Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации



Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации

 


Владельцы патента RU 2599534:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретения относятся к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации и частотной модуляции. Технический результат изобретений заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника. Способ генерации и частотной модуляции высокочастотных сигналов отличается тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, который с цепью обратной связи включают как единый узел каскадно между выходом резистивного четырехполюсника и нагрузкой. Нагрузку выполняют в виде двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, условия возбуждения и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала. 2 н.п. ф-лы, 3 ил.

 

Изобретения относятся к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Известен способ генерации и частотной модуляции высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, организации внутренней обратной связи в первом нелинейном элементе путем использования в качестве него двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования первого нелинейного элемента с нагрузкой, изменении частоты генерируемого высокочастотного сигнала путем изменения баланса фаз за счет изменения параметра второго нелинейного элемента, включенного в избирательную нагрузку, по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: «Дрофа», 2006, с. 414-417, 434-437].

Известно устройство генерации и частотной модуляции высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине падающего участка вольтамперной характеристики двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, реактивного четырехполюсника, нагрузки в виде параллельного колебательного контура с включенным варикапом, подключенным к источнику управляющего сигнала, при этом параметры контура, двухполюсного нелинейного элемента и варикапа выбраны из условия обеспечения заданных амплитуды и диапазона изменения частоты генерируемого высокочастотного сигнала по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М.:«Дрофа», 2006, с. 414-417, 434-437].

Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внутренней обратной связи в двухполюсном нелинейном элементе на участке с падающей вольтамперной характеристикой возникает отрицательное дифференциальное сопротивление, которое в силу согласования с помощью реактивного четырехполюсника компенсирует потери в контуре. Благодаря этому колебание с частотой, равной резонансной частоте колебательного контура, усиливается до момента увеличения амплитуды этого колебания до уровня, при котором амплитуда выходит за пределы падающего участка вольтамперной характеристики. Наступает стационарный режим. В этом режиме изменение емкости варикапа под действием управляющего сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала.

Недостатком способа и устройства является наличие двух нелинейных элементов, один из которых работает в качестве усилителя и ограничителя, а второй используется для изменения частоты генерируемого высокочастотного сигнала.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ генерации и частотной модуляции высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, построении цепи прямой передачи между выходным электродом трехполюсного нелинейного элемента и нагрузкой, организации внешней положительной обратной связи между нагрузкой и управляющим электродом трехполюсного нелинейного элемента, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования трехполюсного нелинейного элемента с нагрузкой, изменении частоты генерируемого высокочастотного сигнала путем изменения баланса фаз за счет изменения параметра двухполюсного нелинейного элемента, включенного в избирательную нагрузку, по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: «Дрофа», 2006, с. 434-437].

Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство генерации и частотной модуляции высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине квазилинейного участка проходной вольтамперной характеристики транзистора, цепи прямой передачи в виде первого четырехполюсника для согласования выходного электрода транзистора и нагрузки, нагрузки в виде параллельного колебательного контура, в который включен варикап, подключенный к источнику управляющего сигнала, RC-цепи внешней положительной обратной связи (в общем виде - второго четырехполюсника для согласования управляющего электрода транзистора и нагрузки) между нагрузкой и управляющим электродом транзистора, при этом параметры контура, цепи прямой передачи, цепи обратной связи, транзистора и варикапа выбраны из условия обеспечения заданных амплитуды и диапазона изменения частоты генерируемого высокочастотного сигнала по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: «Дрофа», 2006, с. 434-437].

Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию цепи внешней положительной обратной связи колебание с частотой, равной резонансной частоте колебательного контура, поступает на управляющий электрод транзистора, который в силу согласования с помощью двух четырехполюсников начинает работать в режиме усиления до момента увеличения амплитуды этого колебания до уровня, при котором наступает режим насыщения (ограничения амплитуды). Наступает стационарный режим. В этом режиме изменение емкости варикапа под действием управляющего сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала.

Недостатки этих способа и устройства состоят в необходимости использования двух нелинейных элементов (одного для усиления и ограничения амплитуды, второго для изменения частоты) и малом линейном участке модуляционной характеристики в силу малости линейного участка вольт-фарадной характеристики варикапа. Кроме того, не указывается, каким образом необходимо выбирать значения параметров согласующих устройств, при которых наступает режим возбуждения и стационарный режим. Особенно остро возникает этот вопрос при проектировании устройств генерации и частотной модуляции в диапазонах ВЧ и УВЧ, на которых, кроме того, обязательно нужно учитывать реактивные составляющие параметров нелинейных элементов. В настоящее время классическая теория радиотехнических цепей это не учитывает. Кроме того, частотную модуляцию можно обеспечить при наличии резистивных четырехполюсников, параметры которых не зависят от частоты в достаточно большом диапазоне частот, что позволяет увеличить квазилинейный участок частотной модуляционной характеристики.

Техническим результатом изобретения является генерация и частотная модуляция высокочастотного сигнала с помощью устройства с увеличенным квазилинейным участком частотной модуляционной характеристики при использовании одного нелинейного элемента и цепи внешней обратной связи и благодаря наличию резистивного четырехполюсника и согласования с помощью мнимых составляющих сопротивлений нагрузки и источника сигнала генератора и модулятора в режиме усиления, что позволяет создавать эффективные устройства генерации и частотной модуляции. Возможность использования различных вариантов включения трехполюсного нелинейного элемента относительно резистивного четырехполюсника и различных видов обратной связи расширяет возможности физической реализуемости этого результата.

1. Указанный результат достигается тем, что в известном способе генерации и частотной модуляции высокочастотных сигналов, основанном на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, взаимодействии высокочастотного сигнала с цепью прямой передачи, выполненной из трехполюсного нелинейного элемента и четырехполюсника, нагрузкой и цепью внешней обратной связи, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемых высокочастотных сигналов, условий согласования цепи прямой передачи с нагрузкой и условий согласования нагрузки с управляющим электродом трехполюсного нелинейного элемента, изменении частоты генерируемых колебаний по закону изменения амплитуды низкочастотного управляющего сигнала путем соответствующего изменения баланса фаз, дополнительно четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала в соответствии со следующими математическими выражениями:

- заданные зависимости отношений соответствующих элементов классической матрицы передачи от частоты на заданной полосе частот; а, b, с, d - элементы классической матрицы передачи резистивного четырехполюсника; r0, rн - заданные зависимости действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданной полосе частот; х0, хн - оптимальные зависимости мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданной полосе частот; g11,b11, g12,b12, g21,b2l, g22,b22 - заданные суммарные зависимости действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента от частоты в заданной полосе частот при соответствующем изменении амплитуды низкочастотного управляющего сигнала и соответствующих действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи от частоты в заданной полосе частот.

2. Указанный результат достигается тем, что в устройстве генерации и частотной модуляции высокочастотных сигналов, состоящем из источника постоянного напряжения и низкочастотного управляющего сигнала, цепи прямой передачи из трехполюсного нелинейного элемента и четырехполюсника, нагрузки и цепи внешней обратной связи, дополнительно четырехполюсник выполнен резистивным, в качестве цепи внешней обратной связи использован произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между выходом резистивного четырехполюсника и нагрузкой, нагрузка выполнена в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключен второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, мнимые составляющие сопротивления источника сигнала в режиме усиления х0 и сопротивления нагрузки хн реализованы в виде реактивных двухполюсников, выполненных в виде последовательно соединенных параллельного контура из элементов с параметрами L1k, C1k и последовательного контура из элементов с параметрами L2k, C2k, причем значения этих параметров определены из условия обеспечения стационарного режима генерации на четырех частотах генерируемого сигнала и соответствующих четырех значениях амплитуды низкочастотного управляющего сигнала с помощью следующих математических выражений:

- заданные значения отношений соответствующих элементов классической матрицы передачи на заданных частотах; а, b, с, d - элементы классической матрицы передачи выбранного типового резистивного четырехполюсника; r0m, tнm - заданные значения действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; x0m, хнm - оптимальные значения мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; g11m,b11m, g12m,b12m, g21m,b2lm, g22m,b22m - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента при заданных четырех значениях амплитуды управляющего сигнала и соответствующих действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на заданных частотах; m=1, 2, 3, 4 - номера частот; δ≤0 - условие возбуждения колебаний; ω1,2,3,4=2πf1,2,3,4; f1,2,3,4 - заданные частоты; k=0, н - индекс, характеризующий принадлежность параметров к формированию двухполюсников с сопротивлениями Xmk=xmk.

На фиг. 1 показана схема устройства генерации высокочастотных сигналов (прототип), реализующего способ-прототип.

На фиг. 2 показана структурная схема предлагаемого устройства по п. 2, реализующая предлагаемый способ генерации по п. 1 в режиме усиления.

На фиг. 3 приведена схема реактивного двухполюсника, реализующего мнимую составляющую сопротивления источника сигнала в режиме усиления х0 и мнимую составляющую сопротивления нагрузки хн предлагаемого устройства (фиг. 2).

Устройство-прототип (Фиг. 1), реализующее способ-прототип, содержит цепь прямой передачи в виде трехполюсного нелинейного элемента VT-1, подключенного к источнику постоянного напряжения-2, первого согласующе-фильтрующего устройства СФУ-3 (первого реактивного четырехполюсника или первого согласующего четырехполюсника) и нагрузки в виде колебательного контура на элементах L-4, R-5, С(t)-6. Первое СФУ-3 включено между выходным электродом трехполюсного нелинейного элемента и нагрузкой. Управляемая емкость С(t), реализуемая варикапом -6, подключена к источнику низкочастотного управляющего (информационного) сигнала-7. Между нагрузкой и управляющим электродом трехполюсного нелинейного элемента включено второе СФУ-9 (второй реактивный четырехполюсник или второй согласующий четырехполюсник) с подключенными к ее входу первым двухполюсником-8 и к выходу вторым двухпоюсником-10 с комплексными сопротивлениями в поперечные цепи. Все это вместе образует цепь внешней обратной связи. Первый двухполюсник-8 подключен к нагрузке. Второй двухполюсник-10 подключен к управляющему электроду трехполюсного нелинейного элемента.

Принцип действия устройства генерации и модуляции высокочастотных сигналов (прототипа), реализующего способ-прототип, состоит в следующем.

При включении источника постоянного напряжения-2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внешней обратной связи согласования с помощью первого реактивного четырехполюсника-3 выходного электрода трехполюсного нелинейного элемента и нагрузки (цепи прямой передачи), согласования с помощью цепи обратной связи (первого двухполюсника-8 с комплексным сопротивлением, второго реактивного четырехполюсника-9 и второго двухполюсника-10 с комплексным сопротивлением) нагрузки и управляющего электрода трехполюсного нелинейного элемента компенсируются потери в контуре L-4, R-5, C(t)-6. Благодаря этому обратная связь становится положительной и реализуются условия баланса фаз и амплитуд - условия возбуждения электромагнитных колебаний. В результате колебание с частотой, равной резонансной частоте колебательного контура, подается на управляющий электрод трехполюсного нелинейного элемента, который на начальном этапе работает в режиме усиления. Амплитуда этого колебания усиливается до момента ее увеличения до уровня, при котором наступает режим ограничения трехполюсного нелинейного элемента. Наступает стационарный режим генерации. В этом режиме изменение емкости варикапа С(t)-6 под действием управляющего сигнала источника-7 приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды этого сигнала.

Недостатки способа-прототипа и устройства его реализации описаны выше. Предлагаемое устройство по п. 2 (фиг. 2), реализующее предлагаемый способ по п. 1, содержит трехполюсный нелинейный элемент-1 с известными элементами матрицы проводимостей нелинейного элемента (VT) на заданных частотах генерируемых сигналов, подключенный к источнику постоянного напряжения и низкочастотного управляющего сигнала -2 и параллельно соединенный по высокой частоте с цепью внешней обратной связи (входы соединены параллельно и выходы - параллельно), выполненной в виде произвольного четырехполюсника-14, сформированного в общем случае на двухполюсниках с комплексными сопротивлениями. Нелинейный элемент-1 и четырехполюсник-14 как единый узел каскадно включены по высокой частоте между выходом резистивного четырехполюсника-12 и нагрузкой-13 с заданными сопротивлениями на заданных частотах. К входу резистивного четырехполюсника-12 подключен источник входного высокочастотного сигнала в режиме усиления с сопротивлением на заданных частотах, имитирующим сопротивление источника высокочастотных колебаний, возникающих при включении источника постоянного напряжения -2 в момент скачкообразного изменения амплитуды его напряжения в режиме генерации. Произвольный четырехполюсник-14 тоже характеризуется известными значениями элементов матрицы сопротивлений на заданных частотах (m=1, 2 - номер частоты). Четырехполюсник-12 также может быть выполнен в виде произвольного соединения произвольного количества резистивных двухполюсников. Этот четырехполюсник описывается известными элементами классической матрицы передачи a, b, c, d. Синтез генератора (выбор оптимальных частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления x0 и нагрузки хн) осуществлен по критерию обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала. Реализация этих частотных характеристик осуществлена путем выбора схем формирования этих двухполюсников (фиг. 3) и значений параметров их элементов по критерию совпадения их частотных характеристик и оптимальных на четырех заданных частотах. В результате реализуется увеличенный квазилинейный участок частотной модуляционной характеристики. В режиме генерации и частотной модуляции источник входного высокочастотного сигнала отключается и вместо него устанавливается короткозамыкающая перемычка.

Предлагаемое устройство функционирует следующим образом.

При включении источника постоянного напряжения-2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внешней обратной связи и в силу указанного выбора значений мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн и схем их формирования обратная связь становится положительной, что эквивалентно возникновению в цепи отрицательной проводимости (g21 или g12), которое компенсирует потери во всей цепи на заданной частоте. Поэтому амплитуда колебаний с заданной начальной частотой усиливаются до определенного уровня и затем ограничивается. При этом амплитуда выходит за пределы квазилинейного участка проходной вольтамперной характеристики. Наступает стационарный режим. В этом режиме изменение рабочей точки нелинейного элемента под действием низкочастотного сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды управляющего сигнала.

Докажем возможность реализации указанных свойств.

Введем обозначения искомых зависимостей сопротивления источника сигнала в режиме усиления , нагрузки и известных зависимостей элементов матрицы проводимостей нелинейного элемента (VT) и цепи внешней обратной связи (ОС) от частоты. При параллельном соединении четырехполюсников их матрицы проводимостей складываются. Суммарные зависимости элементов матриц проводимостей VT и цепи ОС от частоты: y11=g11+jb11, y12=g12+jb12, y2l=g21+jb21, y22=g22+jb22. При синтезе частотного модулятора параметры нелинейного элемента зависит, кроме того, от амплитуды низкочастотного управляющего сигнала. Таким образом, каждому значению амплитуды низкочастотного управляющего сигнала соответствует определенная частота генерируемого сигнала. Для простоты аргументы (амплитуда и частота) опущены. На первом этапе синтеза требуется определить частотные зависимости сопротивлений х0, xn (аппроксимирующие функции), оптимальные по критерию обеспечения условий стационарного режима генерации в заданных диапазонах изменения частоты и амплитуды низкочастотного управляющего сигнала на нелинейном элементе. При изменении амплитуды управляющего сигнала и таких частотных зависимостях сопротивлений х0, xn будет теоретически реализована линейная частотная модуляционная характеристика. Реализация оптимальных частотных зависимостей сопротивлений х0, xn обеспечивает квазилинейную частотную модуляционную характеристику.

VT и цепь ОС описываются матрицей проводимостей и матрицей передачи:

где . Резистивный четырехполюсник (РЧ) описывается матрицей передачи:

; ; ; a, b, c, d - элементы классической матрицы передачи.

Общая нормированная классическая матрица передачи генератора/модулятора получается путем перемножения (перемножение матриц производится в порядке следования соответствующих четырехполюсников) матриц передачи (2) и (1) с учетом условий нормировки:

Используя известную связь элементов матрицы рассеяния с элементами классической матрицы передачи (Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971. с. 34-36) и матрицу передачи (3), с учетом условий нормировки получим выражение для коэффициента передачи генератора в режиме усиления:

Знаменатель коэффициента передачи в режиме усиления представим в виде, соответствующем условию возникновения стационарного режима генерации (Куликовский А.А. Устойчивость активных линеаризованных цепей с усилительными приборами нового типа. М-Л.: ГЭИ, 1962. 192 с): - условие баланса амплитуд и баланса фаз1-КВ=0 (Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: «Дрофа», - 2006, с. 383-401) для эквивалентной цепи с внешней положительной ОС. Коэффициент передачи цепи ОС. Коэффициент передачи цепи С: ; - коэффициент усиления цепи прямой передачи. В соответствии с иммитансным критерием устойчивости (Куликовский А.А. Устойчивость активных линеаризованных цепей с усилительными приборами нового типа. М-Л.: ГЭИ, 1962, 192 с.) запишем условие возбуждения и разделим между собой действительную и мнимую части. Получим систему уравнений:

Решение (5) представляет собой зависимости величин х0, хn от частоты, оптимальные по критерию обеспечения генерации сигнала во всем спектре частот:

- условие возбуждения колебаний.

На втором этапе синтеза для реализации оптимальных аппроксимаций (7) методом интерполяции необходимо сформировать двухполюсники с сопротивлениями х0, xn из не менее чем N (числа частот интерполяции) реактивных элементов, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсников на заданных частотах, определенным по формулам (7) и решить сформированную таким образом систему N уравнений относительно N выбранных параметров реактивных элементов. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например, из условия физической реализуемости.

В соответствии с этим алгоритмом получены математические выражения для определения значений параметров реактивного двухполюсника в виде последовательно соединенных параллельного L1k, C1k и последовательного L2k, C2k контуров (фиг. 3), оптимальных по критерию обеспечения условий стационарного режима генерации на четырех частотах ωm=2πfm.

Исходная система уравнений:

Решение для четырех частот:

Обобщенный индекс k введен для определения мнимой составляющей сопротивления двухполюсника мнимой составляющей источника сигнала в режиме усиления при k=0 (при этом Xmk=xm0 (6)) и мнимой составляющей сопротивления нагрузки при k=н, (при этом Xmk (6)), m=1, 2, 3, 4 - номера частот. Индекс m надо ввести и для остальных параметров, зависящих от частоты.

Реализация оптимальных аппроксимаций частотных характеристик параметры х0, xn (6) с помощью (7), (8) обеспечивает увеличение диапазона изменения частоты генерируемого сигнала, поскольку реализует условие баланса амплитуд и баланса фаз на четырех частотах заданной модуляционной характеристики или заданного диапазона изменения частоты, соответствующих четырем заданным значениям или заданному диапазону изменения амплитуды низкочастотного управляющего сигнала на нелинейном элементе. Это позволяет при разумном выборе положений заданных частот относительно друг друга ω1 - ω2, ω1 - ω3, ω1 - ω4, ω2 - ω3, ω2 - ω4, ω3 - ω4 расширить квазилинейный участок частотной модуляционной характеристики.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника резистивным, выполнение цепи внешней обратной связи в виде произвольного четырехполюсника, параллельно соединенного с трехполюсным нелинейным элементом, включение трехполюсного нелинейного элемента и цепи обратной связи как единого узла между выходом резистивного четырехполюсника и нагрузкой, выполнение нагрузки в виде первого двухполюсника с комплексным сопротивлением, подключение к входу резистивного четырехполюсника в поперечную цепь второго двухполюсника с комплексным сопротивлением, которое имитирует сопротивление источника входного высокочастотного сигнала генератора в режиме усиления (фиг. 2), выбор частотных характеристик мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн, формирование их схем в указанном виде (фиг. 3), выбор значений их параметров из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала) обеспечивает модуляцию частоты генерируемого сигнала по закону изменения амплитуды низкочастотного управляющего сигнала с увеличенной девиацией частоты.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью трехполюсные нелинейные элементы (транзисторы или лампы), реактивные элементы, сформированные в заявленные схемы реактивных двухполюсников (фиг. 3). Значения параметров индуктивностей и емкостей этих схем могут быть однозначно определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении генерации и частотной модуляции высокочастотного сигнала за счет выбора схемы и значений параметров реактивных элементов колебательных контуров по критерию обеспечения изменения частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала, что упрощает устройство, увеличивает квазилинейный участок частотной модуляционной характеристики и девиацию частоты.

1. Способ генерации и частотной модуляции высокочастотных сигналов, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, взаимодействии высокочастотного сигнала с цепью прямой передачи, выполненной из трехполюсного нелинейного элемента и четырехполюсника, нагрузкой и цепью внешней обратной связи, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемых высокочастотных сигналов, условий согласования цепи прямой передачи с нагрузкой и условий согласования нагрузки с управляющим электродом трехполюсного нелинейного элемента, изменении частоты генерируемых колебаний по закону изменения амплитуды низкочастотного управляющего сигнала путем соответствующего изменения баланса фаз, отличающийся тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления x0 и нагрузки xн из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала в соответствии со следующими математическими выражениями:

где X=AB0-BA0; Y=AD0+CB0-(D-δ)A0-BC0; Z=CD0-(D-δ)C0;
A0=B1+b22γ; B0=-(r0+β)A1-(α+γr0)g22; C0=γ(1-g22rн)+g11-A1rн;
D0=(b11-rнB1)(r0+β)-(α+γr0)b22rн; A=A1+γg22; B=(r0+β)B1+(α+γr0)b22;
C=-b11+rн(B1+b22γ); D=(g11-rнA1)(r0+β)+(α+γr0)(1-g22rн);
A1=g11g22-b11b22-g12g21+b12b21; B1=g11b22+b11g22-g12b21-b12g21;
- заданные зависимости отношений соответствующих элементов классической матрицы передачи от частоты на заданной полосе частот; a, b, c, d - элементы классической матрицы передачи резистивного четырехполюсника; r0, rн - заданные зависимости действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданной полосе частот; x0, xн - оптимальные зависимости мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданной полосе частот; g11, b11, g12, b12, g21, b21, g22, b22 - заданные суммарные зависимости действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента от частоты в заданной полосе частот при соответствующем изменении амплитуды низкочастотного управляющего сигнала и соответствующих действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи от частоты в заданной полосе частот.

2. Устройство генерации и частотной модуляции высокочастотных сигналов, состоящее из источника постоянного напряжения и низкочастотного управляющего сигнала, цепи прямой передачи из трехполюсного нелинейного элемента и четырехполюсника, нагрузки и цепи внешней обратной связи, отличающееся тем, что четырехполюсник выполнен резистивным, в качестве цепи внешней обратной связи использован произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между выходом резистивного четырехполюсника и нагрузкой, нагрузка выполнена в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключен второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, мнимые составляющие сопротивления источника сигнала в режиме усиления x0 и сопротивления нагрузки xн реализованы в виде реактивных двухполюсников, выполненных в виде последовательно соединенных параллельного контура из элементов с параметрами L1k, C1k и последовательного контура из элементов с параметрами L2k, C2k, причем значения этих параметров определены из условия обеспечения стационарного режима генерации на четырех частотах генерируемого сигнала и соответствующих четырех значениях амплитуды низкочастотного управляющего сигнала с помощью следующих математических выражений:


где A3=A2C4-A4C2; B3=A2D4+B2C4-A4D2-B4C2; C3=B2D4-B4D2;








Xmk=xmk;
X=AB0-BA0; Y=AD0+CB0-(D-δ)A0-BC0; Z=CD0-(D-δ)C0;
A0=B1+b22mγ; B0=-(r0m+β)A1-(α+γr0m)g22m; C0=γ(1-g22mrнm)+g11m-A1rнm;
D0=(b11m-rнmB1)(r0m+β)-(α+γr0m)b22mrнm; A=A1+γg22m; B=(r0m+β)B1+(α+γr0m)b22m;
C=-b11m+rнm(B1+b22mγ); D=(g11m-rнmA1)(r0m+β)+(α+γr0m)(1-g22mrнm);
A1=g11mg22m-b11mb22m-g12mg21m+b12mb21m; B1=g11mb22m+b11mg22m-g12mb21m-b12mg21m;
- заданные значения отношений соответствующих элементов классической матрицы передачи на заданных частотах; a, b, c, d - элементы классической матрицы передачи выбранного типового резистивного четырехполюсника; r0m, rнm - заданные значения действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; x0m, xнm - оптимальные значения мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; g11m, b11m, g12m, b12m, g21m, b21m, g22m, b22m - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента при заданных четырех значениях амплитуды управляющего сигнала и соответствующих действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на заданных частотах; m=1, 2, 3, 4 - номера частот; δ≤0 - условие возбуждения колебаний; ω1,2,3,4=2πƒ1,2,3,4; ƒ1,2,3,4 - заданные частоты; k=0, н - индекс, характеризующий принадлежность параметров к формированию двухполюсников с сопротивлениями Xmk=xmk.



 

Похожие патенты:

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы. Технический результат изобретения заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента.

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики.

Изобретение относится к технике радиосвязи, в частности к фазоразностным манипуляторам с двукратной фазовой манипуляцией, и может быть использовано в мощных передатчиках в аппаратуре передачи данных.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции высокочастотных сигналов. Техническим результатом изобретения является генерация и частотная модуляция высокочастотного сигнала с увеличенным линейным участком частотной модуляционной характеристики при использовании одного нелинейного элемента.

Изобретение относится к радиотехнике и может быть использовано в системах подвижной радиосвязи. Достигаемый технический результат - сокращение полосы занимаемых частот при увеличении отношения сигнал-шум и увеличении устойчивости к помехам.

Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к приемнику информации.

Устройство относится к области электронной обработки сигналов и предназначено для использования в радиоприемных системах. Техническим результатом изобретения является обеспечение возможности однозначного обнаружения модуляции несущей частоты импульсов импульсной последовательности.

Устройство относится к области электронной обработки сигналов и предназначено для использования в радиоприемных системах. Достигаемый технический результат - обеспечение возможности обнаружения модуляции начальной фазы импульсов импульсной последовательности путем определения фаз взаимокорреляционной и автокорреляционной функций импульсов упомянутой входной последовательности.

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы. Технический результат изобретения заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат заключается в повышении диапазона генерируемых колебаний и генерации высокочастотных сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи и может быть использовано для генерации высокочастотных (ВЧ) сигналов. Достигаемый технический результат - расширение диапазона генерируемых колебаний, генерация ВЧ сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в эффективности устройства генерации и частотной модуляции за счет увеличения линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний, что позволяет формировать сложные сигналы и создавать эффективные устройства генерации для средств радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и может быть использовано для создания средств радиосвязи с заданным количеством радиоканалов. Достигаемый технический результат - увеличение диапазона генерируемых колебаний, генерация высокочастотных сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи и может быть использовано в средствах радиосвязи с заданным количеством радиоканалов. Достигаемый технический результат - увеличение диапазона генерируемых колебаний при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи и радиоэлектронной борьбы. Технический результат изобретения заключается в увеличении линейного участка частотной модуляционной характеристики за счет использования одного нелинейного элемента.
Наверх