Низкомолекулярные фосфорсодержащие полиакриловые кислоты и их применение в качестве диспергаторов

Изобретение относится к низкомолекулярным полиакриловым кислотам и их применению в качестве диспергаторов. Способ получения водных растворов полимеров акриловой кислоты со среднемассовой молекулярной массой от 3500 до 12000 г/моль осуществляют путем полимеризации акриловой кислоты в режиме питания с использованием радикального инициатора в присутствии гипофосфита в воде в качестве растворителя, при этом: (i) загружают воду и при необходимости один или несколько этиленненасыщенных сомономеров, (ii) непрерывно подают акриловую кислоту в кислотной ненейтрализованной форме, при необходимости один или несколько этиленненасыщенных сомономеров, водный раствор радикального инициатора и водный раствор гипофосфита, (iii) по окончании подачи акриловой кислоты к водному раствору добавляют основание, причем содержание сомономеров в пересчете на общее содержание мономеров не превышает 30 мас.%, способ отличается тем, что водный раствор гипофосфита подают в течение общего времени подачи, состоящего из трех следующих один за другим промежутков времени ΔtI, ΔtII и ΔtIII, причем средняя скорость подачи в течение второго промежутка времени ΔtII выше значений средней скорости подачи в течение первого и третьего промежутков времени ΔtI и ΔtIII. Технический результат - полученные полимеры обеспечивают отличные реологические свойства пульп с наполнителем, обеспечивают пригодность их для перекачивания насосом, в том числе после хранения. 4 н. и 9 з.п. ф-лы, 2 табл., 10 пр.

 

Изобретение относится к низкомолекулярным фосфорсодержащим полиакриловым кислотами, содержащим их водным растворам, способу их получения и их применению в качестве диспергаторов.

Диспергаторы, в частности полиакриловые кислоты, находят широкое применение в технических процессах, при осуществлении которых твердое вещество переводят в пригодную для перекачивания насосом дисперсию. Для обеспечения широкого промышленного использования подобных дисперсий, называемых также пульпой, они должны обладать как высокой пригодностью для перекачивания насосом, так и стабильностью при хранении (незначительным старением) и вместе с тем высоким содержанием твердого вещества. Содержание твердого вещества следует поддерживать на максимально высоком уровне в связи с высокой стоимостью энергии и транспортировки. Типичным примером является применение водной пульпы карбоната кальция в производстве графических бумаг.

В то время как оптимальные реологические свойства пульпы, в основном, способствуют обеспечению технологичности производства бумаги, соответственно нанесения на нее покрытий, дисперсность диспергированного твердого вещества определяет оптические свойства производимой из него бумаги, например непрозрачность. При одинаковом содержании твердого вещества в пульпе чем меньше размер его частиц, тем выше непрозрачность получаемой из него бумаги. При этом решающее влияние на размер частиц пигмента оказывает не только подача механической энергии в процессе мокрого измельчения пигмента, но и выбор используемого при этом диспергатора.

Известно, что получаемые путем радикальной полимеризации низкомолекулярные полиакриловые кислоты обладают высокой диспергирующей способностью. Среднемассовая молекулярная масса (Mw) этих полимеров, при которой они обладают оптимальным действием, должна составлять < 50000. Особенно эффективными часто являются полиакриловые кислоты с Mw<10000. Для получения низкомолекулярных полиакриловых кислот в процессе радикальной полимеризации акриловой кислоты добавляют регуляторы молекулярной массы, соответственно переносчики цепей. Подобные регуляторы следует приводить в соответствие с инициатором полимеризации, а также с процессом полимеризации. Известными инициаторами являются, например, неорганические и органические персоединения, такие как персульфаты, пероксиды, гидропероксиды и эфиры надкислот, азосоединения, такие как 2,2′-азобисизобутиронитрил, а также окислительно-восстановительные системы с неорганическими и органическими компонентами. В качестве регуляторов молекулярной массы часто используют неорганические сернистые соединения, такие как гидросульфиты, бисульфиты, дитиониты, органические сульфиды, сульфоксиды, сульфоны и меркаптосоединения, в частности меркаптоэтанол и меркаптоуксусную кислоту, а также неорганические фосфорные соединения, такие как фосфорноватая (фосфиновая) кислота и ее соли (например, гипофосфит натрия).

В европейской заявке на патент EP-A 405818 опубликован способ получения полимеров из моноэтиленненасыщенных монокарбоновых кислот и при необходимости используемых других мономеров с персульфатом натрия в качестве инициатора в присутствии гипофосфита в качестве регулятора, в соответствии с которым во время полимеризации присутствует щелочное нейтрализующее вещество в количестве, достаточном для нейтрализации по меньшей мере 20% кислотных групп. Получаемые при этом низкомолекулярные полимеры содержат по меньшей мере 80% фосфора, происходящего из гипофосфита. По меньшей мере 70% фосфора обнаруживают внутри полимерной цепи в виде диалкилфосфината. Получаемые указанным способом полимеры используют, в частности, в качестве добавок к моющим средствам, диспергаторов для глинистых шламов или средств, предотвращающих образование отложений при водоподготовке.

В примерах осуществления указанного выше способа акриловую кислоту в режиме питания полимеризуют в воде в присутствии гипофосфита в качестве регулятора и персульфата натрия в качестве инициатора, причем в процессе полимеризации в качестве другого питающего потока непрерывно добавляют раствор едкого натра. Получают водную полиакриловую кислоту со среднемассовой молекулярной массой Mw 2700 г/моль, в которой 72% содержащегося в фосфите натрия фосфора присутствует в виде диалкилфосфината, 18% в виде моноалкилфосфината и 10% в виде неорганических солей. В сравнительном примере подачу раствора едкого натра исключают и нейтрализацию поликариловой кислоты раствором едкого натра выполняют лишь по завершении полимеризации. При этом получают водную полиакриловую кислоту со среднемассовой молекулярной массой Mw 4320 г/моль, в которой лишь 45% содержащегося в фосфите натрия фосфора присутствует в виде диалкилфосфината, 25% в виде моноалкилфосфината и 30% в виде неорганических солей.

В европейской заявке на патент EP-A 510831 опубликован способ получения полимеров из моноэтиленненасыщенных монокарбоновых кислот, моноэтиленненасыщенных дикарбоновых кислот и при необходимости используемых других мономеров, которые не содержат карбоксильных групп, в присутствии фосфорноватой кислоты в качестве переносчика цепей. По меньшей мере 40% встроенного в полимер фосфора находится на концах полимерных цепей в виде моноалкилфосфината и моноалкилфосфоната. Сополимеры находят применение, в частности, в качестве диспергаторов, ингибиторов образования отложений и добавок к моющим средствам.

В европейской заявке на патент EP-A 618240 опубликован способ полимеризации мономеров в воде в присутствии водорастворимого инициатора и фосфорноватой кислоты или одной из ее солей. Способ осуществляют таким образом, чтобы содержание полимера в конце полимеризации составляло по меньшей мере 50 мас.%. Благодаря подобному режиму ведения процесса удается увеличить количество встроенного в полимер фосфора, происходящего из гипофосфита. Последний находится в полимере в виде диалкилфосфината, моноалкилфосфината и моноалкилфосфоната. В цитируемой заявке отсутствует информация, касающаяся распределения фосфора. Получаемые сополимеры находят применение, в частности, в качестве диспергаторов, ингибиторов образования отложений, а также добавок к моющим средствам.

В европейской заявке на патент EP-A 1074293 описана полиакриловая кислота с концевыми фосфонатными группами, молекулярная масса Mw которой составляет от 2000 до 5800 г/моль, используемая в качестве диспергатора для получения водных пульп карбоната кальция, каолина, глины, талька и оксидов металлов с содержанием твердого вещества, составляющим по меньшей мере 60 мас.%.

В основу настоящего изобретения была положена задача предложить низкомолекулярные полиакриловые кислоты с улучшенным диспергирующим действием.

Согласно изобретению указанную задачу решают с помощью способа получения водных растворов полимеров акриловой кислоты путем полимеризации акриловой кислоты в режиме питания с использованием радикального инициатора в присутствии гипофосфита в воде в качестве растворителя, в соответствии с которым:

(i) загружают воду и при необходимости один или несколько этиленненасыщенных сомономеров,

(ii) непрерывно подают акриловую кислоту в кислотной ненейтрализованной форме, при необходимости один или несколько этиленненасыщенных сомономеров, водный раствор радикального инициатора и водный раствор гипофосфита и

(iii) по окончании подачи акриловой кислоты к водному раствору добавляют основание,

причем содержание сомономеров в пересчете на общее содержание мономеров не превышает 30 мас.%, отличающегося тем, что

водный раствор гипофосфита подают в течение общего времени подачи, состоящего из трех следующих один за другим промежутков времени ΔtI, ΔtII и ΔtIII, причем средняя скорость подачи в течение второго промежутка времени ΔtII выше значений средней скорости подачи в течение первого и третьего промежутков времени ΔtI и ΔtIII.

Длительность первого промежутка времени подачи водного раствора гипофосфита ΔtI предпочтительно составляет от 30 до 70% общего времени его подачи.

Длительность второго промежутка времени подачи водного раствора гипофосфита ΔtII предпочтительно составляет от 5 до 25%, в частности от 5 до 15%, общего времени его подачи.

Кроме того, третий промежуток времени подачи предпочтительно состоит из двух отдельных промежутков времени ΔtIIIa и ΔtIIIb, причем средняя скорость подачи в течение первого отдельного промежутка времени ΔtIIIa выше или равна, а в течение второго отдельного промежутка времени ΔtIIIb ниже средней скорости подачи в течение первого промежутка времени ΔtI.

Скорость подачи означает расход вещества в единицу времени Δn/Δt.

Общее время подачи в общем случае составляет от 80 до 500 минут, предпочтительно от 100 до 400 минут.

Сомономеры можно загружать в составе исходной реакционной смеси, часть их можно загружать в составе исходной реакционной смеси, а часть подавать в виде питающего потока или можно подавать их исключительно в виде питающего потока. В случае частичной или полной подачи сомономеров в виде питающего потока в общем случае их подают одновременно с акриловой кислотой.

В общем случае воду загружают и нагревают до температуры реакции, составляющей по меньшей мере 75°C, предпочтительно от 95 до 105°C.

Дополнительно можно загружать водный раствор фосфористой кислоты в качестве ингибитора коррозии.

После этого приступают к непрерывной подаче потоков акриловой кислоты, при необходимости используемого этиленненасыщенного сомономера, а также инициатора и регулятора. Акриловую кислоту подают в не нейтрализованной кислотной форме. В общем случае подаваемые потоки инициируют одновременно. Как персульфат в качестве инициатора, так и гипофосфит в качестве регулятора используют в виде соответствующих водных растворов. Гипофосфит можно использовать в виде фосфорноватой (фосфиновой) кислоты или в виде солей фосфорноватой кислоты. Особенно предпочтительно гипофосфит используют в виде фосфорноватой кислоты или ее натриевой соли.

Акриловую кислоту в общем случае подают с постоянной скоростью. В случае совместного использования сомономеров и по меньшей мере их частичного добавления в виде питающих потоков скорость подачи последних в общем случае также является постоянной. Скорость подачи раствора радикального инициатора в общем случае также является постоянной.

Предпочтительным радикальным инициатором является персульфат. В общем случае персульфат используют в виде соли натрия или аммония. Содержание предпочтительно используемого водного раствора персульфата составляет от 5 до 10 мас.%. Содержание гипофосфита в его водном растворе предпочтительно составляет от 35 до 70 мас.%.

Персульфат предпочтительно используют в количестве от 0,5 до 10 мас.%, предпочтительно от 0,8 до 5 мас.% в пересчете на общее количество мономеров (акриловой кислоты и при необходимости используемых сомономеров).

Гипофосфит предпочтительно используют в количестве от 4 до 8 мас.%, предпочтительно от 5 до 7 мас.% в пересчете на общее количество мономеров.

Длительность подачи инициатора может превышать длительность подачи акриловой кислоты на величину, достигающую 50%. Длительность подачи инициатора предпочтительно превышает длительность подачи акриловой кислоты на величину, составляющую примерно от 3 до 20%. Общая длительность подачи регулятора и длительность подачи акриловой кислоты предпочтительно одинаковые. Длительность подачи регулятора в общем случае равна длительности подачи акриловой кислоты или короче последней на величину до 20%.

Длительность подачи мономера (соответственно в случае использования сомономера длительность подачи мономеров) составляет, например, от 2 до 5 часов. Например, при одновременном начале подачи всех потоков подача регулятора заканчивается до завершения подачи мономера, причем соответствующая разница во времени составляет от 10 до 30 минут, а подача инициатора заканчивается после завершения подачи мономера, причем соответствующая разница во времени также составляет от 10 до 30 минут.

В общем случае по окончании подачи акриловой кислоты к водному раствору добавляют основание. Тем самым по меньшей мере частично нейтрализуют образующийся полимер акриловой кислоты. Частичная нейтрализация означает, что после ее выполнения в виде соли находится лишь часть содержащихся в полимере акриловой кислоты карбоксильных групп. В общем случае основание добавляют в таком количестве, чтобы в результате этого показатель pH находился в диапазоне от 3 до 8,5, предпочтительно от 4 до 8,5, в частности от 4,0 до 5,5 (частичная нейтрализация), или в диапазоне от 6,5 до 8,5 (полная нейтрализация). В качестве основания предпочтительно используют раствор едкого натра. Помимо этого можно использовать также аммиак или амины, например триэтаноламин. Достигаемая при этом степень нейтрализации полученных полиакриловых кислот составляет от 15 до 100%, предпочтительно от 30 до 100%. С целью эффективного отвода теплоты нейтрализации последнюю в общем случае осуществляют в течение промежутка времени, составляющего, например, от получаса до трех часов.

В общем случае полимеризацию осуществляют в атмосфере инертного газа. При этом получают полимеры акриловой кислоты, концевой фосфор которых в основном (в общем случае по меньшей мере 90%) находится в виде фосфинатных групп.

В другом варианте по окончании полимеризации реализуют стадию окисления. На стадии окисления концевые фосфинатные группы переводят в концевые фосфонатные группы. В общем случае окисление выполняют путем обработки полимера акриловой кислоты окислительным агентом, предпочтительно водным раствором пероксида водорода.

Получают водные растворы полимеров акриловой кислоты с содержанием твердого вещества (полимера), составляющим в общем случае по меньшей мере 30 мас.%, предпочтительно по меньшей мере 35 мас.%, особенно предпочтительно от 40 до 70 мас.%, в частности от 40 до 55 мас.%.

Получаемые согласно изобретению полимеры акриловой кислоты характеризуются общим содержанием органически и при необходимости неорганически связанного фосфора, причем

(a) первая часть фосфора находится в виде связанных в полимерных цепях фосфинатных групп,

(b) вторая часть фосфора находится в виде фосфинатных и/или фосфонатных групп, присоединенных к концам полимерных цепей,

(c) при необходимости третья часть фосфора находится в виде растворенных неорганических солей фосфора,

и причем в общем случае по меньшей мере 76% общего содержания фосфора находится в виде фосфинатных групп, связанных в полимерных цепях полимеров акриловой кислоты.

В виде связанных в полимерных цепях фосфинатных групп предпочтительно находится по меньшей мере 78%, особенно предпочтительно по меньшей мере 80% общего содержащегося в полимере фосфора. Используемый согласно изобретению режим питания позволяет обеспечить особенно высокое содержание связанного в полимерных цепях фосфора.

В виде фосфинатных и/или фосфонатных групп, присоединенных к концам полимерных цепей, в общем случае находится максимум 15%, предпочтительно максимум 12% фосфора. Особенно предпочтительно в виде присоединенных к концам полимерных цепей фосфинатных и/или фосфонатных групп находится от 4 до 12%, в частности от 7 до 12%, фосфора.

В виде неорганического фосфора, в частности в виде гипофосфита и фосфита, может находиться до 15% фосфора, содержащегося в водном растворе полимеров акриловой кислоты. В виде неорганически связанного фосфора предпочтительно находится от 2 до 12%, особенно предпочтительно от 4 до 11% общего содержания фосфора.

Отношение связанного в полимерных цепях фосфора к присоединенному к концам полимерных цепей фосфору составляет по меньшей мере 4:1. Указанное отношение предпочтительно составляет по меньшей мере от 5:1 до 10:1, в частности от 6:1 до 9:1.

Среднемассовая молекулярная масса полимера акриловой кислоты в общем случае составляет от 1000 до 20000 г/моль, предпочтительно от 3500 до 12000 г/моль, особенно предпочтительно от 3500 до 8000 г/моль, прежде всего от 3500 до 6500 г/моль, в частности от 4000 до 6500 г/моль. Молекулярную массу можно целенаправленно устанавливать в указанных пределах путем варьирования количества используемого регулятора.

Содержание полимеров с молекулярной массой менее 1000 г/моль в пересчете на общий полимер в общем случае составляет ≤10 мас.%, предпочтительно ≤5 мас.%.

Молекулярную массу определяют методом гель-проникающей хроматографии, используя буферизованные до pH 7 водные растворы полимеров, сетчатый сополимер гидроксиэтилметакрилата (НЕМА) в качестве неподвижной фазы и полиакрилат натрия в качестве стандарта.

Показатель полидисперсности Mw/Mn полимера акриловой кислоты в общем случае составляет ≤2,5, предпочтительно от 1,5 до 2,5, например 2.

Константа Фикентшера, определяемая методом Фикентшера с использованием раствора полимера в деминерализованной воде концентрацией 1 мас.%, в общем случае составляет от 10 до 50, предпочтительно от 15 до 35, особенно предпочтительно от 20 до 30.

Полимер акриловой кислоты может содержать до 30 мас.%, предпочттельно до 20 мас.%, особенно предпочтительно до 10 мас.% сополимеризованных этиленненасыщенных сомономеров в пересчете на все этиленненасыщенные мономеры. Примерами пригодных этиленненасыщенных сомономеров являются метакриловая кислота, малеиновая кислота, малеиновый ангидрид, винилсульфокислота, аллилсульфокислота и 2-акриламидо-2-метилпропансульфокислота, а также их соли. Полимер акриловой кислоты может содержать также смешанные звенья указанных сомономеров.

Особенно предпочтительными являются гомополимеры акриловой кислоты, не содержащие звеньев сомономеров.

Получаемые водные растворы полимеров акриловой кислоты можно непосредственно использовать в качестве диспергаторов.

Изобретение относится также к применению водных растворов полимеров акриловой кислоты, соответственно самих полимеров акриловой кислоты в качестве диспергирующих вспомогательных компонентов для неорганических пигментов и наполнителей, например, таких как СаСО3, каолин, тальк, TiO2, ZnO, ZrO2, Al2O3 и MgO.

Получаемые из них пульпы используют в качестве белых пигментов для графических бумаг и красок или в качестве дефлокуляторов для получения керамических материалов, а также в качестве наполнителей для термопластов. Полимеры акриловой кислоты можно использовать также для других целей, например в моющих средствах, средствах для мытья посуды, технических очистителях, для водоподготовки или в качестве химикатов для разработки нефтяных месторождений. Перед применением их при необходимости можно переводить в порошкообразную форму, подвергая сушке различными методами, например распылительной сушке, вальцовой сушке или сушке в лопастных сушилках.

Особенно предпочтительной дисперсией (пульпой), для которой используют предлагаемые в изобретении полимеры акриловой кислоты, является измельченный карбонат кальция. Измельчение выполняют в водной суспензии в непрерывном или периодическом режиме. Содержание карбоната кальций в подобной суспензии, как правило, составляет ≥50 мас.%, предпочтительно ≥60 мас.%, особенно предпочтительно ≥70 мас.%. Обычно используют от 0,1 до 2 мас.%, предпочтительно от 0,3 до 1,5 мас.% предлагаемой в изобретении полиакриловой кислоты соответственно в пересчете на содержащийся в суспензии карбонат кальция. 95% частиц подвергнутого измельчению карбоната кальция в подобной пульпе предпочтительно обладают размером менее 2 мкм, тогда как размер 75% частиц составляет менее 1 мкм. Получаемые при этом пульпы карбоната кальция обладают отличными реологическими свойствами и пригодностью для перекачивания насосом, в том числе после многодневного хранения, что следует из рассмотрения приведенных в таблице 2 данных.

Приведенные ниже примеры служат для более подробного пояснения настоящего изобретения.

Примеры

Все приведенные ниже значения молекулярной массы определяют методом гель-проникащей хроматографии. Гель-проникающую хроматографию выполняют в следующих условиях: две колонки (Suprema Linear М) и одна предварительная колонка (Suprema Vorsäule); все колонки марки Suprema-Gel (НЕМА) фирмы Polymer Standard Services (Майнц, Германия); рабочая температура 35°C, скорость пропускания потока 0,8 мл/мин. В качестве элюента используют буферизованный при pH 7 трис(гидроксиметил)-аминометаном водный раствор, смешанный с 0,15М хлоридом натрия и 0,01М NaN3. Калибровку выполняют с использованием стандарта (Na-полиакриловой кислоты), кривая интегрального молекулярно-массового распределения которого определена путем сопряжения с SEC-системой рассеяния лазерного излучения, методом, описанным в M.J.R. Cantow и другие, J. Polym. Sci., А-1, 5(1967) 1391-1394, однако без предложенной в этой публикации корректировки на концентрацию. Показатель pH всех образцов посредством раствора едкого натра концентрацией 50 мас.% устанавливают на уровне 7. Часть раствора разбавляют деминерализованной водой до содержания твердого вещества 1,5 мг/мл и перемешивают в течение 12 часов. Затем образцы фильтруют и 100 мкл инжектируют шприцом Sartorius Minisart RC 25 (0,2 мкм).

Пример 1

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата аммония концентрацией 15 мас.% и 47,46 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 г водного раствора дистиллированной акриловой кислоты концентрацией 80 мас.%, 86,0 г водного раствора персульфата аммония концентрацией 15 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 15 мас.% в количестве 130,14 г. Акриловую кислоту дозируют в течение двух часов, персульфат аммония в течение 2,25 часов и гипофосфит натрия в течение одного часа. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 15 мас.%: в течение первых 10 минут 42,66 г (4,26 г/мин), в течение последующих 5 минут 18,6 г (3,74 г/мин), в течение последующих 5 минут 16 г (3,20 г/мин), в течение последующих 15 минут 40 г (2,66 г/мин), в течение последующих 10 минут 16 г (1,60 г/мин), в течение последующих 10 минут 10,6 г (1,06 г/мин) и, наконец, в течение 5 минут 2,66 г (0,52 г/мин). По завершении подачи персульфата аммония при внутренней температуре 100°C добавляют 310,86 г 50-процентного водного раствора гидроксида натрия, что обеспечивает частичную нейтрализацию полученной полиакриловой кислоты. Затем раствор полимера охлаждают до комнатной температуры. Определяют показатель pH, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 2

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата натрия концентрацией 15 мас.% и 47,46 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 г водного раствора дистиллированной акриловой кислоты концентрацией 80 мас.%, 86,0 г водного раствора персульфата натрия концентрацией 15 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 15 мас.% в количестве 130,14 г. Акриловую кислоту дозируют в течение двух часов, персульфат натрия в течение 2,25 часов и гипофосфит натрия в течение одного часа. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 15 мас.%: в течение первых 10 минут 42,66 г (4,26 г/мин), в течение последующих 5 минут 18,6 г (3,74 г/мин), в течение последующих 5 минут 16 г (3,20 г/мин), в течение последующих 15 минут 40 г (2,66 г/мин), в течение последующих 10 минут 16 г (1,60 г/мин), в течение последующих 10 минут 10,6 г (1,06 г/мин) и, наконец, в течение 5 минут 2,66 г (0,52 г/мин). По завершении подачи персульфата натрия при внутренней температуре 100°C добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что обеспечивает частичную нейтрализацию полученной полиакриловой кислоты. Затем раствор полимера охлаждают до комнатной температуры. Определяют показатель pH, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 3

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата аммония концентрацией 15 мас.% и 47,46 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 г водного раствора дистиллированной акриловой кислоты концентрацией 80 мас.%, 86,0 г водного раствора персульфата аммония концентрацией 15 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 15 мас.% в количестве 130,14 г. Акриловую кислоту дозируют в течение пяти часов, персульфат аммония в течение 5,25 часов и гипофосфит натрия в течение 2,5 часов. По завершении подачи первой порции гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 15 мас.%: в течение первых 25 минут 42,66 г (1,71 г/мин), в течение последующих 12,5 минут 18,6 г (1,49 г/мин), в течение последующих 12,5 минут 16 г (1,28 г/мин), в течение последующих 37,5 минут 40 г (1,07 г/мин), в течение последующих 25 минут 16 г (0,64 г/мин), в течение последующих 25 минут 10,6 г (0,42 г/мин) и, наконец, в течение 12,5 минут 2,66 г (0,21 г/мин). По завершении подачи персульфата аммония при внутренней температуре 100°C добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что обеспечивает частичную нейтрализацию полученной полиакриловой кислоты. Затем раствор полимера охлаждают до комнатной температуры. Определяют показатель pH, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 4

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата натрия концентрацией 15 мас.% и 47,46 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 г водного раствора дистиллированной акриловой кислоты концентрацией 80 мас.%, 86,0 г водного раствора персульфата натрия концентрацией 15 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 15 мас.% в количестве 130,14 г. Акриловую кислоту дозируют в течение пяти часов, персульфат натрия в течение 5,25 часов и гипофосфит натрия в течение 2,5 часов. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию 15-процентного водного раствора гипофосфита натрия: в течение первых 25 минут 42,66 г (1,71 г/мин), в течение последующих 12,5 минут 18,6 г (1,49 г/мин), в течение последующих 12,5 минут 16 г (1,28 г/мин), в течение последующих 37,5 минут 40 г (1,07 г/мин), в течение последующих 25 минут 16 г (0,64 г/мин), в течение последующих 25 минут 10,6 г (0,42 г/мин) и, наконец, в течение 12,5 минут 2,66 г (0,21 г/мин). По завершении подачи персульфата аммония при внутренней температуре 100°C добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что обеспечивает частичную нейтрализацию полученной полиакриловой кислоты. Определяют показатель pH, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 5 (сравнительный)

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата аммония концентрацией 15 мас.% и 47,46 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 водного раствора дистиллированной акриловой кислоты концентрацией г 80 мас.%, 86,0 г водного раствора персульфата аммония концентрацией 15 мас.% и 276,8 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Акриловую кислоту дозируют в течение двух часов, персульфат аммония в течение 2,25 часов и гипофосфит натрия в течение двух часов. По завершении подачи персульфата аммония при внутренней температуре 100°C добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что обеспечивает частичную нейтрализацию полученной полиакриловой кислоты. Затем раствор полимера охлаждают до комнатной температуры. Определяют показатель рН, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 6

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 23,6 г водного раствора персульфата натрия концентрацией 7 мас.% и 20,0 г водного раствора гипофосфита натрия концентрацией 59 мас.%. Затем раздельно и параллельно при перемешивании дозируют 930,0 г водного раствора дистиллированной акриловой кислоты концентрацией 86 мас.%, 184,3 г водного раствора персульфата натрия концентрацией 7 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 59 мас.% в количестве 55,0 г. Акриловую кислоту дозируют в течение пяти часов, персульфат натрия в течение 5,25 часов и гипофосфит натрия в течение 2,5 часов. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 59 мас.%: в течение первых 25 минут 18,0 г (0,72 г/мин), в течение последующих 14 минут 8,0 г (0,57 г/мин), в течение последующих 12 минут 6,0 г (0,50 г/мин), в течение последующих 37 минут 17 г (0,46 г/мин), в течение последующих 25 минут 7 г (0,28 г/мин), в течение последующих 25 минут 4,0 г (0,16 г/мин) и, наконец, в течение 12 минут 1,0 г (0,08 г/мин). По завершении подачи персульфата натрия раствор полимера охлаждают до комнатной температуры. Затем добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что позволяет установить степень нейтрализации на уровне 35%. Определяют показатель рН, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 7

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 23,6 г водного раствора персульфата натрия концентрацией 7 мас.% и 8,0 г водного раствора гипофосфита натрия концентрацией 59 мас.%. Затем раздельно и параллельно при перемешивании дозируют 930,0 г водного раствора дистиллированной акриловой кислоты концентрацией 86 мас.%, 184,3 г водного раствора персульфата натрия концентрацией 7 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 59 мас.% в количестве 22,0 г. Акриловую кислоту дозируют в течение пяти часов, персульфат натрия в течение 5,25 часов и гипофосфит натрия в течение 2,5 часов. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 59 мас.%: в течение первых 25 минут 7,0 г (0,28 г/мин), в течение последующих 14 минут 3,0 г (0,21 г/мин), в течение последующих 12 минут 2,0 г (0,17 г/мин), в течение последующих 37 минут 6 г (0,16 г/мин), в течение последующих 25 минут 3 г (0,12 г/мин), в течение последующих 25 минут 2,0 г (0,08 г/мин) и, наконец, в течение 12 минут 1,0 г (0,08 г/мин). По завершении подачи персульфата натрия раствор полимера охлаждают до комнатной температуры. Затем добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что позволяет установить степень нейтрализации на уровне 35%. Определяют показатель рН, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 8

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 23,6 г водного раствора персульфата натрия концентрацией 7 мас.% и 12,1 г водного раствора гипофосфита натрия концентрацией 59 мас.%. Затем раздельно и параллельно при перемешивании дозируют 930,0 г водного раствора дистиллированной акриловой кислоты концентрацией 86 мас.%, 184,3 г водного раствора персульфата натрия концентрацией 7 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 59мас.% в количестве 33,0 г. Акриловую кислоту дозируют в течение пяти часов, персульфат натрия в течение 5,25 часов и гипофосфит натрия в течение 2,5 часов. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 59 мас.%: в течение первых 25 минут 11,0 г (0,44 г/мин), в течение последующих 14 минут 5,0 г (0,36 г/мин), в течение последующих 12 минут 4,0 г (0,33 г/мин), в течение последующих 37 минут 10 г (0,27 г/мин), в течение последующих 25 минут 4,0 г (0,16 г/мин), в течение последующих 25 минут 3,0 г (0,12 г/мин) и, наконец, в течение 12 минут 1,0 г (0,08 г/мин). По завершении подачи персульфата натрия раствор полимера охлаждают до комнатной температуры. Затем добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что позволяет установить степень нейтрализации на уровне 35%. Определяют показатель pH, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 9

В реактор загружают 502,0 г деминерализованной воды. В атмосфере азота реактор нагревают до внутренней температуры 100°C. При этой температуре в течение одной минуты одновременно добавляют 11,0 г водного раствора персульфата натрия концентрацией 15 мас.% и 47,5 г водного раствора гипофосфита натрия концентрацией 15 мас.%. Затем раздельно и параллельно при перемешивании дозируют 1000 г водного раствора дистиллированной акриловой кислоты концентрацией 80 мас.%, 86,0 г водного раствора персульфата натрия концентрацией 15 мас.% и первую порцию водного раствора гипофосфита натрия концентрацией 15 мас.% в количестве 130,0 г. Акриловую кислоту дозируют в течение двух часов, персульфат натрия в течение 2,25 часов и гипофосфит натрия в течение одного часа. По завершении подачи первой порции раствора гипофосфита натрия ступенчато дозируют вторую порцию водного раствора гипофосфита натрия концентрацией 15 мас.%: в течение первых 25 минут 43,0 г (1,72 г/мин), в течение последующих 13 минут 19,0 г (1,46 г/мин), в течение последующих 13 минут 16,0 г (1,23 г/мин), в течение последующих 37 минут 40 г (1,08 г/мин), в течение последующих 25 минут 16,0 г (0,64 г/мин), в течение последующих 25 минут 11,0 г (0,44 г/мин) и, наконец, в течение 5 минут 2,0 г (0,4 г/мин). По завершении подачи персульфата натрия раствор полимера охлаждают до комнатной температуры. Затем добавляют 310,86 г водного раствора гидроксида натрия концентрацией 50 мас.%, что позволяет установить степень нейтрализации на уровне 35%. Определяют показатель рН, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Пример 10 (сравнительный)

В реактор загружают 540,0 г деминерализованной воды совместно с 9,0 г 0,15-процентного гептагидрата сульфата железа(II). В атмосфере азота реактор нагревают до внутренней температуры 90°C. При этой температуре в течение одной минуты одновременно добавляют 77,2 г водного раствора гипофосфита натрия концентрацией 35 мас.%. Затем раздельно и параллельно при перемешивании дозируют 900 г дистиллированной акриловой кислоты, 59,2 г водного раствора персульфата натрия концентрацией 15,2 мас.% и 77,2 г водного раствора гипофосфита натрия концентрацией 20,6 мас.%. Акриловую кислоту дозируют в течение двух часов, персульфат натрия в течение двух часов и гипофосфит натрия в течение 1,6 часа. По завершении подачи персульфата натрия раствор полимера перемешивают в течение 30 минут при 90°C, после чего охлаждают до комнатной температуры. Определяют показатель рН, значения молекулярной массы Mn и Mw, содержание твердого вещества и остаточное содержание акриловой кислоты, а также выполняют визуальную оценку раствора.

Результаты анализа полученных в примерах полимеров акриловой кислоты приведены в таблице 1.

Таблица 1
Пример Содержание твердого вещества, [%]а Константа Фикентшераb рН (tq) Mwc Полидисперсностьc Содержание олигомеров с молекулярной массой менее 1000 г/моль Содержание внутреннего фосфораd, % Содержание концевого фосфораd, % Содержание неорганического фосфораd, %
1 42,5 24,8 4,3 5080 2,1 4,7 79,6 11,3 9,2
2 41,5 24,9 4,3 4990 2,1 4,9 81,6 6,9 10,5
3 42,1 24,1 4,3 4820 2,0 5,2 85,8 6,4 7,8
4 43,6 23,2 4,5 4960 2,1 5,4 86,7 5,6 7,7
5 41,6 26,0 4,3 5490 2,1 4,4 65,1 13,0 20,5
6 46,4 16,6 4,2 3040 1,6 6,4 86,3 8,1 5,6
7 45,8 30,3 4,2 8020 2,4 2,5 80,8 11,7 7,5
8 46,1 24,0 4,3 4990 1,9 3,4 83,9 10,2 5,9
9 43,5 23,7 4,3 5080 2,0 3,8 86,7 5,6 7,7
10 58,6 23,5 1,8 4610 1,8 3,7 75,9 18,8 5,3
а) ISO 3251 (0,25 г, 150°C, 2 часа).
b) Определение методом Фикентшера с использованием 1-процентного раствора в деминерализованной воде.
c) Определение методом гель-проникающей хроматографии.
d) Определение методом 31Р{1Н} и 31Р ЯМР.

Испытание на пригодность для применения

Применение полимеров акриловой кислоты в качестве диспергаторов

Полученные растворы полиакриловой кислоты тестируют на их пригодность для применения в качестве диспергаторов при получении пульпы. С этой целью осуществляют соответствующее измельчение карбоната кальция в мельнице Dispermat. При этом смешивают соответственно 300 г карбоната кальция (Hydrocarb OG фирмы Omya) и 600 г керамических шариков и полученную смесь загружают в сосуд с двойными стенками объемом 500 мл, заполненный водопроводной водой. Затем добавляют 100 г водного раствора подлежащей испытанию полиакриловой кислоты концентрацией 3 мас.%, показатель рН которой предварительно устанавливают на уровне 5,0. Измельчение выполняют с помощью мельницы типа Dispermat АЕ-С (изготовитель фирма VMA-Getzmann) с лопастной мешалкой, вращающейся с частотой 1200 об/мин. Измельчение заканчивают, как только размер частиц 70% пигмента станет меньше 1 мкм (около 70 минут, прибор для измерения размера частиц LS 13320 фирмы Beckman Coulter). После измельчения пульпу для отделения керамических шариков фильтруют через фарфоровый фильтр (780 мкм) и устанавливают содержание твердого вещества в пульпе, равное 77%. Вязкость пульпы определяют посредством вискозиметра Брукфильд DV II (со шпинделем Nr. 3) сразу, через 24 часа и через 168 часов.

Результаты определения диспергирующей способности полимеров акриловой кислоты приведены в таблице 2.

Таблица 2
Пример Распределение частиц по размерам Динамическая вязкость, [мПа·с] при 100 об/мин Содержание твердого вещества в пульпе, [%]
<2 мкм <1 мкм Через 1 ч Через 24 ч Через 96 ч Через 168 ч
1 99,1 74,0 527 930 1750 2450 77,0
2 98,9 72,9 620 1870 2220 3341 77,0
3 97,6 72,6 687 1710 2747 3419 77,0
4 97,2 71,1 619 1620 2357 3289 77,0
5 98,9 72,5 820 2540 3960 5270 77,0
6 99,5 74,0 2034 4055 >6000 >6000 77,0
7 99,0 74,0 835 1902 3209 4050 77,0
8 99,1 74,6 524 949 1974 2567 77,0
9 98,9 75,0 628 1448 2280 2890 77,0
10 98,9 72,4 1284 3011 4380 5645 77,0

1. Способ получения водных растворов полимеров акриловой кислоты со среднемассовой молекулярной массой от 3500 до 12000 г/моль путем полимеризации акриловой кислоты в режиме питания с использованием радикального инициатора в присутствии гипофосфита в воде в качестве растворителя, в соответствии с которым:
(i) загружают воду и при необходимости один или несколько этиленненасыщенных сомономеров,
(ii) непрерывно подают акриловую кислоту в кислотной ненейтрализованной форме, при необходимости один или несколько этиленненасыщенных сомономеров, водный раствор радикального инициатора и водный раствор гипофосфита,
(iii) по окончании подачи акриловой кислоты к водному раствору добавляют основание,
причем содержание сомономеров в пересчете на общее содержание мономеров не превышает 30 мас.%, отличающийся тем, что
водный раствор гипофосфита подают в течение общего времени подачи, состоящего из трех следующих один за другим промежутков времени ΔtI, ΔtII и ΔtIII, причем средняя скорость подачи в течение второго промежутка времени ΔtII выше значений средней скорости подачи в течение первого и третьего промежутков времени ΔtI и ΔtIII.

2. Способ по п. 1, отличающийся тем, что длительность первого промежутка времени подачи ΔtI составляет от 30 до 70% общего времени подачи.

3. Способ по п. 1, отличающийся тем, что длительность второго промежутка времени подачи составляет от 5 до 25% общего времени подачи.

4. Способ по п. 1, отличающийся тем, что третий промежуток времени подачи состоит из двух отдельных промежутков времени ΔtIIIa и ΔtIIIb, причем средняя скорость подачи в течение первого отдельного промежутка времени ΔtIIIa выше или равна, а в течение второго отдельного промежутка времени ΔtIIIb ниже средней скорости подачи в течение первого промежутка времени.

5. Способ по п. 1, отличающийся тем, что общее время подачи составляет от 80 до 500 мин.

6. Способ по п. 1, отличающийся тем, что сополимеризуют до 30 мас.% сомономеров, выбранных из группы, включающей метакриловую кислоту, малеиновую кислоту, малеиновый ангидрид, винилсульфокислоту, аллилсульфокислоту и 2-акриламидо-2-метилпропансульфокислоту.

7. Способ по одному из пп. 1-6, отличающийся тем, что полимеризацию осуществляют в атмосфере инертного газа.

8. Водный раствор полимеров акриловой кислоты, получаемый по одному из пп. 1-7, в качестве диспергатора в водных дисперсиях твердого вещества с общим содержанием органически и при необходимости неорганически связанного фосфора, причем
(a) первая часть фосфора находится в виде связанных в полимерных цепях фосфинатных групп,
(b) вторая часть фосфора находится в виде присоединенных к концам полимерных цепей фосфинатных и/или фосфонатных групп,
(c) при необходимости третья часть фосфора находится в виде растворенных неорганических солей фосфора,
отличающийся тем, что по меньшей мере 76% общего содержания фосфора находится в виде фосфинатных групп, связанных в полимерных цепях полимеров акриловой кислоты.

9. Водный раствор по п. 8, отличающийся тем, что в виде присоединенных к концам полимерных цепей фосфинатных и/или фосфонатных групп находится максимум 15% фосфора.

10. Водный раствор по п. 8 или 9, отличающийся тем, что показатель полидисперсности Mw/Mn полимеров акриловой кислоты составляет ≤2,5.

11. Полимер акриловой кислоты, получаемый из водного раствора по одному из пп. 8-10 или водного раствора, получаемого способом по одному из пп. 1-7.

12. Применение водного раствора по одному из пп. 8-10 и полимеров акриловой кислоты по п. 11 в качестве диспергатора в водных дисперсиях твердого вещества.

13. Применение по п. 12 в водных дисперсиях CaCO3, каолина, талька, TiO2, ZnO, ZrO2, Al2O3 или MgO.



 

Похожие патенты:

Изобретение относится к способам получения акриловой кислоты, производных акриловой кислоты или их смесей, где, в частности, способ включает стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III), где n составляет по меньшей мере 2 и m составляет по меньшей мере 1; и (b) по меньшей мере два различных катиона, причем указанные катионы включают: (i) по меньшей мере, один одновалентный катион и (ii) по меньшей мере один многовалентный катион; при этом катализатор, по существу, нейтрально заряжен; и дополнительно при этом мольное соотношение фосфора и указанных по меньшей мере двух различных катионов составляет от 0,7 до 1,7, с получением таким образом акриловой кислоты, производных акриловой кислоты или их смесей в результате приведения в контакт указанного потока с указанным катализатором.

Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна. Способ синтеза сополимеров, содержащих мономерные звенья акрилонитрила и акриловой кислоты, включает смешение мономеров в среде растворителя с добавлением инициатора радикальной полимеризации - диоксида углерода и нагреванием до температур 50÷100°C, при этом содержание акриловой кислоты и метилакрилата по отношению к акрилонитрилу составляет соответственно 0.5-4.0 мол.% и 0.5-5.0 мол.%.
Изобретение относится к композиционному влагоудерживающему материалу, который может быть использован в растениеводстве для улучшения водно-воздушного и питательного режима почвы, а также восстановления растительности на почвах разного типа.

Изобретение относится к способу получения полимерного покрытия поверхности, в частности к покрытию пола. Способ включает стадии смешивания полимера на основе кислоты, агента нейтрализации и технологической добавки с получением полимерной композиции.

Изобретение относится к композиции полимеров, используемой в составе диспергирующего средства, ее получению и применению. Предложена композиция полимеров для использования в качестве диспергирующего средства, содержащая 5-95 мас.% сополимера Н и 2-60 мас.% сополимера K, сополимеры Н и K каждый имеют полиэфирные макромономерные структурные элементы и кислотные мономерные структурные элементы, присутствующие в сополимерах Н и K в каждом случае в молярном соотношении от 1:20 до 1:1, и по меньшей мере 20 мол.% всех структурных элементов сополимера Н и по меньшей мере 25 мол.% всех структурных элементов сополимера K присутствуют в каждом случае в форме кислотных мономерных структурных элементов.

Изобретение относится к композиции полимеров, используемой в составе диспергирующего средства, ее получению и применению. Предложена полимерная композиция для использования в качестве диспергирующего вещества, содержащая 3-95 весовых % сополимера Н и 3-95 весовых % сополимера К, при этом каждый из сополимеров Н и К содержит структурные звенья макромономера простого полиэфира и структурные звенья мономера кислоты, которые присутствуют в сополимерах Н и К, в каждом случае, в молярном соотношении 1:20-1:1, и по крайней мере 20 мольных % всех структурных звеньев сополимера Н и по крайней мере 25 мольных % всех структурных звеньев сополимера К, в каждом случае, присутствуют в виде структурных звеньев мономера кислоты, при этом структурные звенья макромономера простого полиэфира сополимеров Н и К содержат боковые цепи, в каждом случае, содержащие, по крайней мере, 5 атомов кислорода простого эфира, при этом количество атомов кислорода простого эфира в боковой цепи структурных звеньев макромономера простого полиэфира сополимеров Н и К, в каждом случае, варьируется таким образом, что соответствующие диаграммы плотности распределения вероятностей, где количество атомов кислорода простого эфира в боковой цепи структурного звена макромономера простого полиэфира, в каждом случае, отображается на оси абсцисс и соответственно соответствующие частоты встречаемости сополимеров Н или К, в каждом случае, отображаются на оси ординат, содержат, в каждом случае, по крайней мере, 2 максимума, значения абсциссы которых, в каждом случае, отличаются друг от друга более чем на 7 атомов кислорода простого эфира, при этом диаграммы плотности распределения вероятности сополимеров Н и К отличаются друг от друга тем, что значение абсциссы, по крайней мере, одного максимума сополимера Н, в каждом случае, отличается более чем на 5 атомов кислорода простого эфира от значений абсциссы всех максимумов сополимера К, и/или тем, что средние арифметические атомов кислорода простого эфира структурных звеньев макромономера простого полиэфира сополимеров Н и К отличаются друг от друга более чем на 5 атомов кислорода простого эфира.

Изобретение относится к полимерной композиции и способу ее приготовления, диспергирующему веществу и способу его приготовления, а также к применению полимерной композиции.
Настоящее изобретение относится к способу получению гетерогенной смеси, используемой в бумажной промышленности. Описан способ изготовления гетерогенной смеси полимеров, включающий: (a) введение в раствор первой порции инициатора полимеризации и одного или нескольких анионных или катионных мономеров, причем мономеры несут один и тот же заряд; (b) введение в раствор второй порции инициатора полимеризации и одного или нескольких неионных мономеров; (c) введение третьей порции инициатора полимеризации и одного или нескольких ионных мономеров, заряд которых противоположен заряду мономеров из (а); (d) постепенное введение четвертой порции инициатора полимеризации для реакции любого оставшегося мономера с образованием гетерогенной смеси полимеров; и (е) при необходимости нейтрализацию полученной гетерогенной смеси полимеров, при этом анионные мономеры выбирают из группы, состоящей из: (1) акриловой кислоты, (2) метакриловой кислоты, (3) стиролсульфокислоты, (4) винилсульфокислоты, (5) акриламидо метилпропансульфокислоты и (6) их смесей; катионные мономеры выбирают из группы, которая включает: (1) диаллилдиметиламмоний хлорид, (2) акрилоилэтил триметиламмоний хлорид, (3) метакрилоилэтилтриметиламмоний хлорид, (4) акрилоилэтилтриметиламмоний сульфат, (5) метакрилоил этилтриметиламмоний сульфат, (6) акриламидопропилтриметиламмоний хлорид, (7) метакриламидопропилтриметиламмоний хлорид, (8) некватернизованные формы (2)-(7), (9) винилформамид (впоследствии гидролизуемый в виниламин) и (10) их смеси, и неионные мономеры выбирают из группы, состоящей из: (1) акриламида, (2) метакриламида, (3) N-алкилакриламида, (4) винилформамида и (5) их смесей.

Изобретение относится к вулканизующейся полимерной композиции, полимерному вулканизату, полученному из полимерной композиции, и способу его получения. Вулканизующаяся полимерная композиция содержит (i) гидрированный полимер, обладающий главной полимерной цепью, образованной из (ia) от 25 до 89,5 мас.%, предпочтительно от 30 до 80 мас.% и более предпочтительно от 45 до 75 мас.% в пересчете на полимер первого мономера, который вводит по меньшей мере один из вторичных атомов углерода и третичный атом углерода в главную полимерную цепь, такого как по меньшей мере один диеновый мономер, и (ib) от 10 до 74,9 мас.%, предпочтительно от 10 до 60 мас.%, более предпочтительно от 15 до 55 мас.%, особенно предпочтительно от 20 до 50 мас.% в пересчете па полимер по меньшей мере второго мономера, такого как мономер α,β-этиленненасыщенного нитрила; (ic) от 0,1 до 20 мас.%, предпочтительно от 0,5 до 20 мас.%, более предпочтительно от 1 до 15 мас.%, особенно предпочтительно от 1,5 до 10 мас.% в пересчете на полимер по меньшей мере одного мономера моноэфира α,β-этиленненасыщенной дикарбоновой кислоты, мономера α,β-этиленненасыщенной дикарбоновой кислоты, мономера ангидрида α,β-этиленненасыщенной дикарбоновой кислоты или диэфира α,β-этиленненасыщенной дикарбоновой кислоты в качестве третьего мономера, где сумма содержаний всех мономерных звеньев, указанных в (ia), (ib) и (ic), равна 100 мас.%; (ii) по меньшей мере один сшивающий реагент-полиамин и (iii) по меньшей мере один би- или полициклический амин-основание, который выбран из группы, содержащей 1,5-диазабицикло[4.3.0]-5-нонен (ДБН), 1,4-диазабицикло[2.2.2]октан (ДАБЦО), 1,5,7-триазабицикло[4.4.0]дец-5-ен (ТБД), 7-метил-1,5,7-триазабицикло[4.4.0]дец-5-ен (МТБД) и их производные.

Изобретение относится к водным композициям покрытий с низким содержанием летучих органических соединений (ЛОС). Композиция включает, по меньшей мере один латексный полимер, по меньшей мере один пигмент, воду и по меньшей мере одну вспомогательную добавку.

Изобретение относится к фотополимеризуемой композиции, содержащей от 70 до 99,9% по массе по меньшей мере одного фотополимеризуемого соединения и от 0,1 до 20% по массе по меньшей мере одного производного тиоксантона формулы I , производному тиоксантона, а также к применению фотополимеризуемой композиции в производстве упаковок пищевых продуктов.

Изобретение относится к химии полимеров, в частности к составам на основе эпоксидных смол, применяемых для получения покрытий защитного назначения методом ускоренного их формирования.

Изобретение относится к полиэтиленовым смолам. Описан сополимер, содержащий этилен и 0,5-25,0 мол.% С3-С20-олефинового сомономера.

Изобретение направлено на создание способа получения высокоэффективной устойчивой концентрированной суспензии высокомолекулярного(ых) полиальфаолефина(ов), с молекулярной массой ≥5·106 а.е.м.

Настоящее изобретение относится к полиакрилату, полученному радикальной полимеризацией по меньшей мере одного акрилатного мономера (Ас) в присутствии полимерного фотоинициатора.

Изобретение относится к технологии производства полиолефинов, в частности, предложенная технология относится к режимам работы при полимеризации полиолефинов. Способ производства полиолефина включает соединение в реакторе жидкофазной полимеризации катализатора с разбавительной смесью, содержащей разбавитель и олефиновый мономер.

Изобретение относится к способу получения композиции термопластичной смолы. Способ получения композиции термопластичной смолы включает: получение латекса каучука из сопряженных диеновых мономеров при использовании реакционноспособного эмульгатора, прививочную сополимеризацию ароматического винильного мономера и винильного цианового мономера с латексом каучука для получения привитого латекса смолы при использовании гидрофобного инициатора, дегидратацию после агломерирования привитого латекса смолы для получения влажного порошка и получение экструдированного материала посредством экструдирования влажного порошка с сополимером ароматического винильного мономера - винильного цианового мономера.

Изобретение относится к водным многостадийным полимерным дисперсиям, получаемым радикально инициируемой водной эмульсионной полимеризацией. Предложена водная многостадийная дисперсия полимеризатов, содержащая мягкую и твердую фазы, причем отношение твердой фазы к мягкой составляет 25-95% мас.

Изобретение относится к способу полимеризации олефинов с использованием экстрагированного карбоксилата металла. Способ включает полимеризацию олефинов в реакторе в присутствии каталитической композиции и экстрагированного карбоксилата металла.

Изобретение относится к полимерной композиции, способу ее получения, применению такой полимерной композиции для выдувного формования контейнеров и контейнерам. Полимерная композиция имеет плотность от 0,940 до 0,949 г/см3, индекс расплава (HLMI) согласно DIN EN ISO 1133:2005, условие G, при 190ºC и 21,6 кг, от 3 до 7 г/10 мин и фактор разветвленности цепи (HLCBI) от 3 до 8.

Изобретение относится к области синтеза полимеров акрилатного типа и может быть использовано для получения гидрогелей (суперабсорбентов), флокулянтов, детергентов, в качестве основы для создания новых лекарственных форм, различных композитов и материала для первопорационных разделительных мембран.

Изобретение относится к низкомолекулярным полиакриловым кислотам и их применению в качестве диспергаторов. Способ получения водных растворов полимеров акриловой кислоты со среднемассовой молекулярной массой от 3500 до 12000 гмоль осуществляют путем полимеризации акриловой кислоты в режиме питания с использованием радикального инициатора в присутствии гипофосфита в воде в качестве растворителя, при этом: загружают воду и при необходимости один или несколько этиленненасыщенных сомономеров, непрерывно подают акриловую кислоту в кислотной ненейтрализованной форме, при необходимости один или несколько этиленненасыщенных сомономеров, водный раствор радикального инициатора и водный раствор гипофосфита, по окончании подачи акриловой кислоты к водному раствору добавляют основание, причем содержание сомономеров в пересчете на общее содержание мономеров не превышает 30 мас., способ отличается тем, что водный раствор гипофосфита подают в течение общего времени подачи, состоящего из трех следующих один за другим промежутков времени ΔtI, ΔtII и ΔtIII, причем средняя скорость подачи в течение второго промежутка времени ΔtII выше значений средней скорости подачи в течение первого и третьего промежутков времени ΔtI и ΔtIII. Технический результат - полученные полимеры обеспечивают отличные реологические свойства пульп с наполнителем, обеспечивают пригодность их для перекачивания насосом, в том числе после хранения. 4 н. и 9 з.п. ф-лы, 2 табл., 10 пр.

Наверх