Способ изготовления катодно-сеточного узла с углеродным автоэмиссионным катодом

Изобретение относится к электронной технике, а именно к способу изготовления катодно-сеточных узлов (КСУ) с холодными катодами из углеродного материала для вакуумных электронных приборов. Технический результат - повышение равномерности автоэлектронной эмиссии в ячейках КСУ по всей поверхности катода и обеспечение надежного крепления „сэндвич-сетки" и катода. Способ изготовления катодно-сеточного узла с углеродным автоэмиссионным катодом включает формирование на рабочей поверхности катода матрицы микроострий, изготовление „сэндвич-сетки" со сквозными отверстиями, состоящей из формирующей и вытягивающей сеток, разделенных слоем диэлектрика, и закрепление „сэндвич-сетки" на поверхности катода. В качестве материала перемычек формирующей сетки использован металл переходной группы, что позволило осуществить соединение катода и „сэндвич-сетки" частичным погружением перемычек формирующей сетки в тело катода методом термохимического травления. Тем самым обеспечивается одинаковое расстояние от вершин микроострий до вытягивающей сетки во всех ячейках КСУ и, как следствие, равномерность автоэлектронной эмиссии в ячейках КСУ по всей поверхности катода. 2 ил.

 

Изобретение относится к электронной технике, а именно к способу изготовления катодно-сеточных узлов (КСУ) с холодными катодами из углеродного материала для вакуумных электронных приборов.

Известен способ изготовления КСУ с автоэмиссионным катодом на основе углеродных нанотрубок, включающий изготовление катода путем формирования на его рабочей поверхности нерегулярно расположенных углеродных нанотрубок [H.J. Kim, W.B. Seo, J.J. Choi, J-h. Han and J-B Yoo. Beam Emission Test jn Carbon Nanjtube Cathode jf a Gridded Gun. IVEC-2006. P. 479-480. Monterey] и вытягивающей сетки, которая расположена над поверхностью катода и отделена от него вакуумным зазором.

Недостаток данного способа заключается в том, что перемычки вытягивающей сетки не защищены от прямого перехвата тока с катода, что может привести к их расплавлению мощностью электронного потока. Кроме того, равномерность автоэлектронной эмиссии в различных ячейках КСУ не одинакова. Вследствие технологических допусков при изготовлении и размещении катода и сетки друг относительно друга перемычки вытягивающей сетки в различных ячейках не одинаково удалены от поверхности катода. Величины зазоров между перемычками сетки и катодом, которые составляют менее 100 мкм, могут отличаться на 10-20 %. Это приводит к тому, что и напряженности электростатических полей в различных ячейках существенно отличаются как в большую, так и в меньшую сторону относительно некоторого среднего значения. В уравнении Фаулера-Нордгейма для плотности автоэмиссионного тока напряженность поля находится в показателе экспоненты, поэтому плотность тока автоэлектронной эмиссии в различных ячейках вытягивающей сетки может отличаться на несколько порядков величины [Трубецков Д.И., Рожнев А.Г., Соколов Д.В. Лекции по сверхвысокочастотной вакуумной микроэлектронике. Саратов: Изд-во ГосУНЦ «Колледж». 1996].

Наиболее близким к предлагаемому способу изготовления КСУ с углеродным автоэмиссионным катодом является способ, включающий формирование на его рабочей поверхности матрицы микроострий методом тонкопленочной технологии, фотолитографии и термохимического травления [А.с. РФ 1738013, МКИ H01j 1/30. Способ формирования топологии преимущественно многоострийного катода. Ю.А. Григорьев, С.В. Васильковский, В.И. Шестеркин, З.А. Ярцева (Россия) №481/937/24-21; заявлено 09.04.90, опубликовано 06.04.93], изготовление „сэндвич-сетки", состоящей из формирующей и вытягивающей сеток, разделенных слоем диэлектрика, и ее размещение непосредственно на поверхности катода [Бушуев Н.А., Шестеркин В.И., Бурцев А.А., Григорьев Ю.А., Кудряшов В.П., Шалаев П.Д. Матричные автоэмиссионные катоды из стеклоуглерода: современное состояние и перспективы использования в СВЧ-приборах. / Электронная техника. Сер. 1. СВЧ-техника. Вып. 4(519). С. 175-183].

В данном способе изготовления КСУ прямой перехват тока катода перемычками вытягивающей сеткой исключен вследствие того, что микроострия экранированы перемычками формирующей сетки, лежащими на микроостриях.

Недостатком данного способа является то, что крепление „сэндвич-сетки" на поверхности катода осуществляют механическим способом, который не обеспечивает равномерность зазора между катодом и „сэндвич-сеткой" по всей рабочей поверхности катода, что приводит, как и в аналоге, к неравномерности автоэлектронной эмиссии как внутри единичной ячейки „сэндвич - сетки", так и в ее ячейках по всей поверхности катода.

Задачей изобретения является повышение равномерности автоэлектронной эмиссии в ячейках КСУ по всей поверхности катода и обеспечение надежного крепления „сэндвич-сетки" и катода.

Поставленная задача достигается тем, что в способе изготовления катодно-сеточного узла, включающего изготовление углеродного автоэмиссионного катода с матрицей микроострий на его рабочей поверхности, „сэндвич-сетки" со сквозными отверстиями, состоящей из формирующей и вытягивающей сеток, разделенных слоем диэлектрика, и закрепление „сэндвич-сетки" на поверхности катода, перемычки формирующей сетки, лежащие на вершинах микроострий, выполнены из металла переходной группы и частично погружены в тело катода методом термохимического травления. Тем самым обеспечиваются одинаковые расстояния от вершин микроострий до вытягивающей сетки во всех ячейках КСУ и, как следствие этого, одинаковые значения напряженности электрического поля и плотности тока автоэмиссионной эмиссии с микроострий как внутри единичной ячейки, так и во всех ячейках КСУ.

Предлагаемый способ изготовления КСУ поясняется Фиг. 1 и Фиг. 2.

На Фиг. 1 представлена единичная ячейка КСУ с „сэндвич-сеткой", лежащей на вершинах микроострий автоэмиссионного катода до технологической операции термохимического травления.

1 - катод из монолитного углеродного материала

2 - микроострия

3 - формирующая сетка

4 - слой диэлектрика

5 - вытягивающая сетка

На Фиг. 2 представлена единичная ячейка КСУ с частично погруженной в тело катода перемычками формирующей сетки после технологической операции термохимического травления.

Способ изготовления КСУ осуществляется следующим образом.

Первоначально формируется „сэндвич-структура" типа проводник-диэлектрик-проводник путем нанесения на слой диэлектрика (в данном случае, как и в прототипе, выбран пиролитический нитрид бора, обладающий высокой электрической прочностью ≈ 120 В/мкм) пленки пиролитического графита с одной стороны и пленки металла переходной группы с другой стороны. Далее осуществляют формирование „сэндвич-сетки" путем формирования сквозных отверстий заданного диаметра и топологии. Затем „сэндвич-сетку" размещают поверх катода, так чтобы перемычки формирующей сетки из металла переходной группы лежали на вершинах микроострий катодной матрицы (Фиг. 1). Далее осуществляют технологическую операцию термохимического травления материала катода под перемычками формирующей сетки путем отжига в водородной печи при температуре ≈ 1100°С. В результате атомы углерода в месте контакта микроострий с пленкой металла переходной группы растворяются в перемычках формирующей сетки, а затем, соединяясь с двумя атомами водорода, покидают пленку металла. Таким образом, высота микроострий уменьшается, а формирующая сетка равномерно погружается в тело катода (Фиг. 2). Время термохимического травления выбирают таким, чтобы возвышающаяся над поверхностью микроострий часть перемычки формирующей сетки имела заданную конструкторской документацией высоту.

Положительный эффект способа изготовления КСУ достигается за счет того, что при частичном погружении перемычек формирующей сетки в тело катода при операции термохимического травления происходит равномерное погружение перемычек формирующей сетки в тело катода по всей его поверхности. При этом в каждой ячейке „сэндвич-сетки" обеспечивается одинаковое расстояние от вершин микроострий до плоскости вытягивающей сетки и, как следствие этого, одинаковые значения напряженности электрического поля и плотности автоэмиссионного тока. Кроме того, за счет частичного погружения перемычек формирующей сетки в тело катода осуществляется надежное крепление „сэндвич-сетки" и катода.

Источники информации

1. H.J. Kim, W.B. Seo, J.J. Choi, J-h. Han and J-B Yoo. Beam Emission Test jn Carbon Nanjtube Cathode jf a Gridded Gun. IVEC-2006. P. 479-480. Monterey

2. Трубецков Д.И., Рожнев А.Г. Соколов Д.В. Лекции по сверхвысокочастотной вакуумной микроэлектронике. Саратов. Изд-во ГосУНЦ «Колледж». 1996.

3. [А.с. РФ 1738013, МКИ H01j 1/30. Способ формирования топологии преимущественно многоострийного катода. Ю.А. Григорьев, С.В. Васильковский, В.И. Шестеркин, З.А. Ярцева (Россия) №481/937/24-21; заявлено 09.04.90, опубликовано 06.04.93.

4. Бушуев Н.А., Шестеркин В.И., Бурцев А.А., Григорьев Ю.А., Кудряшов В.П., Шалаев П.Д. Матричные автоэмиссионные катоды из стеклоуглерода: современное состояние и перспективы использования в СВЧ-приборах. / Электронная техника. Сер. 1. СВЧ-техника. Вып. 4(519). С. 175-183.

Способ изготовления катодно-сеточного узла с углеродным автоэмиссионным катодом, включающий формирование на рабочей поверхности катода матрицы микроострий, изготовление „сэндвич-сетки" со сквозными отверстиями, состоящей из формирующей и вытягивающей сеток, разделенных слоем диэлектрика, и закрепление „сэндвич-сетки" на поверхности катода, отличающийся тем, что перемычки формирующей сетки, лежащие на вершинах микроострий, изготовлены из металла переходной группы, а одинаковое расстояние от вершин микроострий до вытягивающей сетки и крепление „сэндвич-сетки" к поверхности катода осуществляют за счет равномерного и частичного погружения перемычек формирующей сетки в тело катода методом термохимического травления.



 

Похожие патенты:
Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии углеродных структур.

Фотоумножитель может быть использован для регистрации слабых световых сигналов в исследованиях по физике высоких энергий, ядерной физике, в других различных технических приложениях, в том числе и для наблюдения крайне слабых световых сигналов.

Изобретение относится к электронной технике, в частности к конструкции катодно-сеточных узлов (КСУ) с автоэмиссионными катодами из углеродного материала для вакуумных электронных приборов с микросекундным временем готовности.

Изобретение предназначено для осветительной техники и медицины. Преобразующий длину волны материал включает соединение формулы (Y1-w-x-y-zScwLaxGdyLuz)2-a(SO4)3:Mea, где Me - трехвалентный катион или смесь трехвалентных катионов, способных испускать УФ-C излучение, например, Pr3+, Nd3+ и Bi3+; каждый из w, x, y и z находится в диапазоне от 0,0 до 1,0; w+x+y+z≤1,0; 0,0005≤a≤0,2.

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров.

Изобретение относится к области электронной техники. Способ изготовления эмиссионно-активного сплава катода для электровакуумных приборов СВЧ включает приготовление исходных компонентов сплава заданного соотношения на основе, по меньшей мере, двух компонентов, при этом одного из них - тугоплавкого металла, другого - щелочноземельного металла, соединение исходных компонентов сплава катода в инертной газовой среде посредством высокотемпературного плавления и последующей кристаллизации с обеспечением формирования заготовки сплава катода, при этом, по меньшей мере, двукратного повторения упомянутой технологической операции, обработку заготовки сплава катода с обеспечением ее заданного размера и формы.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн.

Изобретение относится к электронной технике, в частности к изготовлению углеродных многоострийных автоэмиссионных катодов, используемых в электровакуумных приборах с микросекундным временем готовности.

Изобретение относится к структурам для автоэмиттеров. Изобретение обеспечивает значительное увеличение рабочих токов автокатода, повышение стойкости устройств к деградации и увеличение их рабочего ресурса.

Изобретение относится к фотокатодным узлам вакуумных высокочувствительных, термо- и радиационно-стойких приемников излучений и приемников изображений для спектрального диапазона 0,19-0,45 мкм.

Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике и микроэлектронике. Способ включает в себя нагрев заготовок катода из алюминия в вакууме не ниже 10-5 мм рт.ст. и последующее термическое окисление ее поверхности, отличающийся тем, что заготовку катода из химически чистого алюминия нагревают в кислороде со скоростью 200°C/час до температуры, равной 300-350°C, выдерживают при данной температуре в течение 1,5 часа и затем охлаждают до комнатной температуры с той же скоростью. Указанный режим термического окисления обеспечивает получение приемлемой толщины окисного покрытия при минимально возможном количестве сквозных пор. Повышение срока службы холодного катода гелий-неонового лазера является техническим результатом изобретения. 1 ил.

Изобретение относится к приборам вакуумной и твердотельной электроники, в частности к автоэмиссионным элементам на основе углеродных нанотрубок (УНТ), используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе. Технический результат - повышение тока автоэмиссии и временной стабильности этой величины, уменьшение рабочих напряжений в приборах вакуумной микроэлектроники на основе углеродных нанотрубок и продление их срока службы. Автоэмиссионный элемент с катодами на основе углеродных нанотрубок включает полупроводниковую подложку, на поверхности которой сформирован изолирующий слой, катодный узел, расположенный над изолирующим слоем, состоящий из токоведущего и контактного слоев и углеродных нанотрубок (УНТ), расположенных на поверхности контактного слоя, опорно-фокусирующую систему, состоящую из первого диэлектрического, затворного электропроводящего и второго диэлектрического слоев, расположенную на верхней поверхности катодного узла и содержащую сквозную полость, анодный токоведущий слой, расположенный на внешней поверхности второго диэлектрического слоя опорно-фокусирующей системы, в котором сформированы сквозные технологические отверстия. Углеродные нанотрубки расположены параллельно поверхности полупроводниковой подложки, на поверхность углеродных нанотрубок нанесен слой оксида гафния, снижающий работу выхода электронов с поверхности УНТ и защищающий поверхность эмитирующих УНТ от воздействия внешних факторов, снижения величины контактного сопротивления нанотрубка-подложка при отжиге сформированной структуры автоэмиссионного элемента. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике и может быть использовано в электронно-лучевых приборах с автоэлектронной эмиссией, а именно: в зондовых приборах, экранах, растровых электронных микроскопах, а также в исследовательских и аналитических установках. В малогабаритной автоэмиссионной электронной пушке, содержащей автокатод (1), выполненный из наноструктурированного углеродного материала, заключенный в диэлектрическую оболочку (2), включающую первую часть (3) и вторую часть (4), модулятор и контактный электрод (6), модулятор выполнен в виде первой обечайки (7), которая плотно насажена на первую часть (3) диэлектрической оболочки (2), причем свободная часть (8) первой обечайки (7) и первый свободный конец (9) автокатода (1) выступают над первым торцом (10) первой части (3) диэлектрической оболочки (2), а в качестве контактного электрода (6) используют вторую обечайку (11), соединенную со второй частью (4) диэлектрической оболочки (2) и имеющую электрический контакт с автокатодом (1) . Технический результат изобретения - повышение надежности и долговечности устройства. 17 з.п. ф-лы, 4 ил.

Изобретение относится к полупрозрачному фотокатоду (1) для фотодетектора, имеющего повышенную степень поглощения при сохраняющейся степени переноса. Согласно изобретению фотокатод (1) содержит пропускающую дифракционную решетку (30) для дифракции фотонов, расположенную в слое подложки (10), на которую нанесен фотоэмиссионный слой (20). Технический результат - увеличение квантового выхода фотокатода. 2 н. и 13 з.п. ф-лы, 7 ил.

Изобретение относится к катодам электровакуумных приборов, а более конкретно к цилиндрическим термокатодам, преимущественно для магнетронов, и может быть использовано в электронной технике. Цилиндрический термоэмиссионный катод из металлокерамики состоит из цилиндрической накальной втулки с последовательно нанесенными на ее внешнюю поверхность промежуточным и наружным слоями, причем наружный слой образован смесью порошков тугоплавкого металла и эмиссионно-активных компонентов, втулка выполнена из смеси порошков тугоплавкого металла, преимущественно вольфрама, молибдена или рения, и высокотемпературного оксида металла третьей группы, а промежуточный слой выполнен из алундовой керамики. Разогрев катода осуществляется следующим образом: к торцевым поверхностям накальной втулки подсоединяются контактные пластины; на пластины подается напряжение накала, вызывающее протекание вдоль накальной втулки тока и быстрый разогрев как накальной втулки, так и всего катода, поскольку через промежуточный слой тепло мгновенно передается на эмиссионный слой. Технический результат - расширение функциональных возможностей термоэмиссионного катода и области его применения. 1 табл., 1 ил.

Изобретение относится к области изготовления диспенсерных катодов на основе скандата бария или других материалов на основе скандата бария, а именно к материалу мишени и мишени для физического осаждения тонких пленок, дисперсному катоду на основе скандата бария и способу его получения и способу получения мишени. Мишень (66) содержит смесь или состоит из смеси оксида бария ВаО, оксида кальция СаО, оксида алюминия Al2O3 и оксида скандия Sc2O3. Молярное отношение ВаО:СаО:Al2O3:Sc2O3 составляет «b:c:x:y», при этом 2≤b≤5, 1≤c≤3, 2≤x+y≤b+с и 0,1≤y≤1. Способ получения катода включает формирование пористого корпуса, пропитанного соединением бария и скандия, получение промежуточного слоя из ВаО, СаО, Al2O3 и Sc2O3. Способ получения мишени включает получение смеси ВаО, СаО, Al2O3 и Sc2O3 и спекание или плавление смеси с формированием мишени. Технический результат заключается в том, что дестабилизирующему эффекту реакций ВаО и СаО противодействуют с помощью более инертных компонентов Sc2O3 и также Al2O3, при этом повышенное содержание оксида скандия не только стабилизирует материал, но увеличенное содержание окиси алюминия (оксида алюминия) улучшает стабильность. 6 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут. Полученный после механоактивации порошок прессуют, а прессовку спекают в атмосфере аргона в пучке быстрых электронов при температуре (700-800)°С в течение 25-40 минут. Обеспечивается повышение на (15-17)% коэффициента вторичной электронной эмиссии прессованных металлосплавных катодов Рd-Ва. 2 табл., 2 пр.

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода. Перед прессованием навески порошка металла платиновой группы проводят механоактивацию (25-70)% навески порошка в течение 5-20 минут и смешивание с остатком навески порошка. Обеспечивается улучшение однородности распределения фазы интерметаллида в матрице металла платиновой группы. 2 табл., 2 пр.

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка активного компонента с нанопорошком матричного металла и последующую обработку полученной смеси, при этом в качестве порошка активного компонента композитного катодного материала используется гидрид металла цериевой группы, в том числе лантана, церия или празеодима, в качестве порошка матричного металла используется нанопорошок иридия, смесь порошков приготавливают в соотношении 1-13% вес. порошок активного компонента, нанопорошок матричного металла - остальное, после смешивания порошков последовательно проводят термический отжиг получившейся смеси в вакууме при температуре 850-950°C до полной дегазации, затем горячее магнитно-импульсное прессование в вакууме при температуре 400-500°C и давлении прессования 08-1,5 ГПа и последующее спекание в вакууме при температуре 1500-1600°C. Изобретение позволяет значительно уменьшить эмиссионную неоднородность катода. 1 ил.

Изобретение относится к электронной технике, в частности к конструкции катодно-сеточных узлов с автоэмиссионным катодом из углеродного материала для вакуумных электронных приборов (в том числе к СВЧ приборам) с микросекундным временем готовности. Технический результат - повышение равномерности автоэлектронной эмиссии по всей поверхности катода и, как следствие, увеличение отбираемого с катода тока. В конструкции КСУ с по крайней мере одним автоэмиссионным катодом из углеродного материала, вершина катода имеет параболическую в сечении поверхность, на которой сформированы острия конусообразной формы. Оси симметрии каждого катода совпадают с осями симметрии отверстий в сетке. Параболическая форма вершины катодов обеспечивает одинаковую напряженность поля и равномерность эмиссии по всей поверхности катода, а наличие острий снижает рабочее напряжение на сетке. 3 ил.

Изобретение относится к электронной технике, а именно к способу изготовления катодно-сеточных узлов с холодными катодами из углеродного материала для вакуумных электронных приборов. Технический результат - повышение равномерности автоэлектронной эмиссии в ячейках КСУ по всей поверхности катода и обеспечение надежного крепления „сэндвич-сетки и катода. Способ изготовления катодно-сеточного узла с углеродным автоэмиссионным катодом включает формирование на рабочей поверхности катода матрицы микроострий, изготовление „сэндвич-сетки со сквозными отверстиями, состоящей из формирующей и вытягивающей сеток, разделенных слоем диэлектрика, и закрепление „сэндвич-сетки на поверхности катода. В качестве материала перемычек формирующей сетки использован металл переходной группы, что позволило осуществить соединение катода и „сэндвич-сетки частичным погружением перемычек формирующей сетки в тело катода методом термохимического травления. Тем самым обеспечивается одинаковое расстояние от вершин микроострий до вытягивающей сетки во всех ячейках КСУ и, как следствие, равномерность автоэлектронной эмиссии в ячейках КСУ по всей поверхности катода. 2 ил.

Наверх