Способ и охлаждающая система для охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине

Способ охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, содержащей канал осевого потока, который радиально ограничен изнутри роторным узлом и снаружи по меньшей мере одним неподвижным компонентом. Лопатки расположены на роторном узле и предоставляют бандажированную вершину лопатки, радиально обращенную к неподвижному компоненту. Охлаждающий воздух под давлением подают радиально снаружи к вершине каждой из лопаток по меньшей мере в одном лопаточном венце. Охлаждающий воздух под давлением входит в лопатки через по меньшей мере одно отверстие у бандажированной вершины лопатки. При этом охлаждающий воздух под давлением подают через неподвижный компонент, окружающий упомянутый по меньшей мере один лопаточный венец радиально, и он входит в полость, охваченную неподвижным компонентом и бандажированными вершинами лопаток по меньшей мере в одном лопаточном венце. Изобретение направлено на упрощение подачи воздуха во вращающиеся лопатки роторной машины. 3 н. и 8 з.п. ф-лы, 3 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу, а также к охлаждающей системе для охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, такой как газовая или паровая турбомашина или компрессорный узел, содержащей канал осевого потока, который радиально ограничен изнутри роторным узлом и снаружи по меньшей мере одним неподвижным компонентом, причем упомянутые лопатки расположены на роторном узле и предоставляют бандажированную вершину лопатки, обращенную радиально к упомянутому неподвижному компоненту.

Предпосылки создания изобретения

Обычно используемая технология для увеличения эффективности и производительности двигателя заключается в охлаждении подверженных воздействию тепла компонентов роторных машин. Особенно важным является охлаждение лопаток турбины в газовых или паровых турбинных двигателях, что является особенно важным для работы таких турбин при более высоких температурах, чем допустимо при неохлаждаемых лопатках турбины.

Хорошо известная технология охлаждения вращающихся лопаток в роторной машине основана на питании лопаток через вращающийся узел, предоставляющий внутренние охлаждающие каналы, которые находятся в непрямом или прямом гидравлическом соединении с системой охлаждающего канала внутри лопаток.

В US 4178129 описана охлаждающая система газотурбинного двигателя, в которой хвостовик каждой лопатки снабжен приемником воздушного давления, который собирает часть охлаждающего потока, подаваемого от кольцевой сетки форсунок предварительного завихрения, которые имеют непрерывную в окружном направлении область выходящего потока и направляют упомянутый охлаждающий поток только в часть внутренней части лопатки, предпочтительно рядом с передней кромкой.

Еще одно охлаждающее устройство для лопаток ротора в газотурбинном двигателе описано в US 5984636. Каждая из лопаток включает в себя проходы охлаждающего воздуха и крышку с криволинейными ребрами, установленными вблизи, но присоединенными к ротору и находящимися на небольшом расстоянии от диска ротора, чтобы образовывать проход для охлаждающей текучей среды. Полость, которая ограничена крышкой и диском ротора, питается по относительно небольшому радиусу, и увеличение давления достигается лопатками, работающими как радиальный компрессор. Необходима сложная конструкция, позволяющая прикреплять отдельную деталь к ротору.

Хорошо известно множество других решений для питания лопаток охлаждающим воздухом через отверстия в роторе, тем не менее эти решения могут привести к проблемам срока службы, так как если для подачи охлаждающего воздуха во вращающиеся лопатки недостаточно места, давление будет расти и в итоге может быть недостаточным.

Краткое изложение сущности изобретения

Общей целью настоящего изобретения является предоставление способа, а также охлаждающей системы для охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, которые упрощают подачу охлаждающего воздуха во вращающиеся лопатки роторной машины.

Цель достигается посредством способа, изложенного в п. 1 формулы изобретения. Обладающая признаками изобретения охлаждающая система описана в п. 3 формулы изобретения. Наконец, обладающая признаками изобретения роторная машина описана в п. 11 формулы изобретения. Изобретение также может быть преимущественно модифицировано посредством признаков, описанных в зависимых пунктах формулы изобретения, а также в последующем описании, ссылающемся, в частности, на предпочтительный вариант осуществления.

Изобретение используется для предоставления охлаждающего воздуха для вращающихся лопаток турбины с внутренним охлаждением и основано на идее питания внутренней охлаждающей системы лопатки через вершину каждой лопатки по меньшей мере в одном лопаточном венце роторной машины. Следовательно, обладающий признаками изобретения способ охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, содержащей канал осевого потока, который радиально ограничен изнутри роторным узлом и снаружи по меньшей мере одним неподвижным компонентом, причем упомянутые лопатки расположены на роторном узле и предоставляют бандажированную вершину лопатки, обращенную радиально к упомянутому неподвижному компоненту, отличается тем, что охлаждающий воздух под давлением подают радиально снаружи к вершине каждой из упомянутых лопаток по меньшей мере в одном лопаточном венце, и упомянутый охлаждающий воздух под давлением входит в лопатки через по меньшей мере одно отверстие у бандажированной вершины лопатки.

Важной особенностью для осуществления питания внутренней охлаждающей системы лопатки через вершину каждой лопатки заключается в обеспечении исключения вхождения горячих газов во внутреннюю охлаждающую систему лопатки через отверстия у бандажированной вершины лопаток. Для соблюдения этого требования необходимо обеспечить подачу в область непосредственно вокруг по меньшей мере одного отверстия у бандажированной вершины лопаток охлаждающего воздуха с предпочтительно низкой температурой и статическим давлением, которое выше, чем полное относительное давление горячего газа внутри канала осевого потока, особенно у передней кромки лопатки.

В предпочтительном варианте осуществления охлаждающий воздух под давлением подается через неподвижные компоненты, окружающие упомянутый по меньшей мере один лопаточный венец радиально, и входит в полость, охваченную неподвижным компонентом и бандажированными вершинами лопаток по меньшей мере в одном лопаточном венце. Бандаж каждой лопатки предоставляет у своей верхней по потоку и нижней по потоку кромки относительно направления потока через канал осевого потока роторной машины по меньшей мере одно ребро, которое возвышается радиально за пределами поверхности бандажа, простирающейся между по меньшей мере двумя ребрами. Такие бандажированные вершины лопаток разработаны и расположены таким образом, что бандажи двух соседних лопаток соединяются друг с другом в окружном направлении, так что бандажи всех лопаток по меньшей мере в одном лопаточном венце объединяются для образования направленной радиально наружу кольцевой межреберной полости, ограниченной радиально неподвижным компонентом. Также возможно предусмотреть более двух ребер у бандажа для образования более одной межреберной полости. Последующие объяснения направлены на бандажированные лопатки, имеющие одну межреберную полость, без ограничения объема изобретения. Межреберная полость, которая охвачена всеми бандажированными лопатками в одном лопаточном венце, имеет форму кольца, которое питается охлаждающим воздухом посредством по меньшей мере одного отверстия в неподвижном компоненте, так что внутри межреберной полости преобладает статическое давление, которое по меньшей мере немного выше, чем давление в канале осевого потока роторной машины.

Поскольку лопатки вращаются вокруг оси вращения роторной машины, охлаждающий воздух внутри кольца увлекается в направлении вращения. Для увеличения входящего потока охлаждающего воздуха в отверстии на бандаже каждой лопатки входное отверстие имеет специальный контур отверстия, через который поток охлаждающего воздуха в кольце замедляется местно относительно бандажей. Это может быть достигнуто посредством выполнения отверстия каждого бандажа в форме, подобной воронке, имеющей поперечное сечение в форме воронки с заданной осью воронки, стремящейся к окружному направлению вращения. К тому же контур отверстия предоставляет расширение в осевом, радиальном и окружном направлении, так что поперечное сечение потока упомянутого проема становится больше в направлении потока охлаждающего воздуха при вхождении в проем.

Обладающая признаками изобретения охлаждающая система для охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине, таким образом, предоставляет по меньшей мере одно отверстие на неподвижном компоненте, обращенном радиально к бандажированным вершинам лопаток по меньшей мере одного лопаточного венца. К тому же по меньшей мере одно отверстие представляет собой выходной проем охлаждающего канала внутри неподвижного компонента. В предпочтительном варианте осуществления охлаждающий воздух будет обеспечен компрессорным узлом, который является обычной частью устройства газовой или паровой турбины. К тому же каждая из лопаток предоставляет по меньшей мере один проем у своего бандажированной вершины лопатки, посредством чего упомянутый проем представляет собой входное окно охлаждающего канала внутри лопатки.

Краткое описание чертежей

Изобретение будет более подробно описано далее на основании иллюстративного варианта осуществления совместно с чертежом. На чертеже:

На фиг.1a показан вид сбоку лопатки внутри роторной машины,

На фиг.1b показан схематичный вид сверху двух бандажированных вершин лопаток в одном лопаточном венце, и

На фиг.1c показан вид в разрезе вдоль линии BB головной части двух соседних бандажированных лопаток в окружном направлении лопаточного венца.

Подробное описание вариантов осуществления настоящего изобретения

На фиг.1 показан вид сбоку лопатки 1, установленной в лопаточном венце роторной машины. Роторная машина содержит канал 2 потока, который радиально ограничен изнутри роторным узлом 3 и снаружи по меньшей мере одним неподвижным компонентом 4. Как правило, неподвижный компонент 4 представляет собой компонент теплового экрана, который установлен у внутренней стенки кожуха, окружающего упомянутую роторную машину. Каждая лопатка 1 лопаточного венца содержит хвостовик 5, который присоединен с возможностью отсоединения к роторному узлу 3, аэродинамическую поверхность 6, простирающуюся радиально через канал 2 осевого потока и подверженную воздействию потока горячего газа, проходящего через канал осевого потока, и наконец бандаж 7 у конца вершины лопатки.

Для охлаждения лопатки 1 согласно изобретению предложено подавать охлаждающий воздух 8 радиально снаружи от неподвижного компонента в лопатку 1 через отверстие 9 у бандажированной вершины лопатки. Посредством радиальной подачи охлаждающего воздуха к лопатке 1 радиально снаружи через по меньшей мере один неподвижный компонент 4 могут быть исключены охлаждающие каналы со сложной конструкцией внутри роторного узла, как описано выше. Подача охлаждающего воздуха к неподвижному компоненту 4 может быть разработана и устроена очень просто, так что можно значительно уменьшить конструкционные и финансовые затраты для осуществления охлаждения лопаток 1.

Для того чтобы предотвратить вхождение горячих газов в отверстие 9 охлаждающего канала внутри лопатки 1, бандаж 7 предоставляет верхнюю по потоку кромку 7' и нижнюю по потоку кромку 7” относительно направления осевого потока через канал 2 осевого потока, проиллюстрированного стрелкой F на Фиг.1a, которая направлена слева направо. Вдоль верхней по потоку кромки 7' расположено первое ребро 10 и вдоль нижней по потоку кромки 7” расположено второе ребро 11, причем оба ребра 10, 11 возвышаются радиально за пределами поверхности 12 бандажа, простирающейся между обоими ребрами 10, 11. Из-за конструкции бандажа и расположения лопатки 1 относительно неподвижного компонента 4 бандаж 7 охватывает межреберную полость 13 вместе с неподвижным компонентом 4, в которую подается охлаждающий воздух 8 через отверстие 14 неподвижного компонента, которое является выходным окном системы охлаждающего канала внутри непоказанного неподвижного компонента. Охлаждающий воздух 8 под давлением подается в межреберную полость 13 так, что предшествующее статическое давление внутри упомянутой полости 13 выше, чем полное относительное давление потока в канале 2 осевого потока у передней кромки 15 лопатки 1 по меньшей мере в одном лопаточном венце. Таким образом, можно исключить вхождение горячих газов в межреберную полость 13.

По меньшей мере одно отверстие 14 внутри неподвижного компонента 4 расположено в радиальной проекции к бандажированным вершинам лопатки, и количество таких отверстий 14 зависит от желаемого эффекта охлаждения в лопатках. Если подача охлаждающего воздуха не может быть обеспечена только одним отверстием, большее количество отверстий может быть расположено в окружном направлении вокруг лопаточного венца внутри неподвижного компонента.

На фиг.1b показан схематичный вид сверху двух соседних бандажированных вершин лопаток с указанным профилем аэродинамической поверхности каждой лопатки. Каждый бандаж 7 предоставляет верхнюю по потоку кромку 7', вдоль которой расположено ребро 10, и нижнюю по потоку кромку 7”, вдоль которой расположено ребро 11, каждое из которых простирается за пределы поверхности 12 бандажа, простирающейся в осевом направлении между обоими ребрами 10, 11. На Фиг.1b принято, что ребра 10, 11 возвышаются за пределами плоскости чертежа.

К тому же показано, что бандажи 7 двух соседних лопаток соединяются друг с другом в окружном направлении R, которое соответствует перемещению вращения роторной машины, так что бандажи 7 всех лопаток по меньшей мере в одном лопаточном венце объединяются для образования направленного радиально наружу кольцевой межреберной полости 13, которую видно на Фиг.1b при виде сверху.

Каждая лопатка предоставляет у своего бандажа 7 по меньшей мере одно отверстие 9 на поверхности 12 бандажа, которое представляет собой входное окно охлаждающего канала 17 внутри лопатки 1. Смотри также фиг.1c, на которой показан вид в разрезе по линии BB, обозначенной на фиг.1b. Каждое отверстие 9 расположено внахлест по меньшей мере с одним соседним бандажом и предоставляет контур отверстия, имеющий расширение в осевом и в окружном направлении так, как в радиальной проекции на бандаж, как проиллюстрировано на Фиг.1b, проем 9 соответствует форме бутылочного горлышка с наименьшей осевой шириной 16, направленной в окружном направлении R вращения. Такая форма проема поддерживает входящий поток охлаждающей среды в охлаждающий канал 17 лопатки 1. В особенности, конструкция поперечного сечения каждого проема 9, которая проиллюстрирована на фиг.1c, поддерживает входящий поток охлаждающего воздуха в охлаждающий канал 17, благодаря имеющему форму воронки поперечному сечению в радиальном и окружном направлении контура отверстия 9, которое имеет ось 18 воронки, стремящуюся к окружному направлению R вращения.

Как обозначено на фиг.1a, верхняя часть каждого ребра 10, 11 расположена очень близко к внутренней поверхности неподвижной части 4, которая, как объяснено ранее, предпочтительно является компонентом теплового экрана, чтобы могла быть значительно уменьшена утечка охлаждающего воздуха, выходящего из межреберной полости 13 в тракт 2 потока. В предпочтительном варианте осуществления ребра 10, 11 и компонент теплового экрана расположены и спроектированы с возможностью осуществления лабиринтного уплотнения.

Список обозначений

1 лопатка

2 канал осевого потока

3 роторный узел

4 неподвижный компонент

5 хвостовик

6 аэродинамическая поверхность

7 бандаж

7' верхняя по потоку кромка

7” нижняя по потоку кромка

8 охлаждающий воздух

9 отверстие, проем

10, 11 ребро

12 поверхность бандажа

13 межреберная полость

14 отверстие

15 передняя кромка

16 отверстие, проем

17 охлаждающий канал

18 ось воронки

1. Способ охлаждения лопаток (1) по меньшей мере одного лопаточного венца в роторной машине, содержащей канал (2) осевого потока, который радиально ограничен изнутри роторным узлом (3) и снаружи по меньшей мере одним неподвижным компонентом (4), причем упомянутые лопатки (1) расположены на роторном узле (3) и предоставляют бандажированную вершину лопатки, радиально обращенную к упомянутому неподвижному компоненту (4), отличающийся тем, что охлаждающий воздух (8) под давлением подают радиально снаружи к вершине каждой из упомянутых лопаток (1) по меньшей мере в одном лопаточном венце, и упомянутый охлаждающий воздух (8) под давлением входит в лопатки (1) через по меньшей мере одно отверстие (9) у бандажированной вершины лопатки, при этом охлаждающий воздух (8) под давлением подают через неподвижный компонент (4), окружающий упомянутый по меньшей мере один лопаточный венец радиально, и он входит в полость (13), охваченную неподвижным компонентом (4) и бандажированными вершинами лопаток (1) по меньшей мере в одном лопаточном венце.

2. Способ по п. 1, отличающийся тем, что охлаждающий воздух (8) под давлением подают в полость (13) через по меньшей мере одно отверстие (14) на стороне неподвижного компонента (4), так что внутри упомянутой полости (13) преобладает статическое давление, которое выше, чем полное относительное давление потока в канале (2) осевого потока у передней кромки (15) лопаток (1) по меньшей мере в одном лопаточном венце.

3. Охлаждающая система для охлаждения лопаток (1) по меньшей мере одного лопаточного венца в роторной машине, содержащей канал (2) осевого потока, который радиально ограничен изнутри роторным узлом (3) и снаружи по меньшей мере одним неподвижным компонентом (4), причем упомянутые лопатки (1) расположены на роторном узле (3) и предоставляют бандажированную вершину лопатки, обращенную радиально к упомянутому неподвижному компоненту (4), отличающаяся тем, что по меньшей мере одно отверстие (14) расположено на неподвижном компоненте (4), обращенном радиально к бандажированным вершинам лопаток (1) по меньшей мере одного лопаточного венца, причем упомянутое по меньшей мере одно отверстие (14) представляет собой выходное окно охлаждающего канала внутри неподвижного компонента (4), причем каждая из лопаток (1) предоставляет по меньшей мере один проем (9) у своей бандажированной вершины лопатки, и упомянутый проем (9) представляет собой входное окно охлаждающего канала (17) внутри лопатки (1), при этом охлаждающий воздух (8) под давлением подается через неподвижный компонент (4), окружающий упомянутый по меньшей мере один лопаточный венец радиально, и входит в полость (13), охваченную неподвижным компонентом (4) и бандажированными вершинами лопаток (1) по меньшей мере в одном лопаточном венце.

4. Охлаждающая система по п. 3, отличающаяся тем, что бандажированные вершины лопаток (1) разработаны и расположены так, что бандаж (7) каждой лопатки (1) предоставляет верхнюю по потоку и нижнюю по потоку кромки (7′, 7″) относительно направления (F) осевого потока через упомянутый канал (2) осевого потока роторной машины, и вдоль упомянутых нижней и верхней по потоку кромок (7, 7″) расположено по меньшей мере одно ребро (10, 11), возвышающееся радиально за пределами поверхности (12) бандажа, простирающейся между обоими ребрами (10, 11).

5. Охлаждающая система по п. 4, отличающаяся тем, что бандажированные вершины лопаток (1) разработаны и расположены так, что бандажи (7) двух соседних лопаток (1) соединяются друг с другом в окружном направлении, так что бандажи (7) всех лопаток (1) по меньшей мере в одном лопаточном венце объединены с образованием по меньшей мере одной направленной радиально наружу кольцевой межреберной полости (13), ограниченной радиально неподвижным компонентом (4).

6. Охлаждающая система по п. 3, отличающаяся тем, что контур отверстия проема (9) предоставляет поперечное сечение в форме воронки в радиальном и окружном направлении, причем упомянутое поперечное сечение в форме воронки имеет заданную ось (18) воронки, стремящуюся к окружному направлению вращения.

7. Охлаждающая система по п. 6, отличающаяся тем, что каждый проем (9) бандажированной вершины лопатки предоставляет контур отверстия, имеющий расширение в осевом, радиальном и окружном направлении, так что поперечное сечение потока упомянутого проема (9) становится больше в направлении потока охлаждающего воздуха, входящего в проем (9).

8. Охлаждающая система по п. 6 или 7, отличающаяся тем, что контур отверстия каждого проема (9) простирается между двумя или более соседними лопатками.

9. Охлаждающая система по п. 3, отличающаяся тем, что выходное окно по меньшей мере одного отверстия имеет заданную ось, которая ориентирована радиально.

10. Охлаждающая система по п. 3, отличающаяся тем, что роторная машина представляет собой газовую или паровую турбомашину или компрессорный узел.

11. Роторная машина, содержащая канал (2) осевого потока, который радиально ограничен изнутри роторным узлом (3) и снаружи по меньшей мере одним неподвижным компонентом (4), и лопатки (1) по меньшей мере в одном лопаточном венце, расположенные на роторном узле (3) и предоставляющие бандажированную вершину лопатки, обращенную радиально к упомянутому неподвижному компоненту (4), отличающаяся тем, что по меньшей мере одно отверстие (14) расположено на неподвижном компоненте (4), обращенном радиально к бандажированным вершинам лопаток (1) по меньшей мере одного лопаточного венца, причем упомянутое по меньшей мере одно отверстие (14) представляет собой выходное окно охлаждающего канала внутри неподвижного компонента (4), причем каждая из лопаток (1) предоставляет по меньшей мере один проем (9) у своей бандажированной вершины лопатки, и упомянутый проем (9) представляет собой входное окно охлаждающего канала (17), простирающегося внутри лопатки (1), при этом охлаждающий воздух (8) под давлением подается через неподвижный компонент (4), окружающий упомянутый по меньшей мере один лопаточный венец радиально, и входит в полость (13), охваченную неподвижным компонентом (4) и бандажированными вершинами лопаток (1) по меньшей мере в одном лопаточном венце.



 

Похожие патенты:

Изобретение относится к энергетике. Охлаждающий контур для многоступенчатой паровой турбины, содержащей барабанный ротор с лопатками, установленными в тангенциальных охватывающих пазах пазового замка для по меньшей мере одной ступени, содержащий внешний источник охлаждающего пара, барабанный ротор.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха, расположенный в хвостовой части и соединенный по текучей среде с проходом для подачи охлаждающего воздуха.

Изобретение относится к наземным газотурбинным установкам, выполненным на основе турбокомпрессора от двигателя внутреннего сгорания, и предназначено для охлаждения вала свободной турбины, вращающегося в подшипниках качения.

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах.

Установка с потоком текучей среды, в особенности газовая турбина с аксиально проходящим потоком нагретого газа, выполнена с рядами лопаток ротора со стороны ротора и рядами направляющих лопаток со стороны корпуса, расположенными соответственно аксиально между последовательными рядами лопаток ротора, а также с валом ротора, окруженным теплозащитными элементами и элементами основания лопаток ротора.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора, и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Изобретение касается конструктивного элемента газовой турбины, например лопатки турбины или диска ротора. Конструктивный элемент газовой турбины снабжен по меньшей мере одним оканчивающимся на неструктурированной поверхности каналом для направления охлаждающего средства.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и воздухоохлаждаемых теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и воздухоохлаждаемых теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Газовая турбина осевого типа содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Рабочая лопатка газовой турбины содержит профильную часть, проходящую в продольном направлении, и хвостовик лопатки, служащий для крепления рабочей лопатки на валу ротора газовой турбины.

Ротор турбины включает впускной и выпускной вкладыши для формирования охлаждающего контура. Впускной вкладыш расположен в первом осевом замковом пазу ротора и имеет радиальный охлаждающий канал, осевой канал и радиальные каналы. Радиальный охлаждающий канал обеспечивает прием текучей среды из нижнего по потоку местоположения по первичному тракту турбины, осевой канал проходит в нижней части впускного вкладыша от радиального охлаждающего канала, а радиальные каналы проходят от осевого канала и каждый из которых проходит ко дну дугообразного замкового паза впускного вкладыша. Выпускной вкладыш расположен во втором осевом замковом пазу ротора и имеет радиальные каналы, осевой канал и выпускной канал. Каждый из радиальных каналов проходит от дна дугообразного замкового паза выпускного вкладыша. Осевой канал проходит в нижней части выпускного вкладыша от радиальных каналов, а выпускной канал проходит от осевого канала. Другое изобретение группы относится к турбине, содержащей указанный выше ротор и окружающий его статор. Группа изобретений позволяет повысить эффективность охлаждения ротора турбины и упростить конструкцию его охлаждающего контура. 2 н. и 14 з.п. ф-лы, 7 ил.

Газогенератор высокотемпературного газотурбинного двигателя содержит центробежное колесо-крыльчатку, диффузор-выпрямитель, отделенный от последнего полостью радиального кольцевого зазора и имеющий в нижней своей части кольцевой фланец, корпус силовой задний, камеру сгорания и турбину высокого давления. Корпус силовой задний установлен на выходе крыльчатки с необходимым осевым кольцевым зазором между тыльной стороной крыльчатки и обтекателем, образуя полость осевого кольцевого зазора. Полость осевого кольцевого зазора между задней стороной крыльчатки и обтекателем и внутренняя полость корпуса силового заднего сообщены с полостью радиального кольцевого зазора между крыльчаткой и диффузором на входе и объединены общей полостью на выходе. Зона вторичного воздуха камеры сгорания ограничена снизу корпусом силовым задним и соединенным с ним корпусом внутренним, скрепленным с аппаратом спутной закрутки и имеющим кольцевой фланец. Турбина высокого давления включает сопловой аппарат, снизу опирающийся на кольцевой фланец корпуса внутреннего, и рабочее колесо с охлаждаемыми рабочими лопатками и дисками, основным и покрывным, образующими между собой кольцевую полость, сообщенную с внутренними полостями рабочих лопаток. Диск покрывной не имеет отверстий и подкачивающих лопаток на своем полотне и прикреплен к ободной части основного диска с образованием между ними кольцевой полости, сообщенной на выходе с внутренними полостями рабочих лопаток, а на входе формирующими между собой радиальный кольцевой зазор. Вход в радиальный кольцевой зазор сообщен с полостью осевого кольцевого зазора кольцевым каналом, внутренняя поверхность которого ограничена тыльной стороной крыльчатки, а наружная - обтекателем, примыкающим к нижнему фланцу конической оболочки, и нижним фланцем корпуса внутреннего, в стыке между которыми размещен аппарат спутной тангенциальной закрутки. Сопла аппарата спутной тангенциальной закрутки расположены в радиальной плоскости и сообщены с кольцевым каналом на выходе, обеспечивая ввод высокоэнергетического потока воздуха из зоны вторичного воздуха камеры сгорания непосредственно в кольцевой канал. Осевой зазор между нижним фланцем корпуса внутреннего и диском покрывным уплотнен. Изобретение позволяет повысить ресурс крыльчатки за счет снижения температуры ее тыльной стороны и циклическую долговечность диска покрывного турбины за счет исключения отверстий и подкачивающих лопаток на его полотне. 2 ил.

Изобретение относится к авиадвигателестроению, в частности к системам охлаждения турбины газотурбинного двигателя. Охлаждаемая турбина газотурбинного двигателя содержит рабочее колесо с каналами подвода охлаждающего воздуха к рабочим лопаткам и сопловой аппарат закрутки. Между выходом соплового аппарата закрутки и диском рабочего колеса образована кольцевая полость, сообщенная с входом безлопаточного диффузора, выход которого сообщен с каналами подвода охлаждающего воздуха к рабочим лопаткам. Безлопаточный диффузор образован диском рабочего колеса и двумя элементами - подвижным и неподвижным. Подвижный элемент расположен на большем радиусе относительно оси двигателя, а неподвижный элемент - на меньшем. Нижняя часть неподвижного элемента закреплена на корпусе соплового аппарата закрутки, а верхняя часть подвижного элемента закреплена на диске рабочего колеса. Элементы образуют между собой кольцевой зазор, оснащенный подвижным уплотнением. Изобретение позволяет обеспечить возможность регулирования осевой нагрузки, действующей на турбину. 1 ил.

Устройство охлаждения платформы рабочей лопатки турбины содержит платформу, расположенную между аэродинамической частью лопатки и корнем лопатки, и имеет внутренний охлаждающий канал, проходящий в радиальном направлении от места соединения с источником охлаждающей текучей среды в корне лопатки. Вдоль стороны, которая совпадает со стороной высокого давления аэродинамической части лопатки, верхняя сторона на стороне высокого давления платформы проходит от основания аэродинамической части лопатки до стыковочной поверхности стороны высокого давления. Устройство содержит основную камеру, охлаждающие отверстия. Основная камера расположена только с внутренней стороны верхней стороны на стороне высокого давления платформы, проходит через платформу от расположенного выше по потоку конца, имеющего заднее положение, к расположенному ниже по потоку концу, имеющему переднее положение. Рядом с расположенным выше по потоку концом основная камера содержит заднюю петлю, а между задней петлей и расположенным ниже по потоку концом содержит переднюю дугу. Каждое из охлаждающих отверстий проходит от основной камеры к порту, выполненному на стыковочной поверхности стороны высокого давления. Изобретение позволяет эффективно охлаждать область платформы рабочих лопаток турбины, является экономически эффективным в изготовлении, гибким в применении и долговечным. 2 н. и 18 з.п. ф-лы, 8 ил.

Устройство охлаждения платформы предназначено для роторной лопатки турбины, имеющей платформу, расположенную на границе сопряжения между аэродинамическим профилем и хвостовой частью, содержащей средства крепления и хвостовик, проходящий между средствами крепления и платформой. Платформа на своей стороне, соответствующей поверхности пониженного давления аэродинамического профиля, имеет сторону пониженного давления, содержащую верхнюю поверхность, проходящую от основания аэродинамического профиля к наклонной поверхности стороны пониженного давления, и нависает над образованной в хвостовике хвостовой полостью. Устройство содержит выемку, коллекторный канал и каналы охлаждения. Выемка образована в области нижней поверхности платформы и имеет вход, проточно сообщающийся с хвостовой полостью. Коллекторный канал проходит от первого конца вблизи наклонной поверхности стороны пониженного давления ко второму концу вблизи наклонной поверхности стороны повышенного давления платформы и имеет соединение с выемкой у своего первого конца. Каналы охлаждения образованы внутри платформы и проходят от места соединения с выемкой или коллекторным каналом к отверстиям, образованным внутри наклонной поверхности стороны пониженного давления или задней кромки платформы. Изобретение обеспечивает эффективное и рациональное охлаждение области платформы роторных лопаток турбины. 2 н. и 23 з.п. ф-лы, 8 ил.

Устройство охлаждения платформы, выполненное в турбинной рабочей лопатке, содержит платформу, расположенную в области сопряжения аэродинамической части и корневой части. Рабочая лопатка имеет выполненный в ней внутренний охладительный канал, который проходит от соединения с источником охлаждающей среды в корневой части приблизительно до уровня высоты платформы в радиальном направлении и при эксплуатации имеет область с охлаждающей средой под высоким давлением и область с охлаждающей средой под низким давлением. Вдоль стороны, которая совпадает со стороной пониженного давления аэродинамической части, сторона пониженного давления платформы имеет верхнюю сторону, проходящую в окружном направлении от аэродинамической части к стыковочной поверхности со стороны пониженного давления. Сторона пониженного давления платформы имеет заднюю кромку, которая совпадает с хвостовой кромкой аэродинамической части. Устройство охлаждения платформы содержит распределительный элемент, соединители высокого и низкого давления и теплопередающую конструкцию. Распределительный элемент расположен по меньшей мере в одной из передней и задней частей стороны пониженного давления платформы. Соединитель высокого давления соединяет распределительный элемент с областью с охлаждающей средой под высоким давлением, имеющейся во внутреннем охладительном канале. Соединитель низкого давления соединяет распределительный элемент с областью с охлаждающей средой под низким давлением, имеющейся во внутреннем охладительном канале. Теплопередающая конструкция расположена в распределительном элементе с обеспечением взаимодействия с охлаждающей средой, проходящей от соединителя высокого давления к соединителю низкого давления во время работы. Изобретение направлено на повышение эффективности охлаждения платформы рабочих лопаток, повышение эффективности изготовления и эксплуатационной гибкости долговечности. 2 н. и 18 з.п. ф-лы, 8 ил.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам газотурбинных двигателей. Охлаждаемая турбина высокого давления содержит рабочее колесо в виде диска колеса с установленными на нем рабочими лопатками с внутренними охлаждающими полостями, каналы подвода к лопаткам охлаждающего воздуха, сопловой аппарат закрутки, безлопаточный диффузор, замками фиксации лопаток и приставным кольцом с подкачивающими лопатками. На полотне диска рабочего колеса выполнен кольцевой выступ с установленным на нем лабиринтом. Безлопаточный диффузор жестко закреплен на аппарате закрутки, а приставное кольцо с подкачивающими лопатками с помощью байонетного соединения закреплено под ободом диска и снабжено лабиринтом, выполненным по внутренней поверхности кольца. Безлопаточный диффузор посредством выполненных на его стенках сотовых кольцевых уплотнений сообщен с лабиринтом, выполненным на кольцевом выступе рабочего колеса, и с лабиринтом, выполненным по внутренней поверхности приставного кольца. В ободе диска и ножках лопаток выполнены пазы под замки фиксации лопаток. Каналы подвода воздуха в лопатку выполнены в виде паза в диске под замком лопаток, а напротив пазов в диске в замках фиксации лопаток со стороны приставного кольца выполнены отверстия. Охлаждающие полости лопаток последовательно сообщены с каналами подвода воздуха в лопатку, с полостями под приставным кольцом с подкачивающими лопатками и с полостями безлопаточного диффузора и аппарата закрутки. Изобретение позволяет повысить надежность и ресурс диска турбины, снизить его массу, а также повысить технологичность элементов турбины. 2 ил.

Изобретение относится к энергетике. Охлаждаемая турбина высокого давления содержит сопловой аппарат турбины с аппаратом закрутки, вход которого соединен с источником охлаждающего воздуха, а выходные каналы сообщены с безлопаточным диффузором, диск с охлаждаемыми рабочими лопатками, каналы подвода охлаждающего воздуха к рабочим лопаткам, установленным в проточной части турбины, при этом выходные каналы аппарата закрутки повернуты в сторону вращения диска с охлаждаемыми рабочими лопатками. При этом безлопаточный диффузор размещен на сопловом аппарате турбины и выполнен в виде канала на входе, присоединенного к выходным каналам аппарата закрутки, направленным в радиальном направлении относительно оси вращения, а на выходе направленным в сторону каналов подвода охлаждающего воздуха к рабочим лопаткам. Причём выход из безлопаточного диффузора отделен подвижными уплотнениями от проточной части турбины и от околодисковой полости, расположенной между безлопаточным диффузором и диском с охлаждаемыми рабочими лопатками. Изобретение позволяет снизить затраты на производство и ремонт как узла турбины, так и всего двигателя в целом, увеличивая при этом сроки межремонтного ресурса. 1 з.п. ф-лы, 2 ил.

Изобретение относится к высокотемпературным турбинам газотурбинных двигателей, а именно к способам и системам охлаждения рабочих лопаток турбин авиационных двигателей. Охлаждаемая турбина содержит сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток. Входная полость воздуховода сообщена с источником охлаждающего воздуха. Выходная полость воздуховода соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки. Дополнительный безлопаточный диффузор размещен на сопловом аппарате турбины и выполнен в виде канала, полость на входе которого соединена с дополнительным аппаратом закрутки статора, а полость на выходе соединена через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки. Полость на выходе из дополнительного безлопаточного диффузора отделена подвижными уплотнениями от проточной части турбины и от полости на входе в безлопаточный диффузор. Изобретение позволяет снизить массу и металлоемкость конструкции узла турбины, упростить технологию ее изготовления и сборки, повысить запасы прочности и ресурса двигателя при сохранении эффективности охлаждения рабочих лопаток турбины. 1 ил.

Изобретение относится к энергетике. Предложен удерживающий кронштейн, содержащий кольцевой корпус, который содержит кольцевую удерживающую скобу, ограничивающую первые сквозные отверстия, и кольцевое основание, ограничивающее вторые сквозные отверстия. Профиль удерживающей скобы имеет фланец, противоположный фланцу соединительный элемент и криволинейную секцию, проходящую между фланцем и соединительным элементом. Профиль основания имеет первую сторону, соответствующую фланцу, и вторую сторону, противоположную первой стороне и соответствующую соединительному элементу. Вторая сторона выполнена с возможностью соединения с соединительным элементом таким образом, что каждое из первых сквозных отверстий выровнено по положению с соответствующим одним из вторых сквозных отверстий. Также представлены варианты элемента турбомашины. Изобретение позволяет повысить надежность конструкции турбомашины. 3 н. и 17 з.п. ф-лы, 8 ил.
Наверх