Способ модификации грубого волокна из техногенных отходов для производства строительной фибры

Изобретение относится к технологии получения строительной фибры из техногенных отходов. Технический результат заключается в повышении адгезионных характеристик получаемого волокна. Способ получения строительной фибры из техногенных отходов путем подачи минералов в плавильную печь, получения расплава, его гомогенизации и вытягивания непрерывных волокон из фильер питателя с последующей рубкой без предварительной намотки, причем обработку волокна низкотемпературной плазмой производят в высокотемпературной зоне, примыкающей к зоне выхода из фильер. 1 ил.

 

Изобретение относится к технологии получения строительной фибры из техногенных отходов для дисперсного армирования в целях упрочнения и повышения в несколько раз стойкости фибробетона (по сравнению с железобетоном) к растрескиванию, изгибающим и разрывным нагрузкам, создания необходимого запаса прочности и сохранению целостности конструкции при сквозных трещинах, а также для значительного уменьшения массы строительных конструкций.

Наиболее близким к заявляемому изобретению является способ получения фибры путем подачи базальтовой породы в плавильную печь, содержащую указанные компоненты в следующих количествах, мас. %: SiO2 - 48,4; Al2O3 - 12,6; Fe2O3 - 14,6; FeO - 11,9; CaO - 6,2; MgO - 4,8; Na2O - 1,0; K2O - 0,5. Последующего нагрева породы до температуры плавления и вытягивание с получением непрерывного волокна диаметром 20-400 мкм [1].

Недостатком данного способа является необходимость непрерывной намотки первичной нити намоточным агрегатом. При такой толщине волокна возможно частная остановка оборудования вследствие ее обрыва, намоточный агрегат значительно увеличивает стоимость готового продукта. Стекловидная поверхность фибры при данным способе не обеспечивает ее эффективную работу в бетоне вследствие недостаточной адгезии фибры к бетонной матрице.

Известен способ модификации поверхности углеродного волокна, включающий в себя две стадии обработки эпоксидной смолой с последующей промывкой в специальном устройстве и сушкой при высоких температурах в сушилках [2].

Недостатком известного способа модификации поверхности волокна является высокая потеря волокон во время технологических операций и снижение их прочности после температурной обработки, большой объем энергозатрат при массовом производстве.

Известен способ модификации поверхности базальтового волокна, включающий придание сложной формы поверхности за счет травления кислотой, формирование на поверхности базальтового волокна группы Si-OH через окислительные реакции и затем депонирование Fe<3+> ионов на поверхности базальтового волокна носителя с помощью катион способа осаждения [3].

Недостатками известного способа являются нестабильность поверхности волокна, перманентные окислительно-восстановительные реакции на его поверхности, уменьшение прочности базальтового волокна вследствие травления кислотой.

Известен способ производства минеральных волокон путем подачи смеси из порошкообразного минерального сырья и воздуха в модуль расплава, оборудованный плазмотроном. Данное устройство содержит графитовый электрод и катод, вмонтированные в дно модуля. Воздействие плазменной струей на минеральное сырье и расплав обеспечивает равномерную вязкость до момента вытягивания волокон [4].

Недостатком известного способа является отсутствие воздействия плазмы на фибру, плазменный поток воздействует исключительно на минеральный расплав, что может достигаться другими способами, а качество поверхности фибры не отличается от фибры, полученной стандартными способами.

В основу изобретения поставлена задача использовать при изготовлении неорганического волокна квалифицированные техногенные отходы различного металлургического производства, например никелевого, титанового и горнодобывающего, например асбестового, производства.

Оптимальное сочетание температурных режимов плавильной печи химического состава материалов для изготовления волокна позволяет заменить материал фильерного блока с платиноиридиевого сплава на жаропрочные стали.

Уменьшение количества технологических операций при производстве фибры из грубого волокна позволяет значительно сократить количество и стоимость технологического оборудования.

В основу изобретения также положена задача модификации поверхности минерального волокна низкотемпературной плазмой для увеличения адгезионных свойств фибры к бетонной матрице.

Поставленная задача достигается тем, что в способе получения неорганического волокна путем подачи минералов в плавильную печь, получения расплава, его гомогенизации, подачи в зону формирования волокна для вытягивания его из расплава используют отходы металлургического производства, например шлак никелевого производства, титаномагнетитовые пески, а также отходы горнодобывающей промышленности - серпентиниты, а диапазон диаметра грубого волокна составляет 50-350 мкм.

Поставленная задача решается также тем, что в технологическую схему производства, в высокотемпературной зоне, непосредственно примыкающей к зоне выхода волокна из фильерного блока, встраивается блок обработки поверхности грубого волокна низкотемпературной плазмой с рабочим напряжением в электродной системе 50-75 кВ.

Благодаря указанному способу изменяется схема производства фибры (рисунок 1), концептуально решаются вопросы массового экономически выгодного производства армирующих волокон различного состава и требуемых свойств, в том числе химически стойких, водостойких и др. Для применения на ГТС, в промышленном и гражданском строительстве.

Основными преимуществами разработанных концептуальных технологических решений производства грубой фибры является повышение производительности, отказ за счет организации непрерывного производства фибры от использования группы технологических операций и соответствующих видов оборудования, что ориентировочно снижает стоимость технологического оборудования специализированного производства фибры на 90% по сравнению со стоимостью оборудования традиционного производства тонкого базальтового волокна.

Дополнительными преимуществами разработанных концептуальных технологических решений являются:

- значительное расширение ассортимента материалов для производства грубого волокна (использование квалифицированных крупнотоннажных техногенных отходов черной и цветной металлургии и горнодобывающей промышленности) за счет снятия ограничений, накладываемых платиновыми материалами фильерных блоков;

- повышение адгезионных характеристик получаемого волокна за счет модификации поверхности волокон низкотемпературной плазмой и исключения использования замасливателей;

- резкое снижение брака;

- использование трудноутилизируемых отходов;

- снижение стоимости готовой продукции (фибры).

Кроме того, экспериментальная проверка введения модифицированной фибры в бетон показала увеличение основных показателей качества бетона, таких как прочность на сжатие и прочность при изгибе в среднем на 10-15%.

Способ получения фибры путем подачи минералов в плавильную печь, получения расплава, его гомогенизации и вытягивания непрерывных волокон из фильер питателя с последующей рубкой без предварительной намотки отличается тем, что в качестве минералов берут техногенные отходы.

Предложен способ получения фибры путем подачи минералов в плавильную печь, где обработка волокна низкотемпературной плазмой для повышения эффекта модификации поверхности волокна производится в высокотемпературной зоне, примыкающей к зоне выхода из фильер. Рабочее напряжение на электродной системе составляет 50-75 кВ, режим работы блока обработки низкотемпературной плазмой частотно-импульсный квазинепрерывный.

Источники информации

1. RU №2418752.

2. CN103757924(A).

3. CN102887575(A).

4. RU №2355651.

Способ получения строительной фибры из техногенных отходов путем подачи минералов в плавильную печь, получения расплава, его гомогенизации и вытягивания непрерывных волокон из фильер питателя с последующей рубкой без предварительной намотки, отличающийся тем, что обработку волокна низкотемпературной плазмой производят в высокотемпературной зоне, примыкающей к зоне выхода из фильер.



 

Похожие патенты:

Водная композиция связующего для минерального волокна, включающая: (1) водорастворимый компонент связующего, получаемый взаимодействием, по меньшей мере, одного алканоламина, по меньшей мере, с одной поликарбоновой кислотой или ангидридом и необязательно обработку продукта реакции основанием; (2) сахар в качестве компонента; и (3) мочевину, доля компонентов (1), (2) и (3) составляет 10-80% масс, компонента (1), 15-80% масс, компонента (2) и 5-60% масс, компонента (3) относительно содержания твердого вещества компонентов (1), (2) и (3), измеренного после термической обработки в течение 1 часа при 200°C.

Изобретение относится к производству теплоизоляционных строительных материалов из силикатных расплавов. Брикетированная шихта для изготовления минерального волокна содержит мелкодисперсные отходы переработки гранита фракции менее 0,16 мм с содержанием оксида кремния менее 60%, мелкодисперсные отходы переработки доломита и цемент при следующем соотношении компонентов, мас.%: отходы переработки гранита 70-75, отходы переработки доломита 20-25, цемент 5-6.

Изобретение относится к искусственным волокнам. Технический результат изобретения заключается в расширении сырьевой базы.

Изобретение относится к композиту минеральной ваты, который используется в качестве изоляционного материала. .

Изобретение относится к производству теплоизоляционных материалов при плавлении сырья в печах-вагранках, а именно к производству минеральной ваты, используемой для тепло- и звукоизоляции.

Изобретение относится к жаростойким волокнам, полученным золь-гельным методом, которые могут быть использованы в качестве термоизолирующих материалов, например, в опорных конструкциях тел катализаторов для борьбы с загрязнением окружающей среды в автомобильной системе каталитического дожигания выхлопных газов и фильтров для твердых частиц в отработанных газах двигателя.
Изобретение относится к области производства фибры базальтовой, предназначенной для трехмерного упрочения и повышения в несколько раз стойкости фибробетона (по сравнению с железобетоном) к растрескиванию, изгибающим и разрывным нагрузкам, создает необходимый запас прочности и способствует сохранению целостности конструкции при сквозных трещинах, а также позволяет значительно уменьшить общий вес строительных конструкций.

Изобретение относится к области искусственных минеральных ват. .

Изобретение относится к области искусственных минеральных ват. .
Изобретение относится к области производства непрерывных и шпательных минеральных волокон из расплава базальтовых горных пород с высокой прочностью, температурной и химической устойчивостью и может быть использовано в промышленности строительных материалов с тепло- и звукоизоляционными свойствами, энергетике и других областях.

Изобретение относится к способам и устройству для формирования оптических волокон и, в частности, относится к способу изготовления оптического волокна для формирования и охлаждения оптического волокна.

Изобретение относится к оптической и электронной промышленности, в частности к элементам волоконной оптики, и может быть использовано при изготовлении гибких и жестких регулярных волоконно-оптических жгутов, волоконно-оптических пластин, преобразователей, фоконов.

Изобретение относится к волокнам из базальтового сырья и может быть использовано для производства материалов широкого спектра применения, в автомобилестроении. Техническим результатом изобретения является повышение качества расплава базальта, стабилизация теплового режима подачи расплава базальта.

Изобретение относится к волоконной оптике, в частности к технологии изготовления оптических волокон (ОВ) с высоким двулучепреломлением, сохраняющих поляризацию излучения.

Изобретение относится к производству волоконной оптики. Способ изготовления преформы с заданным профилем показателя преломления содержит следующие стадии: задание профиля показателя преломления для преформы, содержащей сегменты профиля с определенными показателями преломления: сегмент исходной преформы, первый кольцевой компонент и полый цилиндрический компонент готовой преформы; введение исходной цилиндрической преформы во внешнюю цилиндрическую трубку, обеспечение множества стержней преломления; установку их вокруг исходной преформы.

Изобретение относится к аппарату для нагрева стеклянной заготовки, которая используется для вытягивания оптоволокна. Технический результат изобретения заключается в повышении герметичности уплотнения между внутренней поверхностью печи и окружающей средой.

Нагреватель высокотемпературной печи для нагрева заготовок из кварцевого стекла относится к технологии изготовления оптического волокна. Техническим результатом изобретения является упрощение способа изготовления нагревательного элемента при одновременном снижении его токовой нагрузки.

Изобретение относится к оптоволоконной технике и может быть использовано в производстве микроструктурированных волоконных световодов, используемых в оптических усилителях, лазерах, спектральных фильтрах и телекоммуникационных сетях.

Изобретение относится к области оптоволоконной связи, в частности к волокну, имеющему значительно сниженные потери на изгибе. .

Изобретение относится к формированию оптического волокна. .

Изобретение относится к способу и устройству для изготовления оптического волокна и к оптическому волокну, получаемому с использованием этого способа и этого устройства. Технический результат заключается в получении оптического волокна с небольшим разбросом по его диаметру, имеющего потери при передаче, не превышающие заданное значение, без использования специальных устройств для медленного охлаждения стекловолокна. Устройство оснащено держателем, в который вставлена заготовка оптического волокна, и нагревателем, расположенным снаружи держателя, для нагревания держателя снаружи и обеспечивает изготовление оптического волокна путем вытягивания стекловолокна при нагреве и расплавлении заготовки оптического волокна и путем вытягивания волокна наружу через выходное отверстие в нижней части держателя. В качестве газа, подаваемого в держатель, используют газ, содержащий 50% или более аргона или азота, и предусмотрена защитная трубка длиной Da (мм), расположенная под держателем, причем эта защитная трубка имеет теплоизолирующую область, закрытую теплоизолятором, длиной Db (мм) в ее верхней части и область, не являющуюся теплоизолирующей, которая не закрыта какими-либо теплоизоляторами, в ее нижней части, а установочные параметры заданы таким образом, чтобы температура стекловолокна в выходном отверстии защитной трубки была равной 1700°C или менее и чтобы наружный диаметр стекловолокна в выходном отверстии защитной трубки не выходил за пределы интервала значений целевого наружного диаметра стекловолокна + 6 мкм или менее. 6 н. и 5 з.п. ф-лы, 5 ил.
Наверх