Гидроакустический зонд для измерения скорости звука в море

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду специальная схема включает его автономный источник питания, по команде микроконтроллера импульсный генератор через переключатель ударно возбуждает видеоимпульсом цилиндрический пьезоэлектрический преобразователь по толщине стенки. Принятые радиоимпульсы, соответствующие многократно отраженным от поверхности заполненной водой внутренней полости цилиндрического пьезоэлемента акустическим импульсам, через переключатель, усилитель и аналого-цифровой преобразователь поступают в микроконтроллер, который определяет времена их прихода, вычисляет по ним измеренные значения скорости звука в воде и запоминает их. Микроконтроллер формирует соответствующий этим значениям цифровой электрический радиосигнал, который подается через усилитель мощности и переключатель на цилиндрический пьезоэлектрический преобразователь - гидроакустический излучатель зонда, радиально колеблющийся и передающий цифровую измерительную информацию на судно через водную среду. Технический результат состоит в упрощении по сравнению с аналогичными гидроакустическими зондами для измерения скорости звука в море конструкции зонда и уменьшении его стоимости. 1 ил.

 

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи.

Известны зонды для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи (гидроакустические зонды).

В книге [1] дано описание погружаемого в море на кабель-тросе гидроакустического зонда, состоящего из частотных датчиков скорости звука и глубины, формирователя сигнала излучения, усилителя мощности и гидроакустического излучателя. Излучаемый гидроакустическим излучателем сигнал представляет сумму трех сигналов: стабилизированной кварцем несущей частоты и двух сигналов, частота которых однозначно зависит от значения измеряемой скорости звука и гидростатического давления соответственно.

Причинами, препятствующими достижению технического результата, являются необходимость использования палубного оборудования для погружения и подъема зонда на тросе, невозможность измерять таким зондом на ходу судна, а также малая точность, обусловленная излучением непрерывных аналоговых акустических сигналов зонда, мешающих нормальному функционированию его датчика скорости звука и имеющих низкую помехоустойчивость приема.

Гидроакустический зонд одноразового использования по патенту США [2] содержит герметичный контейнер с импульсно-циклическим датчиком скорости звука, датчиком гидростатического давления (глубины), амплитудным модулятором, генератором фиксированной частоты, усилителем мощности, гидроакустическим излучателем и автономным источником питания.

Причинами, препятствующими достижению технического результата, являются сложность конструкции и большая стоимость одноразового гидрологического зонда, а также малая точность, обусловленная излучением непрерывных аналоговых акустических сигналов зонда, мешающих нормальному функционированию его датчика скорости звука и имеющих низкую помехоустойчивость приема.

Гидроакустический зонд для измерения скорости звука в море по авторскому свидетельству СССР [3] состоит из импульсно-циклического датчика скорости звука, задающего генератора, преобразователя частотного сигнала датчика в двоичный код, акустического передатчика и автономного источника питания. Датчик скорости звука включает в себя последовательно электрически связанные импульсный генератор, цилиндрический пьезоэлектрический преобразователь и усилитель принятого сигнала. Задающий генератор состоит из последовательно электрически соединенных кварцевого генератора фиксированной частоты, первого и второго делителей частоты и элемента задержки. Преобразователь частотного сигнала датчика скорости звука в двоичный код выполнен из последовательно соединенных вычитающего устройства, временного селектора, двоичного счетчика и сдвигового регистра, последовательно соединенных формирователя интервала отсчетов, формирователя маркерного сигнала и формирователя сигнала параллельной записи. Акустический передатчик включает в себя импульсный амплитудный модулятор, усилитель мощности и гидроакустический излучатель.

Гидроакустический зонд для измерения скорости звука в море излучает импульсный цифровой акустический радиосигнал и поэтому у него отсутствуют недостатки, характерные для зондов с аналоговым излучающим сигналом.

Причинами, препятствующими достижению технического результата, являются низкая точность измерения скорости звука, вследствие использования импульсно-циклического датчика скорости звука с цилиндрическим акустическим преобразователем при наличии в его рабочей внутренней полости многократных отражений акустического сигнала, которые мешают приему полезного сигнала, повышенная стоимость одноразового гидроакустического зонда из-за сложности его задающего генератора и преобразователя частотного сигнала датчика скорости звука в двоичный код, выполненных из большого количества отдельных цифровых и логических микросхем.

Наиболее близким по совокупности признаков и технической сущности к предлагаемому изобретению является гидрологический зонд для измерения скорости звука в море по полезной модели [4], содержащий автономный источник питания и схему его включения, цилиндрический пьезоэлектрический преобразователь, последовательно электрически соединенные усилитель мощности и гидроакустический излучатель, кварцевый генератор, импульсный генератор, усилитель принятого сигнала, аналого-цифровой преобразователь и микроконтроллер, вход аналого-цифрового преобразователя подключен к выходу усилителя принятого сигнала, а выходы аналого-цифрового преобразователя и кварцевого генератора подсоединены к соответствующим входам микроконтроллера, первый выход которого подключен к входу импульсного генератора, а второй выход микроконтроллера подсоединен к входу усилителя мощности.

Причиной, препятствующей достижению технического результата, является наличие в зонде-прототипе дополнительного акустического преобразователя для излучения гидроакустических сигналов, несущих измерительную информацию о скорости звука в море, что усложняет конструкцию гидроакустического зонда и увеличивает его стоимость.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, состоит в упрощении конструкции гидроакустического зонда для измерения скорости звука в море и уменьшении его стоимости.

Для достижения технического результата в предлагаемом гидроакустическом зонде для измерения скорости звука в море дополнительно введен переключатель, к выходу которого подключен цилиндрический пьезоэлектрический преобразователь, первый вход переключателя электрически связан с выходом импульсного генератора и входом усилителя принятого сигнала, второй вход переключателя подсоединен к выходу усилителя мощности, а третий вход переключателя подключен к третьему выходу микроконтроллера.

Сущность изобретения поясняется фигурой 1, на которой представлена структурная схема гидроакустического зонда для измерения скорости звука в море.

Гидроакустический зонд для измерения скорости звука в море содержит: микроконтроллер 1; импульсный генератор 2; переключатель 3; цилиндрический акустический преобразователь 4; усилитель 5; аналого-цифровой преобразователь (АЦП) 6; усилитель мощности 7; кварцевый генератор 8; автономный источник питания 9; схему включения источника питания 10 с контактом 11.

Гидроакустический зонд для измерения скорости звука в море функционирует следующим образом.

После сброса зонда за борт судна контакт 11 электрически соединяется через малое сопротивление соленой воды с металлическим корпусом зонда, при этом срабатывает схема 10, которая включает автономный источник питания 9, подающий на все электронные схемы зонда электрическое напряжение Uп. Переключатель 3 находится в положении «Измерение». По команде микроконтроллера 1 с выхода импульсного генератора 2 через переключатель 3 на обратимый цилиндрический акустический преобразователь 4 подается электрический видеоимпульс. Цилиндрический пьезоэлемент преобразователя 3 ударно возбуждается по толщине стенки h на частоте f≈0.5·CK/h, где CK - скорость звука в пьезоэлектрическом материале преобразователя. Если CK≈4000 м/с и h≈10-3 м, то f≈2 МГц. Соответствующий акустический радиоимпульс распространяется в воде, заполняющей внутреннюю полость цилиндра, до противоположного участка внутренней поверхности, где отражается и возвращается обратно. Данный процесс отражений повторяется многократно.

С выхода цилиндрического пьезоэлемента 4 принятый и преобразованный в электрический радиоимпульс через переключатель 3 и усилитель 5 поступает на вход АЦП 6, который микроконтроллером 1 включается через время t1 после момента излучения импульса, и до момента времени t2 производится оцифровка сигнала с выхода усилителя и передача его в микропроцессор 1. Интервалы времени t1 и t2 определяются как t1=n·d/C1 и t2=n·d/C2, где d-h - внутренний диаметр цилиндрического пьезоэлемента акустического преобразователя, n - число используемых отражений акустического импульса при его распространении в воде во внутренней полости цилиндра, С1≈1600 м/с - максимальное для данного датчика измеряемое значение скорости звука в воде, С2≈1400 м/с - значение скорости звука немного меньшее, чем минимально возможное ее значение в воде (~ 1402 м/с).

Для обеспечения процесса полного затухания отражений акустических импульсов, излучение радиоимпульсов производится с периодом следования, которое значительно больше значения времени t2.

В промежутке времени от t1 до t2 микроконтроллер 1 определяет время прихода tc принятого радиоимпульса и по нему находит измеренное значение скорости звука в воде по формуле C=n·d/tC, которое запоминается. По команде микроконтроллера 1 переключатель 3 переводится в положение «Передача». Далее микроконтроллер 1 вырабатывает цифровой электрический радиосигнал, соответствующий измеренному значению скорости звука C.

Усиленный усилителем мощности 7 цифровой электрический радиосигнал через переключатель 3 подается на цилиндрический акустический преобразователь 4, который возбуждается радиально. При этом его средний радиус совершает пульсирующие колебания, вызывая изменение (увеличение и уменьшение) на некоторую величину длины средней окружности пьезоцилиндра. Акустический преобразователь 4 излучает в воду соответствующий цифровой акустический сигнал. Несущая частота акустического сигнала равна f0=CK/n(d+h). Пусть, как и ранее, CK≈4000 м/с, h≈10-3 м, а d≈0,02 м, тогда f0≈30 кГц. Данные о значении скорости звука передаются по окончании цикла ее измерения и не создают нежелательных акустических помех. После передачи цифрового сигнала микроконтроллер 1 переводит переключатель 3 в положение «Измерение» и режимы функционирования зонда непрерывно повторяются. Работа всех цифровых схем синхронизируется кварцевым генератором 8.

В предлагаемом гидроакустическом зонде для измерения скорости звука в море один цилиндрический пьезоэлектрический преобразователь поочередно выполняет функции измерительной базы при измерении скорости звука и гидроакустического излучателя, передающего цифровую измерительную информацию на судно через водную среду. Это позволяет упростить конструкцию гидроакустического зонда для измерения скорости звука в море и уменьшить его стоимость.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

1. Комляков В.А. Корабельные средства измерения скорости звука и моделирования акустических полей в океане. СПб.: Наука. 2003. 357 с.

2. Pat. 3341808 USA. CI. 340-5. Telemetering apparatus / Levin M., Stahl R.A. Filed 12.10.1965. Publ. 12.09.1967.

3. A.c. 1770770 СССР. G 01 H 5/00. Акустический зонд для измерения скорости звука в море / Попов Е.Д., Матвеев М.В. Заявл. 11.01.1990. Опубл. 23.10.1992. БИ №39.

4. Патент на полезную модель G 01 H 5/00. Серавин Г.Н., Микушин И.И., Лобанов В.Н. Гидрологический зонд для измерения скорости звука в море / Заявл. 12.03.2014. Опубл. 27.10.2014. Бюл. №30.

Гидроакустический зонд для измерения скорости звука в море, содержащий автономный источник питания и схему его включения, цилиндрический пьезоэлектрический преобразователь, усилитель мощности, кварцевый генератор, импульсный генератор, усилитель принятого сигнала, аналого-цифровой преобразователь и микроконтроллер, вход аналого-цифрового преобразователя подключен к выходу усилителя принятого сигнала, а выходы аналого-цифрового преобразователя и кварцевого генератора подсоединены к соответствующим входам микроконтроллера, первый выход которого подключен к входу импульсного генератора, а второй выход микроконтроллера подсоединен к входу усилителя мощности, отличающийся тем, что дополнительно введен переключатель, к выходу которого подсоединен цилиндрический пьезоэлектрический преобразователь, первый вход переключателя электрически связан с выходом импульсного генератора и входом усилителя принятого сигнала, второй вход переключателя подключен к выходу усилителя мощности, а третий вход переключателя подсоединен к третьему выходу микроконтроллера.



 

Похожие патенты:

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем.

Изобретение относится к области измерения параметров срабатывания средств инициирования детонации зарядов взрывчатых веществ при взрывных работах, а именно подрывных электродетонаторов (ЭД), имеющих в составе непервичный капсюль-детонатор (КД) на основе бризантных взрывчатых веществ (БВВ) и стандартный электровоспламенитель (ЭВ) с жестким или эластичным креплением мостика накаливания.

Изобретение относится к области гидроакустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах.

Изобретения относятся к области гидроакустической метрологии. Процедура измерения скорости звука времяпролетным способом предполагает задание базы измерения с помощью специальной меры длины, выполненной в виде прямоугольного параллелепипеда с двумя полированными звукоотражающими поверхностями.

Изобретение относится к области гидроакустической метрологии и может быть использовано для построения современных многолучевых эхолотов. Производят ненаправленное излучение зондирующего сигнала в сторону дна, прием отраженного сигнала веером статических характеристик направленности (ХН), измерение скорости звука на глубине их излучения, сигнал, отраженный от дна, принимают двумя парциальными ХН под углами меньше, чем 40 градусов от нормали, а их оси разнесены на углы порядка 2 градуса, измеряют углы направленности выбранных парциальных ХН, измеряют времена прихода сигналов, отраженных от дна, в выбранные парциальные ХН, определяют отношение времен распространения принятых сигналов, производят последовательный перебор возможных значений скорости звука на глубине у дна в диапазоне 30% от скорости звука, измеренной на глубине излучения с шагом 0,5 м/сек, а за оценку скорости звука на глубине принимают то значение, которое обеспечивает минимум разности.

Использование: изобретение относится к области гидроакустики и может быть применено при формировании оценки полного профиля вертикального распределения скорости звука (ВРСЗ) по его измеренному в некотором диапазоне глубин фрагменту.

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде. Способ предполагает излучение широкополосного импульса, прием отраженных сигналов на приемопередающую антенну с узкой характеристикой направленности, измерение скорости звука на горизонте приемопередающей антенны, измерение распределения по времени приращения фазы принятого сигнала. Затем, используя скорость звука на горизонте приемопередающей антенны, последовательно восстанавливают распределение по времени скорости звука в моменты времени, отстоящие друг от друга на время не более половины ширины автокорреляционной функции излучаемого сигнала, и по измеренному распределению по времени скорости звука в воде определяют распределение скорости звука по глубине. Технический результат - упрощение способа, снижение энергопотребления устройства.

Изобретение относится к электротехнике, а именно к способу контроля посадочного натяга обода ротора электрической машины. Способ содержит ввод до установки клиньев, после расклиновки и в процессе эксплуатации электрической машины с торцевой поверхности закладных клиньев упругих волн, измерение временных задержек упругих волн для каждого клина и расчет величины (P) - относительного изменения разности временных задержек распространения упругих волн в клине. В процессе эксплуатации электрической машины состояние натяга определяется по среднему значению величины P и значению дисперсии изменений величины P. Технический результат состоит в контроле посадочного натяга обода на остов без разборки ротора посредством оценки изменения напряженного состояния клиньев, обеспечивающих натяг. 4 з.п. ф-лы, 2 ил.

Изобретение относится к гидроакустике, в частности к средствам измерения скорости звука. Способ измерения скорости звука по трассе заключается в излучении зондирующего сигнала неподвижным источником через постоянные промежутки времени Т, сохраняя длительность сигнала постоянной. Осуществляют прием сигнала антенной приемного устройства, движущегося навстречу по траектории распространения сигнала. Определяют скорость V движения носителя приемного устройства, время прихода первого зондирующего сигнала t1, время прихода N-го зондирующего сигнала tN и скорость звука С. Прием сигнала осуществляют антенной со статическим веером характеристик направленности с шириной характеристики направленности пространственного канала Δβ°, определяют номер пространственного канала Ni, в котором обнаружен сигнал с максимальной амплитудой, измеряют амплитуду максимального сигнала Ai, определяют амплитуды сигналов в соседних пространственных каналах, выбирают соседний пространственный канал Nj с наибольшей амплитудой Aj, скорость звука определяют по формуле С=(N-1)TVcosКУ°/{t1-tN+(N-1)Т}, а курсовой угол КУ° источника зондирующего сигнала определяют по формуле при j<i и , если j>i, где Δβ° - ширина характеристики направленности пространственного канала. Технический результат – повышение точности измерений. 1 ил.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Изобретение относится к метрологии, в частности к способам измерения скорости звука. Способ измерения распределения скорости звука в жидких средах заключается в том, что расположенным на заданном горизонте среды источником звуковых колебаний излучают акустические сигналы и поочередно принимают акустическими приемниками сигналы, отраженные от акустических рассеивателей, находящихся в объемах жидкой среды, которые ограничены пересечением характеристики направленности источника с веером характеристик направленности приемников. Затем измеряют значения скорости звука на горизонте источника и приемников, задают углы наклона характеристик направленности приемников и измеряют соответствующие им времена распространения сигналов от источника до рассеивающих объемов среды и далее до приемников. Расчетным путем определяют горизонты залегания рассеивающих объемов среды и вычисляют значения Ci скорости звука на этих горизонтах. Дополнительно определяют сумму проекций скорости течения Vi на характеристики направленности приемников, используя для вычисления доплеровский сдвиг частоты, получаемый из сигналов источника и приемников, и вычисляют откорректированные значения Сг скорости звука на горизонтах залегания рассеивающих объемов среды по выражению Сг=Ci±Vi. Технический результат - повышение точности измерений. 1 ил.

Изобретение относится к акустике. Способ измерения скорости распространения головной ультразвуковой волны предполагает возбуждение и прием прошедших по изделию ультразвуковых импульсов, оцифровку импульсов, запись в компьютер и определение временных интервалов между этими импульсами. Головную акустическую волну возбуждают лазерным излучением, формируют лазерное пятно и соответствующий ему возбуждаемый акустический пучок, сформированный акустический пучок из генератора направляют под углом β, близким к первому критическому, через звукопровод к поверхности изделия, а затем принимают под углом - β двумя звукопроводами, разнесенными между собой и генератором на расстояние L. Звукопроводы выполняют в виде призм, изготовленных из синтетического полимера метилметакрилата. Устройство, реализующее предлагаемый способ, содержит генератор лазерных импульсов, оптико-акустический преобразователь, изделие, точки съема ультразвуковых импульсов первого и второго пьезоприемника, первый блок АЦП, компьютер, второй блок АЦП, тонкий иммерсионный слой контактной жидкости, звукопроводы. Технический результат - повышение разрешающей способности и точности измерения изменения скорости распространения головной ультразвуковой волны. 2 н.п. ф-лы, 2 ил.

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду специальная схема включает его автономный источник питания, по команде микроконтроллера импульсный генератор через переключатель ударно возбуждает видеоимпульсом цилиндрический пьезоэлектрический преобразователь по толщине стенки. Принятые радиоимпульсы, соответствующие многократно отраженным от поверхности заполненной водой внутренней полости цилиндрического пьезоэлемента акустическим импульсам, через переключатель, усилитель и аналого-цифровой преобразователь поступают в микроконтроллер, который определяет времена их прихода, вычисляет по ним измеренные значения скорости звука в воде и запоминает их. Микроконтроллер формирует соответствующий этим значениям цифровой электрический радиосигнал, который подается через усилитель мощности и переключатель на цилиндрический пьезоэлектрический преобразователь - гидроакустический излучатель зонда, радиально колеблющийся и передающий цифровую измерительную информацию на судно через водную среду. Технический результат состоит в упрощении по сравнению с аналогичными гидроакустическими зондами для измерения скорости звука в море конструкции зонда и уменьшении его стоимости. 1 ил.

Наверх