Двухступенчатая космическая ракета

Изобретение относится к многоступенчатым космическим ракетам. Ракета состоит из разгонного блока с жидкостными или твердотопливными реактивными двигателями и космического модуля с продольным каналом, имеющего торообразную форму с цилиндрическим наружным корпусом. Продольный канал выполнен в форме гиперзвукового прямоточного воздушно-реактивного двигателя. Техническим результатом изобретения является увеличение массы полезного груза при сохранении стартовой массы ракеты. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области космонавтики, а именно к многоступенчатым космическим ракетам, преимущественно транспортным, и может быть использовано для доставки на орбиту Земли как различных полезных грузов, так и конструктивных элементов для строительства космических станций.

Известны многоступенчатые космические ракеты, в которых при движении в плотных слоях атмосферы с целью экономии топлива используются прямоточные воздушно-реактивные двигатели (Патент RU №2492417, а также кн. Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах, под редакцией Л.С. Яновского, авт. В.Н. Александров и др., Москва, ИКЦ «Академкнига», 2006, с. 192, рис. 4.1). Но в этих ракетах прямоточные воздушно-реактивные двигатели являются дополнительными и не несут конструктивной нагрузки, что снижает эффективность их применения. Кроме того, применение этих двигателей не приводит к снижению аэродинамического сопротивления движению ракеты (в плотных слоях атмосферы, при сверхзвуковых скоростях весьма значительного).

Целью изобретения является устранение этих недостатков, что позволит этому принципу (использование прямоточного воздушно-реактивного двигателя) стать практически привлекательным.

Технически результат достигается тем, что в двухступенчатой космической ракете, содержащей разгонный блок, оснащенный жидкостными или твердотопливными реактивными двигателями, и космический модуль с полезным грузом, по изобретению космическому модулю придана торообразная форма с наружным корпусом, выполненным в виде цилиндра, и с внутренним продольным каналом, имеющим форму гиперзвукового прямоточного воздушно-реактивного двигателя (далее ГПВРД). При этом воздухозаборный диффузор ГПВРД на время работы разгонного блока закрыт отделяемым головным обтекателем. Задняя часть космического модуля в границах сопла ГПВРД также является отделяемой. В межкорпусном пространстве космического модуля помещаются дополнительные жидкостные или твердотопливные двигатели.

На фиг. изображена двухступенчатая космическая ракета в продольном разрезе.

Двухступенчатая космическая ракета содержит разгонный блок - «Р» и космический модуль - «К», с цилиндрическим корпусом 1 и продольным каналом в виде ГПВРД - «Д». ГПВРД включает в себя воздухозаборный диффузор 2, камеру сгорания 3, выходное сопло 4, топливные форсунки 5 и средства воспламенения воздушно-топливной смеси (вар. факельного типа) 6. Воздухозаборный диффузор 2 закрывается головным обтекателем 7. В межкорпусном пространстве космического модуля - «К» помещаются твердотопливные реактивные двигатели (вар.) 8. Там же, выше твердотопливных реактивных двигателей 8 располагается полезный груз и рабочее оборудование ракеты 9, а ниже - топливо для ГПВРД 10.

Двухступенчатая космическая ракета действует следующим образом. С помощью разгонного блока - «Р» космический модуль - «К» обретает скорость 3÷5 М, после чего происходит отстыковка и отделение разгонного блока - «Р» и головного обтекателя 7 (вар. с помощью встроенных твердотопливных реактивных двигателей) и запускается в работу ГПВРД. Для этого насосом (не показан) топливо (вар. жидкий водород) из емкости 10 подается к форсункам 5, расположенным в передней части воздухозаборного диффузора 2, и в смеси со встречным воздухом воспламеняется «факелами» 6 (вар.). Пройдя камеру сгорания 3, продукты сгорания покидают ГПВРД через сопло 4, обеспечивая разгон космического модуля-«К» до предельной для ГПВРД скорости (10÷12 М). Далее происходит отделение освободившейся от топлива нижней части космического модуля - «К» (по линии А-А), высвобождая при этом сопла твердотопливных реактивных двигателей 8. С их помощью космический модуль - «К» достигает первой космической скорости и выходит на орбиту Земли.

Положительный эффект от такого использования ГПВРД (повышение экономичности космических транспортных операций) может быть еще большим, если в качестве разгонного блока - «Р» использовать не ракету с жидкостным или твердотопливным реактивным двигателем, а пульсирующий воздушно-реактивный двигатель (ПуВРД) (Заявка №2015123744, дата поступления 18.06.2015).

1. Двухступенчатая космическая ракета, содержащая разгонный блок, оснащенный жидкостными или твердотопливными реактивными двигателями, и космический модуль с полезным грузом, отличающаяся тем, что космический модуль имеет торообразную форму с наружным корпусом, выполненным в виде цилиндра, и с внутренним продольным каналом, выполненным в виде гиперзвукового прямоточного воздушно-реактивного двигателя.

2. Ракета по п. 1, отличающаяся тем, что до отделения разгонного блока от космического модуля, воздухозаборный диффузор гиперзвукового прямоточного воздушно-реактивного двигателя закрыт отделяемым головным обтекателем.

3. Ракета по п. 1, отличающаяся тем, что задняя часть космического модуля в границах сопла гиперзвукового прямоточного воздушно-реактивного двигателя является отделяемой.

4. Ракета по п. 1, отличающаяся тем, что в межкорпусном пространстве космического модуля помещаются твердотопливные реактивные двигатели.

5. Ракета по п. 1, отличающаяся тем, что в межкорпусном пространстве космического модуля помещаются жидкостные реактивные двигатели.



 

Похожие патенты:

Изобретение относится к бортовому оборудованию космических аппаратов. В способе парирования перегрузок по току в электронном блоке космического аппарата, при перегрузке по току сигнализируют об отказе канала электронного блока и отключают его, затем включают.

Изобретение относится к области космической техники. Обслуживаемый на орбите космический аппарат (КА) содержит штатную двигательную установку с топливными баками, систему подачи топлива с заправочной горловиной, целевую аппаратуру, систему управления движением, систему электропитания, силовые стыковочные узлы для стыковки с космическим аппаратом обслуживания, систему информационной связи с наземным пунктом управления и с космическим аппаратом обслуживания (КАО).

Изобретение относится к ракетно-космической технике. Способ выведения на орбиту полезной нагрузки ракетой-носителем с полиблочным пакетом ракетных блоков комбинированной схемы включает несколько этапов.

Изобретение относится к области ракетно-космической техники. Предложенное теплозащитное покрытие (ТЗП) корпуса возвращаемого ЛА содержит намотанную на силовую оболочку по спирали ленту.

Изобретение относится к космической технике. Способ очистки околоземного космического пространства от космического мусора включает формирование тормозного экрана, торможение элементов космического мусора вследствие соударения с экраном, перевод элементов космического мусора на более низкую орбиту, постепенное торможение элементов космического мусора об атмосферу Земли и последующее сгорание элементов космического мусора в атмосфере Земли.

Изобретение относится к ракетно-космической технике и может быть использовано в ракетных блоках (РБ). Универсальный водородно-кислородный ракетный модуль (РМ) содержит топливные баки горючего и окислителя, межбаковый отсек с нишами и разделяемым узлом, ферменный межступенчатый отсек с теплозащитным отражателем и съемной пылевлагозащитной оболочкой, сопряженный с ракетой-носителем (РН), кислородно-водородные двигатели (КВД) с входными штуцерами подачи азота, средства продувки КВД азотом, трубопроводы, разъемные соединения, приборы служебных систем, системы управления и радиосистем РКН, узлы крепления, пневмогидравлическую систему с агрегатами и управляющими клапанами для взаимодействия с агрегатом связи бортового и наземного оборудования, герметичные корпуса, защитные устройства, баллоны бортового наддува гелием топливного бака окислителя с выходными патрубками, фланцевые соединения, узлы герметизации, заборные устройства, съемные трубопроводы наземного газоанализатора.

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании посадочных аппаратов (ПА). ПА содержит корпус, тороидальную посадочную опору, научную и служебную аппаратуру, выдвижной приборный контейнер и аккумулятор давления.

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель.

Изобретение относится к космической технике и может быть использовано для передачи телеметрической информации со спускаемого космического аппарата (СКА). Устройство передачи телеинформации со СКА содержит камеру телезонда с теплозащитной оболочкой, телезонд, крышку камеры, два вышибных заряда.

Изобретение относится к области ракетной техники и касается вопросов обеспечения безопасности пуска ракеты. Способ пуска космической ракеты заключается в превентивном выведении на режим предельного или частичного форсирования всех двигателей до отрыва ракеты от стартового стола или в начале движения с уровнем тяги, превышающим номинальный уровень на величину, достаточную для исключения возможности зависания или обратного движения ракеты в случае отказа, по крайней мере, одного неисправного двигателя.

Группа изобретений относится к космической технике. Способ запуска микро- и наноспутников заключается в том, что после установки запускаемого спутника с одноосным гироскопом на основании и после выбора с помощью электромеханической системы ориентации заданного направления производится раскрутка гироскопа и запуск аппарата. Электромеханическая часть микропроцессорной магнитоиндукционной системы запуска содержит механизмы поворота планшайбы запуска в азимутальном и зенитном направлениях, приводимые в действие шаговыми двигателями, управляемыми по командам микропроцессора. Для формирования механического импульса запуска служит соленоид, помещенный в рабочий зазор магнитной системы. Электромеханическая система также содержит электромагнит, фиксирующий спутник с установленным на его нижнем основании одноосным гироскопом. Микропроцессор системы запуска отключает электромагнит в момент отделения. Техническим результатом группы изобретений является обеспечение управляемого запуска наноспутников и микроспутников с сохранением ориентации в пространстве относительно главной оси отделенного аппарата. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к способам старта ракет. В способе старта тяжелой ракеты разгоняется ракета на стартовой тележке по наклонной прямой с направляющими рельсами. Тележка соединена тросом-леером, перекинутым через блок, с противовесом. Противовес массой гораздо тяжелее ракеты сбрасывают с обрыва. Тележка с ракетой разгоняется посредством преобразования потенциальной энергии падающего противовеса в кинетическую энергию движения ракеты с тележкой. При достижении околозвуковой скорости ракета отсоединяется от тележки и переходит в автономный полет с помощью собственных двигателей. Противовес с леером и стартовой тележкой падают в водоём. Техническим результатом изобретения является уменьшение стартовой массы ракеты и увеличение массы полезной нагрузки. 1 ил.

Группа изобретений относится к ракетной технике. Ракета-носитель (РН) содержит как минимум одну возвращаемую ступень с крыльями и хвостовым оперением, маршевую и управляющую двигательные установки. Маршевая двигательная установка выполнена в виде по меньшей мере одного ЖРД и установлена в нижней части фюзеляжа возвращаемой ступени. Управляющая двигательная установка выполнена в виде по меньшей мере одного ГТД, установленного параллельно ЖРД. Возвращаемая ступень ракеты-носителя содержит фюзеляж, баки окислителя и горючего, крылья, хвостовое оперение, по меньшей мере один маршевый ЖРД. В фюзеляже установлен по меньшей мере один ГТД с управляемым вектором тяги. Камера сгорания ГТД соединена с газогенератором. ГТД может содержать перед основной камерой сгорания кольцевой коллектор. Система вертолетного подхвата возвращаемой ступени включает парашют, трос зацепления и вертолет с грузовым тросом к крючком на конце. В верхней части силового троса может быть установлен датчик веса. Техническим результатом группы изобретений является обеспечение работоспособности ГТД на больших высотах. 4 н. и 7 з.п. ф-лы, 24 ил.

Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения. Каркас выполнен на основе тепловых труб. Диаметр и толщина стенок тепловых труб выбраны из условий обеспечения напряжений, не превышающих предел текучести, и обеспечения частоты собственного резонанса труб не менее 150 Гц. Каждый из узлов соединения тепловых труб представляет собой единую деталь с отверстиями для установки концов стыкуемых тепловых труб. Техническим результатом изобретения является повышение прочности, надежности и теплоустойчивости конструкции. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика. Восстановление ориентации КА производится из демпфированного относительно инерциальной - геоцентрической абсолютной системы координат произвольного положения КА. При этом демпфирование осуществляется до угловых скоростей КА, при которых восстанавливается работоспособность астродатчика. Восстановление ориентации КА выполняется одним поворотом вокруг оси Эйлера с упреждающим отключением программного поворота для снижения угловой скорости КА и снятия ограничений на включение контура коррекции от астродатчика. Техническим результатом изобретения является сокращение времени восстановления ориентации КА. 3 ил.

Использование: в области электротехники при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите. Технический результат - повышение эффективности управления зарядом/разрядом АБ. Согласно способу в случае отказа передающего устройства штатной бортовой системы телеметрической информации (БСТИ) в силу каких-либо технических причин для контроля состояния СЭП, в том числе и формуемой АБ, используют информацию контрольного и рабочего подмассивов из состава массива информации оперативного контроля (ИОК), формируемых и отображаемых в нем по исходным данным, выдаваемым БСТИ в бортовой комплекс управления. При этом в процессе проведения режима разряда формуемой АБ организуют не менее трех сеансов связи с КА со съемом ИОК на каждом сеансе связи. Указанные подмассивы, составленные из аналоговых и сигнальных параметров АБ, разбивают на отдельные информационные группы, отличающиеся друг от друга комбинацией параметров АБ, причем группы параметров АБ одного из подмассивов, представляющего собой контрольную телеметрическую информацию, формируют и отображают в составе массива ИОК по факту срабатывания либо сигнальных датчиков давления любой из n АБ, либо по факту срабатывания пороговых датчиков минимального напряжения любой АБ или минимального напряжения любого аккумулятора. Группы параметров АБ другого подмассива, представляющего собой рабочую телеметрическую информацию, формируют и отображают в составе массива ИОК в определенной временной последовательности, причем количество групп параметров АБ и временные промежутки между ними задают в составе рабочей программы (РП). Скорость разряда формуемой АБ вычисляют, используя данные массива ИОК, как минимум, с двух сеансов связи с КА, а по известной скорости разряда формуемой АБ определяют расчетный номер витка орбиты N для принудительной отмены режима глубокого разряда формуемой АБ. Разовые команды (РК), необходимые для фактического завершения режима разряда формуемой АБ, выдают в сеансе связи на витке (N+1) либо (N+2), причем в сеансах связи, в которых выдаются РК по управлению режимами функционирования формуемой АБ или изменению конфигурации СЭП с использованием коммутационной аппаратуры аварийной шины, осуществляют второй съем ИОК. При этом параметры АБ, отображаемые в составе ИОК, соответствуют моменту времени выдачи РК для второго съема ИОК. 2 ил.

Изобретение относится к воздушно-космической технике. Летательный аппарат содержит блок управления с возможностью выдачи импульсных или непрерывных напряжений, прямоугольную камеру с амортизатором внутри с закруглениями между стенками. В конце камеры расположены два полукруглых магнита, жестко связанные с ее боковыми стенками позади пружин пружинных клапанов с закруглением в конце, находящиеся перед этими закруглениями между стенками амортизатора этой камер. Входы полукруглых электромагнитов соединены с выходами блока управления. Техническим результатом изобретения является увеличение ускорения летательного аппарата. 1 ил.

Группа изобретений относится к технологиям осуществления сверхбыстрых полетов в атмосфере планет. Конструкция и рабочие режимы летательных аппаратов для этой цели обеспечивают высокую синергию теплофизических и газодинамических процессов взаимодействия с атмосферой. Технический результат состоит в возможности сохранить целостность указанных конструкций при их допустимой температуре и получить достаточную тягу для полёта и спуска в атмосфере. 4 н. и 12 з.п. ф-лы, 18 ил.

Изобретение относится к авиационно-космической технике. Воздушно-реактивная с электрическим запуском стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся одними своими концами опорные штанги для космической ракеты. К вращающемуся кольцу радиально крепятся одним своим концом лопасти, служащие для создания подъемной силы воздушно-реактивной стартовой системы и содержащие баки для топливных компонентов. К другим концам авиационных плоскостей прикреплены воздушно-реактивные двигатели для создания подъемной силы. На вращающемся кольце расположен ротор электропривода вращающегося кольца, статор которого размещен в наземном блоке электрического запуска старта космической ракеты. Техническим результатом изобретения является повышение надежности и оперативности запуска. 6 ил.

Изобретение относится к авиационно-космической технике. Воздушно-реактивная стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся опорные штанги для космической ракеты. Верхнее кольцо содержит систему управления воздушно-реактивного стартовой системы и батареи ее электроснабжения. Верхнее кольцо опирается на нижнее вращающееся кольцо посредством системы магнитного подвеса. К нижнему кольцу радиально крепятся одним своим концом лопасти, служащие для создания подъемной силы воздушно-реактивной стартовой системы и баками для топливных компонентов, а на другом конце к лопастям прикреплены воздушно-реактивные двигатели для вращения лопастей вокруг оси перпендикулярной плоскости подвижного кольца. Техническим результатом изобретения является повышение надежности и оперативности запуска. 7 ил.
Наверх