr-слой, сформированный на поверхности корпуса оправки, и напыленное покрытие, сформированное на поверхности Ni-Cr-слоя.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, и может быть использовано для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре от плюс 1000°С до плюс 1200°С и давлении до 46 атмосфер.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах природного газа при температурах 600-900°C.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля с хромом и кобальтом, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-1000°С.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, и может быть использовано при изготовлении труб, листа, поковок и др. металлопроката для теплообменного и др.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам, и может быть использовано для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии, в частности к низкоуглеродистым хромоникелевым сплавам, и может быть использовано в химической и нефтеперерабатывающей промышленности в процессах, содержащих хлориды, при работе в горячих неочищенных минеральных и органических кислотах, растворах, а также в морской воде, а также для сосудов и аппаратов, работающих при высоком давлении в диапазоне температур от минус 196°С до плюс 450°С.

Изобретение относится к области металлургии, а именно к низкоуглеродистым хромоникелевым сплавам аустенитного класса, и может быть использовано для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 700÷980°С и давлении до 50 атм.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым при изготовлении труб, листов, поковок и др. металлопроката для теплообменного оборудования, работающего в коррозионных средах, а также для сосудов и аппаратов, работающих при высоком давлении в диапазоне температур от минус 196°С до плюс 450°С.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-900°С.

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида Ni3Al, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей горячего тракта газотурбинных двигателей авиационной промышленности. Сплав на основе интерметаллида Ni3Al содержит, мас. %: алюминий 8,2-8,7; хром 2,5-6,0; молибден 2,8-4,2; вольфрам 2,8-4,5; титан 0,01-1,2; тантал 0,5-5,5; рений 0,01-1,4; кобальт 0,01-5,5; углерод 0,015-0,08; лантан 0,015-0,4; гафний 0,01-0,6; цирконий 0,01-0,08; иттрий 0,015-0,15; эрбий, неодим и празеодим при их суммарном содержании 0,1-0,3; никель - остальное. Повышается надежность изделий, увеличивается ресурс их работы за счет повышения жаропрочности, кратковременной прочности ( σ в 20 ) и предела текучести ( σ 0,2 20 ) при комнатной температуре для КГО [001] сплава. 2 н.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам для получения изделий, производимых методом металлургии гранул и предназначенных для работы при высоких нагрузках и температурах, например в газотурбинных двигателях. Сплав содержит, мас. %: углерод - 0,03-0,08, хром - 9,0-11,0, кобальт - 14,0-16,0, вольфрам - 5,5-6,5, молибден - 3,2-3,8, титан - 3,8-4,2, алюминий - 3,4-4,2, ниобий - 1,5-2,2, гафний - 0,2-0,4, бор - 0,005-0,055, цирконий - 0,001-0,055, магний - 0,01-0,06, церий - 0,001-0,055, никель - остальное. Сплав имеет размер зерна 35-40 мкм, а также характеризуется высокими характеристиками длительной и кратковременной прочности во всем диапазоне рабочих температур, пластичности при горячей и холодной обработке. Повышается надежность срока службы изделий из заявленного сплава. 2 табл.

Изобретение относится к области металлургии, а именно к сплавам для защитных покрытий для защиты конструктивного элемента от коррозии и/или окисления. Сплав на основе никеля для защиты конструктивного элемента газовой турбины от коррозии и/или окисления при высоких температурах содержит, в вес.%: от более 22 до менее 24 кобальта (Со), от 14 до менее 16 хрома (Cr), 10,5-11,5 алюминия (Al), 0,2-0,4, по меньшей мере одного элемента из группы, включающей в себя скандий (Sc) и редкоземельные элементы, в частности иттрий (Y), при необходимости от 0,3 до 0,9 тантала (Та), никель (Ni) - остальное. Конструктивный элемент (120, 130, 155) газовой турбины (100) содержит субстрат (4), выполненный из сплава на основе никеля или на основе кобальта, и защитное покрытие (7) упомянутого состава. При необходимости, на защитное покрытие (7) может быть нанесено керамическое термобарьерное покрытие (10). Сплав и защитный слой обладают высокотемпературной устойчивостью к коррозии и окислению. 3 н. и 9 з.п.ф-лы, 5 ил.

Изобретение относится к области металлургии, а именно к хромоникелевоалюминиевому сплаву. Сплав содержит в мас.%: более 25 до 33 хрома, от 1,8 до менее 3,0 алюминия, от 0,10 до менее 2,5 железа, 0,001-0,50 кремния, 0,005-2,0 марганца, 0,00-0,60 титана, по 0,0002-0,05 каждого из магния и/или кальция, 0,005-0,12 углерода, 0,001-0,050 азота, 0,0001-0,020 кислорода, 0,001-0,030 фосфора, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, остальное - никель и обычные, технологически обусловленные примеси. Для сплава соблюдаются следующие условия: Cr+Аl≥28 и Fp≤39,9, где Fp=Cr+0,272×Fe+2,36×Аl+2,22×Si+2,48×Ti+0,374×Мо+0,538×W-11,8×С, а Cr, Fe, Al, Si, Ti, Mo, W, С означают концентрацию соответствующих элементов в % по массе. Обеспечивается высокая высокотемпературная коррозионная стойкость, высокий предел ползучести и обрабатываемость. 5 н. и 19 з.п. ф-лы, 4 ил., 5 табл., 1 пр.

Изобретение относится к области металлургии, а именно к сплавам на основе никель-молибден-хром-вольфрам, работающим при повышенных температурах и пригодным для применения в газотурбинных двигателях. Сплав на основе никеля-молибдена-хрома-вольфрама содержит, вес.%: от 7 до 9 хрома, от 21 до 24 молибдена, более 5 вольфрама, до 3 железа, никель и примеси: алюминий, кобальт, медь, марганец, ниобий, кремний, тантал, титан и ванадий - остальное. Сплав после термической обработки при температуре 760°С (1400°F) имеет твердость по Роквеллу по меньшей мере 23. Сплав характеризуется низким коэффициентом теплового расширения, высокими характеристиками устойчивости к окислению и прочности вплоть до 760°С. 4 н. и 11 з.п. ф-лы, 3 ил., 10 табл.

Изобретение относится к области металлургии жаропрочных свариваемых деформируемых сплавов и изделий, выполненных из этих сплавов, и может быть использовано для изготовления элементов камеры сгорания, сопла и других узлов газотурбинных двигателей и установок, работающих до температуры 1250°C. Жаропрочный свариваемый сплав на основе кобальта содержит, мас. %: хром 20,0-28,0; вольфрам 0,1-10,4; молибден 0,1-12,0; титан 1,0-4,0; углерод 0,02-0,25; тантал 1,0-4,0 или ниобий 0,3-2,0; гафний или цирконий 0,1-2,0; магний 0,002-0,3; лантан 0,002-0,1; бор 0,003-0,05; никель 20-40; кремний 0,001-0,2; кобальт - остальное. Сплав характеризуется повышенными значениями кратковременной прочности при комнатной температуре и жаростойкости сплава. 2 н. и 3 з.п. ф-лы, 2 табл.

Изобретение относится к сплавам на основе никеля в качестве присадочного материала, предназначенного для изготовления деталей и узлов наиболее высокотемпературных зон горячего тракта перспективных двигателей, длительно работающих при температурах до 1200°С. Присадочный материал на основе никеля для сварки жаропрочных никелевых сплавов, упрочняемых химико-термической обработкой, содержит, мас. %: углерод 0,05-0,1; хром 22-24; молибден 5,0-7,0; вольфрам 5,0-7,7; кобальт 13,0-16,0; тантал и/или ниобий 3,0-4,0; титан 1,8-2,0; марганец 0,1-0,5; кремний 0,1-0,3; магний 0,01-0,05; неодим, и/или празеодим, и/или диспрозий 0,03-0,06; никель - остальное. Повышается стойкость против образования горячих трещин при сварке жаропрочных никелевых сплавов, а также повышается ударная вязкость и жаропрочность после упрочняющей химико-термической обработки. 2 н.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для деталей, работающих при температурах до 1000oC в газотурбинных двигателях. Сплав на основе системы никель-алюминий-кобальт содержит, мас.%: никель 50,0-62,0, кобальт 18,0-28,0, алюминий 7,5-7,8, хром 1,8-4,8, титан 2,2-2,6, тантал 1,9-3,3, вольфрам 2,5-3,1, углерод 0,01-0,05, бор 0,005-0,03, магний 0,003-0,03, лантан 0,003-0,06, церий 0,001-0,02. Сплав характеризуется низкой плотностью и высокими эксплуатационными характеристиками. Повышается рабочая температура сплава до 1000°С со средним значением длительной прочности при 1000°С и на базе испытаний 100 часов (σ100 1000) не менее 118 МПа, со значением предела прочности σв при 800°С не менее 560 МПа, со значением предела текучести σ0,2 не менее 500 МПа при температуре испытаний 800°С и пониженной до 8 г/см3 плотностью. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, а именно к хромоникелевому сплаву, и может быть использовано при строительстве печей, а также в химической и нефтехимической отраслях промышленности. Хромоникелевый сплав содержит, в мас. %: 29 - 37 хрома, 0,001 - 1,8 алюминия, 0,10 - 7,0 железа, 0,001 - 0,50 кремния, 0,005 - 2,0 марганца, до 1,00 титана, до 1,10 ниобия, 0,0002 - 0,05 магния, 0,0002 - 0,05 кальция, 0,005 - 0,12 углерода, 0,001 - 0,050 азота, 0,001 - 0,030 фосфора, 0,0001 - 0,020 кислорода, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, при необходимости, от 0,0001 до 0,008 бора, остальное - никель и примеси. Выполнены следующие соотношения: Cr + Al >30, Fp ≤ 39,9, где Fp= Cr + 0,272·Fe + 2,36·Al + 2,22·Si + 2,48·Ti +1,26·Nb + 0,374·Mo + 0,538·W - 11,8·C. Сплав характеризуется высокими показателями высокотемпературной коррозионной стойкости в науглероживающей атмосфере, жаропрочности и предела ползучести. 5 н. и 21 з.п. ф-лы, 4 ил., 6 табл.

Изобретение относится к области металлургии, а именно к термомеханической обработке сплавов на основе никеля. Способ термомеханической обработки заготовки из сплава на основе никеля включает первый этап нагревания заготовки до температуры 1093-1163°С, первый этап ротационной ковки нагретой до 1093-1163°С заготовки с уменьшением площади поперечного сечения на 30-70%, второй этап нагревания заготовки до температуры 954-1052°С, причем между окончанием первого этапа ковки и началом второго этапа нагревания заготовку поддерживают при температуре ниже температуры растворения карбидов М23С6 и не позволяют ей охлаждаться до температуры окружающей среды, и второй этап ротационной ковки нагретой до 954-1052°С заготовки с уменьшением площади поперечного сечения на 20-70%. Обработанные сплавы характеризуются стабильностью и высокой прочностью в широком диапазоне высоких температур. 6 н. и 39 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем изделий с равноосной структурой, работающих в агрессивных средах при температурах 600-800°C, например интегральных колес и лопаток турбокомпрессоров турбонаддува дизелей, а также рабочих лопаток горячего тракта. Жаропрочный сплав на основе никеля для литья интегральных колес и рабочих лопаток турбокомпрессоров турбонаддува дизелей с равноосной структурой содержит, мас.: углерод 0,06-0,12; хром 14,7-15,2; кобальт 7,8-8,2; молибден 4,2-4,5; алюминий 3,2-3,5; титан 4,2-4,5; бор 0,008-0,012; кремний ≤0,30; церий 0,005-0,015; марганец ≤0,15; вольфрам 0,4-0,6; ниобий 0,15-0,3; гафний 0,10-0,20; железо ≤0,5; медь ≤0,05; сера ≤0,005; фосфор ≤0,005; азот ≤20 ppm; кислород ≤15 ppm; никель остальное. Суммарное содержание ниобия и гафния составляет ≤0,4 мас. , а суммарное содержание алюминия и титана - 7,4-8,0 мас. при отношении содержания титана к содержанию алюминия ≥1,27. Повышается длительная прочность в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также обеспечивается возможность сварки трением. 2 табл.

Наверх