Вертикальная призматическая топка

Изобретение относится к энергетике и может быть использовано на котлах тепловых электростанций при сжигании природного газа и угольной пыли. Вертикальная призматическая топка содержит фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы многофункциональные горелки, имеющие по три вертикальных щелевых сопла с собственными вертикальными плоскостями симметрии соответственно, для подачи пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха, разделенные простенками, размещенные с образованием вертикального ряда на каждой из боковых стен топки и с наклоном к задней стене дополнительные вертикальные щелевые сопла для подачи третичного воздуха, а также окна для вывода газообразных и твердых продуктов сгорания, причем каждая симметричная группа состоит из горелок двух соседних вертикальных рядов, примыкающих соответственно к боковым стенам и вертикальной плоскости симметрии топки, вертикальные плоскости симметрии сопл для подачи пылеуглевоздушной смеси горелок вертикальных рядов, примыкающих к боковым стенам топки, наклонены к вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к боковым стенам топки, сопла для подачи вторичного воздуха установлены со стороны боковых стен топки, а сопла для подачи газовоздушной смеси размещены со стороны вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к вертикальной плоскости симметрии топки, сопла для подачи вторичного воздуха установлены со стороны плоскости симметрии топки, а сопла для подачи газовоздушной смеси размещены со стороны боковых стен топки, сопла для подачи пылеуглевоздушной смеси во всех горелках установлены в центре соответственно между соплами для подачи вторичного воздуха и газовоздушной смеси. В каждой горелке вертикальные плоскости симметрии сопл для подачи вторичного воздуха и вертикальные плоскости симметрии сопл для подачи газовоздушной смеси наклонены к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол 3-12 град, угол наклона вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки, составляет 5-15 град, а угол наклона вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки равен 10-25 град, расстояние между этой плоскостью симметрии на выходе из сопл для подачи третичного воздуха и задней стеной (0,10-0,25)C, где C - ширина боковой стены, м. Изобретение позволяет снизить расход воздуха на сдувание шлака с задней стены и концентрацию оксидов азота в продуктах сгорания. 9 ил.

 

Изобретение относится к энергетике и может быть использовано на котлах тепловых электростанций при сжигании природного газа и угольной пыли.

Известна вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы горелки для комбинированного ввода и организованного сжигания природного газа и угольной пыли, размещенные на боковых стенах дополнительные сопла для подачи воздуха, а также окна для вывода газообразных и твердых продуктов сгорания (патент РФ №2215237; F23C 1/12 от 25.11.2002 г.; Б.И. №30, 2003 г.). Недостаток топки - активное загрязнение шлаком (расплавленными в факеле частицами сопутствующей породы) задней стены топочной камеры при сжигании пыли угля с низкой температурой плавления зольно-породного остатка, например, бурого угля, а также при одновременном сжигании природного газа и угольной пыли. При загрязнении стен шлаковыми отложениями снижается эффективность теплообмена внутритопочной камеры и увеличивается уровень температуры факела на выходе из топки, что обуславливает загрязнения расплавленными частицами породы (шлаком) уже конвективных поверхностей нагрева (в частности, пароперегревателей), размещаемых в газоходах, примыкающих к выходному окну топки. Шлакование вызывает комплекс проблем, связанных с очисткой поверхностей нагрева, вынужденными остановами, снижением тепловой нагрузки котла.

Известна вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы горелки, имеющие сопла для ввода пылеуглевоздушной смеси и газовоздушной смеси с вертикальными плоскостями симметрии, наклоненными к вертикальной плоскости симметрии топки, размещенные на боковых стенах с примыканием к задней стене вертикально-щелевые сопла для ввода воздуха, а также окна для вывода газообразных и твердых продуктов сгорания (авт. св. СССР №964337, МПК F23C 7/02 от 11.12.1980 г.; Б.И. №37 от 07.10.1982 г.). При наличии воздушных сопл, установленных вблизи боковых стен и имеющих плоскость симметрии, параллельную задней стене, обеспечиваются бесшлаковочные режимы при сжигании угольной пыли, а также одновременно угольной пыли и природного газа. Недостаток топки - большой расход воздуха на специально организуемое дутье вдоль задней стены, вызывающий дополнительные потери электроэнергии на привод вентиляторов и собственные нужды котельной. Кроме того, значительна концентрация вредных оксидов азота, образующихся при сжигании угольной пыли и отводимых в атмосферу через дымовую трубу.

Известна вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене многофункциональные горелки, имеющие вертикально-щелевые сопла для ввода газовоздушной смеси и пылеуглевоздушной смеси, разделенные простенком, а также окна для вывода газообразных и твердых продуктов сгорания (патент РФ №2228491; F23D 17/00 от 15.04.2003 г.; Б.И. №13, 2004 г.). Недостаток топки - загрязнение шлаковыми отложениями задней стены, особенно активное при повышенных тепловых нагрузках котла (85-100% номинальной), в период сжигания угольной пыли раздельно или одновременно с природным газом.

Известна вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене многофункциональные горелки, имеющие вертикально-щелевые сопла для ввода газовоздушной смеси и пылеуглевоздушной смеси, разделенные простенком, а также окна для вывода газообразных и твердых продуктов сгорания (патент РФ №2309332; F23D 17/00 от 13.06.2006 г.; Б.И. №30, 2007 г.). Недостаток топки - также шлакование задней стены при сжигании только угольной пыли или одновременно угольной пыли и природного газа.

Известна вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на стенах сопла для ввода пылеугольной смеси и природного газа, разделенные простенками, а также сопла для ввода воздуха, имеющие вертикальные плоскости симметрии, наклоненные к стенам, и окна для вывода газообразных и твердых продуктов сгорания (патент РФ №1657862; F23C 5/00 от 27.01.1989 г.; Б.И. №23, 1991 г.). Недостаток устройства - большой расход воздуха через воздушные сопла с вертикальными плоскостями симметрии, установленными с неоптимальными углами и расстояниями от стен.

Известна наиболее близкая вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы многофункциональные горелки, имеющие по три вертикальных щелевых сопла с собственными вертикальными плоскостями симметрии соответственно, для подачи пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха, разделенные простенками, размещенные с образованием вертикального ряда на каждой из боковых стен топки и с наклоном к задней стене дополнительные вертикальные щелевые сопла для подачи третичного воздуха, а также окна для вывода газообразных и твердых продуктов сгорания, причем каждая симметричная группа состоит из горелок двух соседних вертикальных рядов, примыкающих соответственно к боковым стенам и вертикальной плоскости симметрии топки, вертикальные плоскости симметрии сопл для подачи пылеуглевоздушной смеси горелок вертикальных рядов, примыкающих к боковым стенам топки, наклонены к вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к боковым стенам топки, сопла для подачи вторичного воздуха установлены со стороны боковых стен топки, а сопла для подачи газовоздушной смеси размещены со стороны вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к вертикальной плоскости симметрии топки, сопла для подачи вторичного воздуха установлены со стороны плоскости симметрии топки, а сопла для подачи газовоздушной смеси размещены со стороны боковых стен топки, сопла для подачи пылеуглевоздушной смеси во всех горелках установлены в центре соответственно между соплами для подачи вторичного воздуха и газовоздушной смеси (Особенности и организация факельного процесса в топке с многофункциональными горелками / В.В. Осинцев, Г.Ф. Кузнецов, В.В. Петров, М.П. Сухарев // Электрические станции. - 2002. - №11. - С. 14-19). Недостаток топки - значительный расход воздуха на сдувание шлака с задней стены и повышение концентрации оксидов азота в отводимых продуктах сгорания при сжигании угольной пыли раздельно или совместно с природным газом.

Задача изобретения - снижение расхода воздуха на сдувание шлака с задней стены и концентрации оксидов азота в отводимых продуктах сгорания при сжигании угольной пыли раздельно или совместно с природным газом.

Для решения поставленной задачи в вертикальной призматической топке, содержащей фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы многофункциональные горелки, имеющие по три вертикальных щелевых сопла с собственными вертикальными плоскостями симметрии соответственно, для подачи пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха, разделенные простенками, размещенные с образованием вертикального ряда на каждой из боковых стен топки и с наклоном к задней стене дополнительные вертикальные щелевые сопла для подачи третичного воздуха, а также окна для вывода газообразных и твердых продуктов сгорания, причем каждая симметричная группа состоит из горелок двух соседних вертикальных рядов, примыкающих соответственно к боковым стенам и вертикальной плоскости симметрии топки, вертикальные плоскости симметрии сопл для подачи пылеуглевоздушной смеси горелок вертикальных рядов, примыкающих к боковым стенам топки, наклонены к вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к боковым стенам топки, сопла для подачи вторичного воздуха установлены со стороны боковых стен топки, а сопла для подачи газовоздушной смеси размещены со стороны вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к вертикальной плоскости симметрии топки, сопла для подачи вторичного воздуха установлены со стороны плоскости симметрии топки, а сопла для подачи газовоздушной смеси размещены со стороны боковых стен топки, сопла для подачи пылеуглевоздушной смеси во всех горелках установлены в центре соответственно между соплами для подачи вторичного воздуха и газовоздушной смеси, согласно изобретению в каждой горелке вертикальные плоскости симметрии сопл для подачи вторичного воздуха и вертикальные плоскости симметрии сопл для подачи газовоздушной смеси наклонены к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол 3-12 град, угол наклона вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки, составляет 5-15 град, а угол наклона вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки равен 10-25 град, расстояние между этой плоскостью симметрии на выходе из сопл для подачи третичного воздуха и задней стеной (0,10-0,25)C, где C - ширина боковой стены, м.

Наклоном вертикальных плоскостей симметрии сопл для подачи вторичного воздуха и газовоздушной смеси к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол α12=3-12 град, установкой вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки под углом β=5-15 град, а также наклоном вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки на угол γ=10-25 град и установкой этих сопл на расстоянии C1=(0,10-0,25)C от задней стены, где C - ширина боковой стены топки, м, обеспечивается отсутствие шлакования задних стен и минимальный выход оксидов азота с продуктами сгорания в режимах сжигания угольной пыли раздельно или одновременно с природным газом, то есть решается поставленная задача. Например, при реализации отмеченных признаков в топке котла БКЗ-210-140Ф при сжигании пыли бурого угля Шоптыкольского месторождения раздельно или одновременно с природным газом при α1=7 град, α2=7 град, β=10 град, γ=15 град, С1=0,15C шлакование задней стены полностью отсутствует, а уровень концентрации оксидов азота в продуктах сгорания на выходе из топки и из котла ΝΟx≤350 мг/нм3 во всем диапазоне рабочих тепловых нагрузок и долевых соотношений подаваемых в топку природного газа и угольной пыли. Расход воздуха на третичное дутье как при раздельном, так и одновременном сжигании угольной пыли и природного газа не превышает V3≤0,1V, где V - общий расход воздуха в топку, нм3/с. Как только хотя бы один из конструктивных параметров α1, α2, β, γ, C1 отклоняется даже незначительно в большую или меньшую сторону от заявляемого диапазона в период сжигания угольной пыли, начинается шлакование задней стены, для снижения активности этого процесса увеличивают расход третичного воздуха резко скачкообразно V3≥0,2V. Концентрация оксидов азота при этом также увеличивается скачкообразно до ΝΟx≥600 мг/нм3. При работе на природном газе с заявляемыми значениями α1, α2, β, γ, C1 величина ΝΟx≤90 мг/нм3, а концентрация оксида углерода, характеризующая эффективность выгорания, CO≈0%. При отклонениях α1, α2, β, γ, C1 от заявляемых значений в период сжигания одного природного газа также вынуждены увеличивать скачкообразно расход третичного воздуха до V3≥0,2V из-за необходимости организации нормального выгорания с CO≈0%, при этом концентрация ΝΟx≥200 мг/нм3. Таким образом, параметры α1=3-12 град, α2=3-12 град, β=5-15 град, γ=10-25 град, С1=(0,10-0,25)С можно считать оптимальными, способствующими решению поставленной задачи изобретения при организации сжигания угольной пыли и природного газа с минимальными расходом третичного воздуха на сдувание шлака с задней стены топки и концентрации оксидов азота в продуктах сгорания.

Сущность изобретения поясняется чертежами. На фиг. 1 представлена схема вертикальной призматической топки, продольный разрез; на фиг. 2 - разрез по Α-A на фиг. 1; на фиг. 3 - вид Б на фиг. 1 с симметричными «левой» и «правой» группами горелок, увеличено; на фиг. 4 - разрез по A-A на фиг. 1 при подаче в топку потоков пылеуглевоздушной смеси, вторичного и третичного воздуха через «левую» группу горелок, увеличено, на фиг. 5 - то же при подаче в топку потоков газовоздушной смеси, вторичного и третичного воздуха; на фиг. 6 - схема многофункциональной горелки, участок I на фиг. 4, 5, увеличено; на фиг. 7 - вид B из топки на многофункциональную горелку на фиг. 6; на фиг. 8 - схема сопла для ввода третичного воздуха, участок II на фиг. 4, 5, увеличено; на фиг. 9 - вид Г из топки на сопло для ввода третичного воздуха на фиг. 8.

Вертикальная призматическая топка на фиг. 1-9 содержит фронтовую, заднюю и боковые стены 1, 2 и 3, 4 соответственно. Потолочное и подовое перекрытия 5, 6 соответственно, стены 1, 2, 3, 4 и перекрытия 5, 6 экранированы трубами 7 с нагреваемой рабочей средой - водой и паром. На фронтовой стене 1 в горизонтальных рядах m1 и m2 и вертикальных рядах n1 и n2 соответственно установлены многофункциональные горелки, разделенные вертикальной плоскостью симметрии δ на две симметричные «левую» и «правую» группы, при этом каждая симметричная группа включает горелки 8, 9, 10, 11. Горелки 8, 9 в каждой симметричной группе размещены в вертикальных рядах n1, примыкающих к боковым стенам 3, 4, и имеют по три вертикальных щелевых сопла 12, 13, 14 для подачи в топку потоков пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха p1, p2, p3 соответственно с собственными вертикальными плоскостями симметрии 11, l2, l3. Горелки 10, 11 размещены в вертикальных рядах n2, примыкающих к вертикальной плоскости симметрии топки δ и также имеют по три вертикальных щелевых сопла 15, 16, 17 для подачи в топку потоков пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха p4, p5, p6 соответственно с собственными вертикальными плоскостями симметрии ll, l5, l6. В каждой горелке сопла разделены простенками: в вертикальных рядах n1 простенками 18, 19, в вертикальных рядах n2 простенками 20, 21. На каждой из боковых стен 3, 4 установлены дополнительные вертикальные щелевые сопла 22, 23 и 24, 25 для ввода потоков третичного воздуха p7. Сопла 22, 23 и 24, 25 скомпонованы в вертикальные ряды n3, симметрично размещены на боковых стенах 3, 4, имеют собственные вертикальные плоскости симметрии l7, наклоненные к задней стене 2 с экранами 7 под углом γ. Топка имеет окна 26, 27 для вывода газообразных и твердых продуктов сгорания. «Левая» и «правая» симметричные группы состоят из горелок 8, 9 и 10, 11 двух соседних вертикальных рядов n1 и n2 соответственно, примыкающих к боковым стенам 3, 4 и вертикальной плоскости симметрии топки δ. Вертикальные плоскости симметрии l1 сопл 12 для подачи потоков пылеуглевоздушной смеси p1 в вертикальных рядах n1 с горелками 8, 9, примыкающих к боковым стенам 3, 4, наклонены к вертикальной плоскости симметрии топки δ на угол β. В горелках 8, 9 вертикальных рядов n1, примыкающих к боковым стенам 3, 4, сопла 14 для подачи потоков вторичного воздуха p3 установлены со стороны боковых стен 3, 4, а сопла 13 для подачи потоков газовоздушной смеси p2 размещены со стороны вертикальной плоскости симметрии топки δ. В горелках 10, 11 вертикальных рядов n2, примыкающих к вертикальной плоскости симметрии топки δ, сопла 17 для подачи потоков вторичного воздуха p6 установлены со стороны плоскости симметрии топки δ, а сопла 16 для подачи потоков газовоздушной смеси p5 размещены со стороны боковых стен 3, 4 топки. Сопла 12, 15 для подачи потоков пылеуглевоздушной смеси p1, p4 во всех горелках 8, 9, 10, 11 установлены в центре соответственно между соплами 14, 17 для подачи потоков вторичного воздуха p3, p6 и соплами 13, 16 для подачи потоков газовоздушной смеси p2, p5. Топка выполнена со следующими особенностями. В каждой горелке 8, 9, 10, 11 вертикальные плоскости симметрии l3, l6 сопл 14, 17 для подачи потоков вторичного воздуха p3, p6 и вертикальные плоскости симметрии l2, l5 сопл 13, 16 для подачи потоков газовоздушной смеси p2, p5 наклонены к вертикальной плоскости симметрии l1, l4 сопл 12, 15 для подачи пылеуглевоздушной смеси на угол α12=3-12 град соответственно, а угол наклона вертикальной плоскости симметрии l1 сопл 12 для подачи потоков пылеуглевоздушной смеси p1 в горелках 8, 9 вертикальных рядов n1, примыкающих к боковым стенам 3, 4, относительно вертикальной плоскости симметрии топки δ, составляет 5-15 град, угол наклона вертикальной плоскости симметрии l7 сопл 22, 23, 24, 25 для подачи потока третичного воздуха p7 к задней стене 2 топки равен 10-25 град, а расстояние между этой плоскостью симметрии l7 на выходе из сопл 22, 23, 24, 25 для подачи третичных потоков воздуха p7 и задней стеной 2 равно (0,10-0,25)C, где C - ширина боковой стены, м.

Работа топки на фиг. 1-9 осуществляется путем раздельного ввода в горелки 8, 9, 10, 11 потоков пылеуглевоздушной смеси p1, p4 и газовоздушной смеси p2, p5. При подаче в топку только потоков пылеуглевоздушной смеси p1, p4 через сопла 12, 15 горелок 8, 9, 10, 11 согласно фиг. 4 происходит ее воспламенение и образование пылеугольного факела, для поддержания горения в последнем через сопла 14, 17 тех же горелок 8, 9, 10, 11 и сопла 22, 23, 24, 25 подают потоки вторичного и третичного воздуха p3, p6, p7. В процессе горения угольной пыли образуются продукты сгорания. Газообразные продукты и мелкие частицы выгоревшей золы отводят через окно 26 в верхней части топки, а более крупные частицы той же золы и спекшиеся шлаковые конгломераты выводят через шлаковыводящее окно 27 в нижней части топки. Для наглядности на фиг. 1 выделены объемные участки воспламенения k1 и горения с воздушной подпиткой факела вторичным и третичным воздухом k2 и k3 соответственно. По трубам 7 циркулирует нагреваемая рабочая среда - вода и пар, отводимый поток продуктов сгорания p8 через окно 26 попадает в примыкающий газоход 28 с пароперегревателем 29 и другими нагревателями рабочей среды (на фиг. 1-9 не показаны), и тоже отдает свою теплоту. На выходе из топки в окне 26 определяют концентрацию оксидов азота NOx и оксида углерода CO, уровень ΝΟx и CO сохраняется практически без изменения при отводе продуктов сгорания по газоходам и в дымовой трубе (на фиг. 1-9 не показаны). В топке циркулируют потоки газообразных продуктов сгорания p9 и p10, эжектируемые потоками p1, p4, p3, p6. Под воздействием более высокой температуры потоков p9 и p10 происходит активный разогрев потоков пылеуглевоздушной смеси p1 и p4 с последующим их воспламенением на участке k1, а также устойчивое горение пыли на участках k2 и k3.

При подаче в топку через сопла 13, 16 горелок 8, 9, 10, 11 потоков газовоздушной смеси p2, p5 происходит воспламенение и образование газового факела, для поддержания горения через сопла 22, 23, 24, 25 в топку вводят потоки вторичного и третичного воздуха p3, p6, p7, фиг. 5. В процессе горения природного газа образуются газообразные продукты сгорания, выводимые через окно 26 в верхней части топки. В топке формируются те же объемные участки воспламенения k1 и горения k2, k3. Циркулирующая в трубах 7 рабочая среда нагревается от газового факела. Выводимый из топки в газоход 28 поток продуктов сгорания p8 нагревает рабочую среду в пароперегревателе 29 и других нагревателях газохода 28 и отводится через дымовую трубу в атмосферу (на фиг. 1-9 последние элементы не показаны). Циркулирующие потоки p9, p10 как и в случае с пылеугольным факелом разогревают горелочные потоки в данном случае p2, p5 и p3, p6, способствуя устойчивому воспламенению и горению реагентов в газовом факеле на участках k1, k2, k3.

Возможны варианты работы топки при совместном сжигании пылеуглевоздушной смеси и газовоздушной смеси. Для этого по одному из вариантов потоки разнородного топлива направляют в различные симметричные группы горелок, например, пылеуглевоздушную смесь подают через «левую» группу горелок, а газовоздушную - через «правую» группу горелок. Возможен вариант с перераспределением разнородного топлива по вертикальным рядам n1 и n2 горелок в каждой из симметричных групп. Например, в горелки 8, 9 вертикального ряда n1 через сопло 12 в топку вводят потоки пылеуглевоздушной смеси p1, а в горелки 10, 11 вертикального ряда n2 через сопла 16 в топку вводят потоки газовоздушной смеси p5. Как и в случаях раздельного ввода пылеуглевоздушной смеси в топке формируются те же объемные участки воспламенения k1 и горения k2, k3. Устойчивое протекание окислительных процессов с тепловыделением на двух последних участках поддерживают подачей потоков вторичного и третичного воздуха p3, p6, p7 через сопла 14, 17 горелок 8, 9, 10, 11 и сопла 22, 23, 24, 25 боковых стен 3, 4.

Наклоном вертикальных плоскостей симметрии сопл для подачи вторичного воздуха и газовоздушной смеси к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол α12=3-12 град, установкой вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки под углом β=5-15 град, а также наклоном вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки на угол γ=10-25 град и установкой этих сопл на расстоянии C1=(0,10-0,25)C от задней стены, где C - ширина боковой стены топки, м, обеспечивается отсутствие шлакования задних стен и минимальный выход оксидов азота с продуктами сгорания в режимах сжигания угольной пыли раздельно или одновременно с природным газом, то есть решается поставленная задача. Например, при реализации отмеченных признаков в топке котла БКЗ-210-140Ф при сжигании пыли бурого угля Шоптыкольского месторождения раздельно или одновременно с природным газом при α1=7 град, α2=7 град, β=10 град, γ=15 град, C1=0,15C шлакование задней стены полностью отсутствует, а уровень концентрации оксидов азота в продуктах сгорания на выходе из топки и из котла ΝΟx≤350 мг/нм3 во всем диапазоне рабочих тепловых нагрузок и долевых соотношений подаваемых в топку природного газа и угольной пыли. Расход воздуха на третичное дутье как при раздельном, так и одновременном сжигании угольной пыли и природного газа не превышает V3≤0,1V, где V - общий расход воздуха в топку, нм3/с. Как только хотя бы один из конструктивных параметров α1, α2, β, γ, C1 отклоняется даже незначительно в большую или меньшую сторону от заявляемого диапазона в период сжигания угольной пыли начинается шлакование задней стены, для снижения активности этого процесса увеличивают расход третичного воздуха резко скачкообразно V3≥0,2V. Концентрация оксидов азота при этом также увеличивается скачкообразно до ΝΟx≥600 мг/нм3. При работе на природном газе с заявляемыми значениями α1, α2, β, γ, C1 величина ΝΟx≤90 мг/нм3, а концентрация оксида углерода, характеризующая эффективность выгорания CO≈0%. При отклонениях α1, α2, β, γ, C1 от заявляемых значений в период сжигания одного природного газа также вынуждены увеличивать скачкообразно расход третичного воздуха до V3≥0,2V из-за необходимости организации нормального выгорания с CO≈0%, при этом концентрация ΝΟx≥200 мг/нм3. Таким образом, параметры α1=3-12 град, α2=3-12 град, β=5-15 град, γ=10-25 град, C1=(0,10-0,25)C можно считать оптимальными, способствующими решению поставленной задачи изобретения при организации сжигания угольной пыли и природного газа с минимальными расходом третичного воздуха на сдувание шлака с задней стены топки и концентрации оксидов азота в продуктах сгорания.

Топка может иметь также один горизонтальный ряд m1 или большее количество горизонтальных рядов m1, m2, m3 и т.д. многофункциональных горелок 8, 9, 10, 11, но одинаковое количество вертикальных рядов n1 и n2. Работа топки с увеличенным количеством горизонтальных рядов или с одним горизонтальным рядом аналогична работе топки с рассмотренным количеством горизонтальных рядов m1 и m2.

Практическое применение предлагаемого устройства связано с топками котлов, имеющих фронтальную компоновку горелок, например котлов БКЗ-210-140Ф и ПК-14. С заменой на фронтовых стенах топок существующих горелок на многофункциональные горелочные устройства и установкой на боковых стенах дополнительных воздушных сопл с реализацией заявляемых конструкторских особенностей уменьшается концентрация оксидов азота в дымовых газах с 800-1200 мг/нм3 до ≤350 мг/нм3 при работе на угольной пыли и с 250-350 мг/нм3 до ≤90 мг/нм3 при работе на природном газе.

Кроме того, снижается температурный уровень факела, что способствует снижению активности загрязнения задних стен шлаковыми отложениями и обеспечивает безаварийную работу котлов во всем диапазоне рабочих тепловых нагрузок при минимальном расходе третичного воздуха и соответствующих пониженных затратах на привод вентиляторов, то есть с уменьшением собственных нужд котельной.

Вертикальная призматическая топка, содержащая фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы многофункциональные горелки, имеющие по три вертикальных щелевых сопла с собственными вертикальными плоскостями симметрии соответственно, для подачи пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха, разделенные простенками, размещенные с образованием вертикального ряда на каждой из боковых стен топки и с наклоном к задней стене дополнительные вертикальные щелевые сопла для подачи третичного воздуха, а также окна для вывода газообразных и твердых продуктов сгорания, причем каждая симметричная группа состоит из горелок двух соседних вертикальных рядов, примыкающих соответственно к боковым стенам и вертикальной плоскости симметрии топки, вертикальные плоскости симметрии сопл для подачи пылеуглевоздушной смеси горелок вертикальных рядов, примыкающих к боковым стенам топки, наклонены к вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к боковым стенам топки, сопла для подачи вторичного воздуха установлены со стороны боковых стен топки, а сопла для подачи газовоздушной смеси размещены со стороны вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к вертикальной плоскости симметрии топки, сопла для подачи вторичного воздуха установлены со стороны плоскости симметрии топки, а сопла для подачи газовоздушной смеси размещены со стороны боковых стен топки, сопла для подачи пылеуглевоздушной смеси во всех горелках установлены в центре соответственно между соплами для подачи вторичного воздуха и газовоздушной смеси, отличающаяся тем, что в каждой горелке вертикальные плоскости симметрии сопл для подачи вторичного воздуха и вертикальные плоскости симметрии сопл для подачи газовоздушной смеси наклонены к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол 3-12 град, угол наклона вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки, составляет 5-15 град, а угол наклона вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки равен 10-25 град, расстояние между этой плоскостью симметрии на выходе из сопл для подачи третичного воздуха и задней стеной равно (0,10-0,25)С, где С - ширина боковой стены, м.



 

Похожие патенты:

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах с прямым вдуванием угольной пыли. Пылеугольная топка содержит экранированные прямоугольную вертикальную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, установленные по встречно-смещенной схеме на противоположных стенах камеры сгорания 1 и наклоненные вниз прямоточные пылеугольные горелки 4-27 с растопочными горелками 28-39, размещенными под ними, воздушные сопла, установленные ниже узкого сечения холодной воронки 2 по встречно-смещенной схеме и направленные наклонно вверх.

Изобретение относится к области энергетики, в частности устройствам топок паровых котлов со встречной компоновкой газомазутных горелок. Топка для сжигания газомазутного топлива включает под, свод, стены и экраны, повторяющие внутреннюю поверхность топки, выполненной в виде двух обращенных друг к другу большими основаниями усеченных пирамид, и встроенные в стены встречно расположенные горелки.

Изобретение относится к способу гомогенизации распределения тепла, а также снижения количества оксидов азота (NOx) в продуктах сгорания, при работе промышленной печи.

Изобретение относится к теплоэнергетике и может быть использовано на паровых и водогрейных котлах, сжигающих природный газ и угольную пыль. Способ активирования порошкообразного угля в вертикальной четырехгранной призматической топке путем встречного ввода угольных частиц размером 2-4 мм в смеси с воздухом и газообразными продуктами сгорания вдоль вертикальной плоскости симметрии топки параллельно фронтовой и задней стенам, нагрева с выделением влаги и летучих веществ и получением коксового остатка основными и дополнительными газовыми факелами, образованными основными и дополнительными потоками реакционной газовоздушной смеси, истекающими из основных и дополнительных горелок, сбора и продувки струями пара частиц с коксовым остатком в подовых накопителях, последующего их охлаждения с выводом потребителю в подподовых установках.

Топка // 2473010
Изобретение относится к энергетике и может быть использовано на котлах тепловых электростанций и промышленных котельных агрегатах, работающих на газообразном топливе.

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов при сжигании шлакующих углей. .

Изобретение относится к топочным устройствам парогенераторов с пылевым сжиганием углей, может быть использовано в теплоэнергетике и позволяет повысить устойчивость воспламенения топлива, полноту его сгорания, снизить образование окисей азота NOx и уменьшить их выброс в атмосферу.

Изобретение относится к теплоэнергетике, может быть использовано в топках паровых котлов тепловых электрических станций при сжигании шлакующих углей и при своем использовании обеспечивает повышение качества сжигания и эксплуатационной надежности путем устранения температурной неравномерности в зоне активного горения для предотвращения шлакования экранных поверхностей нагрева при отключении одной из горелок.

Изобретение относится к теплоэнергетике, может быть использовано на тепловых электростанциях и позволяет исключить недожог топлива с провалом и повысить эффективность выгорания пыли в центральной камере сгорания.

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой.

Изобретение относится к энергетике и может быть использовано в теплогенерирующих установках, работающих на природном газе. Комплексное устройство для подготовки и сжигания газообразного топлива, включающее турбулентную горелку, помещенную в амбразуру топки, в которой коаксиально расположен конвертер, состоящий из цилиндрической капсулы, выполненной из жаропрочного металла, соединенной с наружного торца камеры смешения с газовым патрубком и присоединенным к нему коаксиально паровым патрубком, фронтальная часть капсулы помещена в зону факела, внутри капсулы коаксиально помещена труба, выполненная из жаропрочного металла, состоящая из зоны конвертированного газа, с наружного торца заглушенной коническим днищем и соединенной с каналом первичного воздуха тангенциальными эллиптическими патрубками выпуска конвертированного газа и зоны риформинга, где труба выполнена перфорированной и покрытой с наружной и внутренней сторон слоем никелевого катализатора на керамической основе, причем тангенциальные эллиптические патрубки выпуска конвертированного газа проходят через кольцевую камеру нагрева парогазовой смеси, расположенную между внутренней поверхностью капсулы и наружной поверхностью трубы, на входе в которую расположены лопатки завихрителя.

Изобретение относится к области энергетики. Способ осуществления рассредоточенного горения включает следующие этапы: инжектируют топливо в печь вдоль оси инжектирования топлива из топливной форсунки, расположенной в узле горелки; инжектируют окислитель в печь из форсунки первичного окислителя, при этом топливная форсунка и форсунка первичного окислителя расположены концентрично относительно друг друга; сжигают топливо и первичный окислитель в печи; уменьшают количество окислителя, инжектируемого из форсунки первичного окислителя; инжектируют первую и вторую струи окислителя в печь из первой и второй динамических фурм, расположенных с противоположных сторон топливной форсунки в узле горелки; инжектируют первую и вторую струи рабочего тела под углами к первой и второй струям окислителя соответственно, так что первая и вторая струи вторичного окислителя направляются под углом от оси инжектирования топлива.

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива.

Изобретение относится к трубопроводному транспорту и может быть использовано для нагрева участка трубопровода и жидкости в нем в полевых условиях, а также применимо для нагрева других протяженных объектов, таких как рельсы или балки.

Изобретение относится к нефтедобывающей промышленности и может быть использовано в процессе добычи жидких углеводородов, в частности для вынужденного бездымного сжигания жидких углеводородов, в том числе нефти, накапливаемой в период пробной эксплуатации и исследования нефтяных скважин непосредственно на промысле, а также на морских нефтяных платформах.

Изобретение относится к теплоэнергетике и может быть использовано для нагрева технологических сред в нефтегазовой и других отраслях промышленности. Способ включает многостадийный нагрев теплоносителя газами окисления, при этом на каждую стадию подают часть теплоносителя и часть топлива, на первой стадии газы окисления получают каталитическим окислением газотопливной смеси, полученной смешением нагретого воздуха и первой части топлива, а на каждой последующей стадии газы окисления получают каталитическим окислением газотопливной смеси, полученной смешением газов окисления предыдущей стадии и одной из остальных частей топлива.

Изобретение относится к энергетике. Клапанно-смесительное устройство котла пульсирующего горения содержит камеру сжигания газообразного топлива с цилиндрической полостью, закрытой торцовой стенкой с проходным отверстием с одной стороны и открытой - с другой, запальное устройство, установленное в полости камеры сжигания, устройства подвода топлива и воздуха, снабженные ресиверами с обратными клапанами, смесительное устройство с дозирующими отверстиями, сообщающееся с камерой сжигания через проходное отверстие в торцовой стенке, дефлектор изменения направления потоков газообразного топлива, установленный на расстоянии от закрытого торца камеры сжигания, определяющем размер кольцевого канала выхода газовоздушной смеси из смесительного устройства в камеру сжигания.
Изобретение относится к теплоэнергетике, к области сжигания ожиженного угольного топлива в топках паровых котлов и других теплогенерирующих установок. Способ сжигания жидкого угольного топлива включает подготовку твердого углеродсодержащего вещества в качестве дисперсной фазы в жидкой дисперсной среде к сжиганию, подачу топливной дисперсной системы в пневмомеханические форсунки, газовое вдувание и распыление ее на факелах в камере сгорания и съем тепловой нагрузки теплоносителем в виде нагретого водяного пара.

Изобретение относится к области энергетики и может быть использовано в системах отопления, в частности в водонагревателях или бойлерах; в системах утилизации, работающих на сжигании попутного газа, для исключения влияния вибраций, а также для компенсации температурных расширений.

Изобретение относится к области энергетики. Детонационное устройство для сжигания топлива содержит систему подачи топлива и окислителя, кольцевую камеру сгорания, систему смешения топлива с окислителем, размещенную в начале камеры сгорания, включающую равномерно расположенные отверстия форсунки для топлива и входное отверстие в виде кольцевой щели для окислителя, а также выходное отверстие для продуктов горения. Устройство дополнительно оснащено средством для обеспечения повышения коэффициента расхода окислителя в прямом направлении - в камеру сгорания, затрудняющим проникновение продуктов детонации в обратном направлении - в систему подачи окислителя, т.е. выполняющим функцию газодинамического клапана, и выполненным в виде кольцевой профилированной щели с плавным входом и острыми кромками на выходе со стороны камеры сгорания. Изобретение позволяет повысить экономичность камеры сгорания и надежность ее работы. 2 н. и 14 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике и может быть использовано на котлах тепловых электростанций при сжигании природного газа и угольной пыли. Вертикальная призматическая топка содержит фронтовую, заднюю и боковые стены, потолочное и подовое перекрытия, установленные на фронтовой стене в горизонтальных и вертикальных рядах с разделением вертикальной плоскостью симметрии топки на две симметричные группы многофункциональные горелки, имеющие по три вертикальных щелевых сопла с собственными вертикальными плоскостями симметрии соответственно, для подачи пылеуглевоздушной смеси, газовоздушной смеси и вторичного воздуха, разделенные простенками, размещенные с образованием вертикального ряда на каждой из боковых стен топки и с наклоном к задней стене дополнительные вертикальные щелевые сопла для подачи третичного воздуха, а также окна для вывода газообразных и твердых продуктов сгорания, причем каждая симметричная группа состоит из горелок двух соседних вертикальных рядов, примыкающих соответственно к боковым стенам и вертикальной плоскости симметрии топки, вертикальные плоскости симметрии сопл для подачи пылеуглевоздушной смеси горелок вертикальных рядов, примыкающих к боковым стенам топки, наклонены к вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к боковым стенам топки, сопла для подачи вторичного воздуха установлены со стороны боковых стен топки, а сопла для подачи газовоздушной смеси размещены со стороны вертикальной плоскости симметрии топки, в горелках вертикальных рядов, примыкающих к вертикальной плоскости симметрии топки, сопла для подачи вторичного воздуха установлены со стороны плоскости симметрии топки, а сопла для подачи газовоздушной смеси размещены со стороны боковых стен топки, сопла для подачи пылеуглевоздушной смеси во всех горелках установлены в центре соответственно между соплами для подачи вторичного воздуха и газовоздушной смеси. В каждой горелке вертикальные плоскости симметрии сопл для подачи вторичного воздуха и вертикальные плоскости симметрии сопл для подачи газовоздушной смеси наклонены к вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси на угол 3-12 град, угол наклона вертикальной плоскости симметрии сопл для подачи пылеуглевоздушной смеси в горелках вертикальных рядов, примыкающих к боковым стенам, к вертикальной плоскости симметрии топки, составляет 5-15 град, а угол наклона вертикальной плоскости симметрии сопл для подачи третичного воздуха к задней стене топки равен 10-25 град, расстояние между этой плоскостью симметрии на выходе из сопл для подачи третичного воздуха и задней стеной C, где C - ширина боковой стены, м. Изобретение позволяет снизить расход воздуха на сдувание шлака с задней стены и концентрацию оксидов азота в продуктах сгорания. 9 ил.

Наверх