Патенты автора Авдюхин Сергей Павлович (RU)

Изобретение относится к получению металлического порошка центробежным распылением заготовки. Способ включает подачу заготовки во вращающийся распылительный узел и в зону плавления, плавку заготовки плазменной струей, направленной на ее торец, с обеспечением центробежного распыления посредством вращения распылительного узла и получения частиц, их охлаждение и затвердевание при полете в газе. Используют узел распыления, выполненный в виде полого цилиндра для подачи через него заготовки и состоящий из двух участков из различных материалов, первый из которых является рабочим участком и выполнен из материала заготовки, а второй выполнен охлаждаемым из материала с более высокими теплопроводящими свойствами, чем материал первого участка. Подачу заготовки в распылительный узел ведут с обеспечением совмещения в вертикальной плоскости торца заготовки и торца рабочего участка распылительного узла, причем сначала плазменной струей совместно нагревают и оплавляют торцы заготовки и рабочей части распылительного узла с обеспечением формирования на торце рабочей части распылительного узла устойчивого профиля и стационарной пленки расплава. Обеспечивается повышение качества порошка и увеличение ресурса используемого оборудования. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к получению порошков жаропрочных никелевых сплавов. Способ включает плавление торца вращающейся цилиндрической литой заготовки потоком плазмы с обеспечением центробежного распыления расплава и образованием частиц затвердевающих в микрослитки при полете в атмосфере холодной плазмообразующей смеси газов, содержащей инертные газы и водород. В плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем путем ионизации газов в потоке плазмы и взаимодействия ионов с расплавом насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерную для жаропрочных сплавов на никелевой основе. Охлаждают микрослитки в холодной плазмообразующей смеси газов со скоростью не менее 103 °C/с. Обеспечивается повышение прочностных характеристик жаропрочных никелевых сплавов. 1 табл., 1 ил.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем изделий с равноосной структурой, работающих в агрессивных средах при температурах 600-800°C, например интегральных колес и лопаток турбокомпрессоров турбонаддува дизелей, а также рабочих лопаток горячего тракта. Жаропрочный сплав на основе никеля для литья интегральных колес и рабочих лопаток турбокомпрессоров турбонаддува дизелей с равноосной структурой содержит, мас.%: углерод 0,06-0,12; хром 14,7-15,2; кобальт 7,8-8,2; молибден 4,2-4,5; алюминий 3,2-3,5; титан 4,2-4,5; бор 0,008-0,012; кремний ≤0,30; церий 0,005-0,015; марганец ≤0,15; вольфрам 0,4-0,6; ниобий 0,15-0,3; гафний 0,10-0,20; железо ≤0,5; медь ≤0,05; сера ≤0,005; фосфор ≤0,005; азот ≤20 ppm; кислород ≤15 ppm; никель остальное. Суммарное содержание ниобия и гафния составляет ≤0,4 мас. %, а суммарное содержание алюминия и титана - 7,4-8,0 мас. % при отношении содержания титана к содержанию алюминия ≥1,27. Повышается длительная прочность в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также обеспечивается возможность сварки трением. 2 табл.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля с хромом и кобальтом, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-1000°С. Жаропрочный сплав на основе никеля для литья деталей горячего тракта газотурбинных установок, имеющих равноосную структуру, содержит, мас.%: углерод 0,07-0,12; хром 18,3-19,5; кобальт 3,7-4,5; вольфрам 4,6-5,2; алюминий 3,2-3,5; титан 3,9-4,2; тантал 0,9-1,2; ниобий 0,1-0,25; бор 0,008-0,012; церий 0,01-0,012; иттрий 0,01-0,012; молибден 0,15-0,3; гафний 0,05-0,15; марганец 0,01-0,012; никель остальное. Суммарное содержание гафния и ниобия составляет 0,2-0,3 мас.%, суммарное содержание алюминия и титана - 7,2-7,7 мас.% при отношении содержания титана к содержанию алюминия 1,2-1,32. Технический результат - повышение коррозионной стойкости и структурной стабильности на ресурс лопаток и деталей горячего тракта с равноосной структурой при повышенных минимально гарантированных и средних значениях прочности и пластичности при рабочих температурах 880-950°С. 1 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах природного газа при температурах 600-900°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,06-0,12; хром 15,6-16,1; кобальт 10,0-10,4; вольфрам 5,3-5,7; молибден 1,5-1,8; титан 4,3-4,6; алюминий 2,8-3,1; бор 0,01-0,02; цирконий 0,016-0,05; кремний 0,001-0,2; железо ≤0,1; медь ≤0,05; сера ≤0,005; азот ≤20 ppm; кислород ≤15 ppm, ниобий 0,1-0,3; иттрий ≤0,03; марганец 0,001-0,2; фосфор ≤0,005 и никель - остальное. Способ термической обработки лопаток включает отжиг с нагревом в инертной атмосфере, выдержкой и охлаждением и старение. Сплав характеризуется повышенными характеристиками прочности, пластичности и коррозионной стойкости жаропрочного сплава лопаток с направленной, монокристаллической и равноосной структурами в сочетании с повышенной пластичностью и структурной стабильностью на ресурс, расширение области применения сплава. 4 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых лопаток газотурбинных установок, работающих в агрессивных средах при температурах 700-900°С. Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок содержит, мас.%: углерод 0,07-0,10; хром 21,0-21,7; кобальт 10,3-10,8; вольфрам 3,6-4,0; титан 3,6-3,9; алюминий 2,5-2,8; ниобий 0,15-0,3; бор 0,010-0,020; цирконий ≤ 0,03; иттрий ≤ 0,03; молибден 0,7-1,0; марганец ≤ 0,03 кремний ≤ 0,3; лантан ≤ 0,02; железо ≤ 0,5; медь ≤ 0,05; сера ≤ 0,005; фосфор ≤ 0,008; азот ≤ 15 ppm; кислород ≤ 20 ppm и никель - остальное. Суммарное содержание алюминия и титана составляет 6,1-6,7 мас.%, а отношение содержания титана к содержанию алюминия 1,3-1,4. Сплав характеризуется повышенной длительной прочностью при рабочих температурах 700-900°С в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также повышенной структурной стабильностью на ресурс и улучшенными технологическими характеристиками. 2 табл.

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 750-900°С. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,02-0,13; хром 15,6-16,2; кобальт 8,2-8,8; вольфрам 2,4-2,8; молибден 1,5-2,0; алюминий 3,3-3,7; титан 3,3-3,7; ниобий 0,6-1,1; бор 0,005-0,015; тантал 1,5-2,0; гафний 0,00-0,2; цирконий 0,03-0,08; кальций 0,00-0,02; марганец ≤0,02; медь 0,00-0,05; сера ≤0,005; фосфор ≤0,005; азот 10-20 ppm; кислород 10-15 ppm, по меньшей мере, два элемента, выбранных из группы: кремний ≤0,25; магний 0,00-0,02; железо ≤0,2; никель остальное. Сплав характеризуется высокими характеристиками длительной прочности в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также повышенной структурной однородностью. 2 табл.

Изобретение относится к металлургии и может быть использовано для изготовления рабочих лопаток газотурбинных установок. Шихтовая заготовка содержит, мас.%: углерод 0,07-0,12, хром 12,9-13,5, кобальт 5,3-5,9, вольфрам 6,7-7,3, молибден 0,8-1,2, алюминий 3,2-3,5, титан 4,4-4,7, бор 0,010-0,015, медь ≤0,04, сера ≤0,005, фосфор ≤0,005, азот ≤15 ppm, кислород ≤15 ppm, кальций 0,00-0,02, магний 0,00-0,02, марганец 0,01-0,3, по меньшей мере два элемента, выбранные из группы: железо, кремний и барий, ≤0,2 каждого и по меньшей мере два элемента, выбранные из группы: иттрий, лантан, неодим, самарий, 0,005-0,05 каждого, никель - остальное. Обеспечивается повышение структурной однородности и длительной прочности лопаток с равноосной структурой, полученных литьем с использованием шихтовой заготовки, повышение сопротивления окислению и коррозионным воздействиям, повышение структурной стабильности на ресурс, повышение прочности и пластичности. 2 з.п. ф-лы, 2 табл.

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов и может быть использовано для изготовления тяжелонагруженных деталей газотурбинных двигателей, работающих при повышенных температурах. Способ получения изделия из гранулированного жаропрочного никелевого сплава включает заполнение, уплотнение и герметизацию гранул с их дегазацией в капсуле, формование изделия путем горячего изостатического прессования (ГИП) капсулы в готовое изделие и термическую обработку изделия. Используют капсулу сферической формы, а перед ГИП капсулу нагревают до приобретения материалом капсулы наибольшей пластичности и осуществляют ее осадку прессованием на размеры с припусками на ГИП. Обеспечивается повышение механических свойств материала изделия. 2 табл.

Изобретение относится к получению металлических порошков. Установка содержит камеру с накопителем заготовок и устройством их поштучной подачи на распыление, камеру с механизмом вращения заготовки в виде двух приводных опорных барабанов с нажимным роликом и механизмом продольной подачи заготовки с толкателем, камеру плавления с плазмотроном, направленным на торец распыляемой заготовки. Камера с накопителем заготовок снабжена шлюзовым затвором, отделяющим ее от камеры с механизмами вращения и продольной подачи заготовки. Камера плавления снабжена блоком рециркуляции газа, включающим вентилятор, холодильник и ловушки для вымораживания влаги. Плазмотрон снабжен механизмом перемещения в продольном и поперечном направлениях относительно заготовки, а также устройством контроля промежутка между торцом заготовки и плазмотроном. Опорные барабаны механизма вращения заготовки снабжены вибропоглощающими кольцами, контактирующими с заготовкой, а толкатель механизма продольной подачи выполнен в виде нажимного ролика с ребордой. Обеспечивается повышение надежности работы установки за счет снижения уровня виброколебаний в быстроходных механизмах, а также обеспечивается повышение качества и выхода порошка. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления сопловых лопаток с равноосной структурой горячего тракта газотурбинных установок. Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок содержит, мас.%: углерод 0,07-0,10; хром 20,5-21,6; кобальт 10,8-11,5; вольфрам 2,3-2,6; титан 3,6-3,8; алюминий 2,4-2,7; ниобий 0,5-0,8; бор 0,01-0,013, кальций 0,01-0,2; магний 0,01-0,2; молибден 1,7-2,0; кремний ≤0,1; железо ≤0,1; медь ≤0,05, сера ≤0,005; фосфор ≤0,005; азот ≤20 ppm, кислород ≤15 ppm, никель - остальное. При этом отношение содержания титана к содержанию алюминия составляет 1,4-1,55. Сплав характеризуется высокими показателями, длительной прочностью при рабочих температурах 700-920°C в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, повышенной структурной стабильностью на ресурс и улучшенными технологическими характеристиками. 1 з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-900°C. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,005-0,12; хром 11,5-12,4; кобальт 8,0-8,7; вольфрам 6,7-7,4; молибден 0,25-0,55; титан 4,0-4,2; алюминий 3,9-4,2; бор 0,001-0,012; марганец ≤0,12; кремний ≤0,10; ниобий 0,8-1,0; магний ≤0,12; кальций ≤0,12; медь ≤0,05; железо ≤0,1; сера ≤0,005; фосфор ≤0,005; азот ≤10,0 ppm, кислород ≤10,0 ppm, никель остальное, при этом отношение содержания титана к содержанию алюминия составляет 0,95-1,07. Сплав характеризуется повышенными значениями длительной прочности в сочетании с высоким сопротивлением коррозионным воздействиям, высокой структурной стабильностью на ресурс. Сплав может быть использован для литья рабочих лопаток газовых турбин с монокристаллической, направленной или равноосной структурами. 2 табл.

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах. Жаропрочный сплав на основе никеля содержит, мас.%: углерод 0,05-0,09; хром 15,4-15,8; кобальт 10,0-10,4; вольфрам 5,0-5,3; молибден 1,6-1,8; титан 4,3-4,5; алюминий 3,0-3,2; бор 0,06-0,09; цирконий <0,015; гафний 0,2-0,3; кремний <0,1; железо <0,1; медь <0,05; сера <0,005; азот <20 ppm; кислород <15 ppm, церий <0,015; ниобий 0,1-0,2; иттрий <0,03; марганец <0,1; фосфор <0,005 и никель - остальное. Способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля, характеризующийся тем, что проводят термическую обработку путем гомогенизирующего отжига и старения. Гомогенизирующий отжиг ведут в инертной атмосфере с нагревом со скоростью 5-10°C/мин до температуры 1060±10°C, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°C/мин до температуры 600-700°С и далее до комнатной температуры. Старение проводят при температуре 850±10°C в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры. Повышаются прочность, пластичность и коррозионная стойкость сплава с равноосной структурой в сочетании с высокой структурной стабильностью на ресурс и пониженным уровнем газоусадочной пористости. 2 н.з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-890°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,08-0,11; хром 14,6-15,1; кобальт 8,5-8,9; вольфрам 6,5-6,9; молибден 0,3-0,6; алюминий 3,9-4,1; титан 3,6-3,8; бор 0,010-0,013; кальций 0,01-0,20; кремний ≤0,1; марганец 0,15-0,30; сера ≤0,005; фосфор ≤0,005; магний 0,01-0,20; медь ≤0,05; азот 10-20 ppm; кислород 10-15 ppm, no меньшей мере, два элемента, выбранных из группы: железо ≤0,2; ванадий ≤0,10 и барий ≤0,01, никель - остальное. Сплав характеризуется повышенными значениями пластичности, коррозионной стойкости, обеспечивается высокая структурная стабильность. 2 табл., 3 пр.

Изобретение относится к металлургии, к области производства слитков, предназначенных для последующей переработки методом горячего изостатического прессования (ГИП). Способ получения микрослитков из расплава методом центробежного распыления включает плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец быстровращающейся заготовки с образованием частиц расплава, затвердевающих при полете в атмосфере холодного плазмообразуюшего газа в микрослитки. При плавлении литой заготовки в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами на поверхности расплава и микрослитков, и кислородом плазмообразующего газа, с выводом образовавшейся в результате взаимодействия влаги из холодного плазмообразующего газа методом вымораживания. При этом водород вводят в плазменную струю в количестве, обеспечивающем поддержание остаточной концентрации водорода в холодном плазмообразующем газе на уровне, не превышающем 10 ppm. Обеспечивается повышение качества получаемых микрослитков за счет снижения в них содержания кислорода, повышаются механические свойства компактного материала изделий. 1 табл.
Изобретение относится к порошковой металлургии, в частности к получению гранул магния и магниевых сплавов путем литья

Изобретение относится к области металлургии
Изобретение относится к области металлургии и может быть использовано в авиакосмической отрасли для получения жаропрочного коррозионного сплава на основе никеля для изготовления изделий, работающего в агрессивных средах длительное время при температурах 550-800°С

Изобретение относится к области металлургии
Изобретение относится к области литейного производства и может быть использовано, в частности, при изготовлении лопаток турбомашин методом направленной кристаллизации
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх