Высокочувствительный микрорасходомер газа

Изобретение относится к области измерительной техники, а именно к тепловым микрорасходомерам для измерения расхода газа в диапазоне (0÷5) мг/с. Микрорасходомер работает в режиме переменной мощности внутреннего тепловыделения. В предлагаемом двухканальном микрорасходомере измерительный термистор и постоянный резистор являются элементами схемы резистивного делителя напряжения. При постоянном напряжении питания схемы U0 = const при подаче расхода сопротивление термистора растет, что приводит к уменьшению тока в цепи и, как следствие, к перераспределению падения напряжения на элементах схемы: напряжение на термисторе Utr(G/2) растет, а на резисторе UR(G/2) падает так, чтобы их сумма равнялась напряжению питания: Utr(G/2)+UR(G/2)=U0. Размещение на выходе каналов идентичных диафрагм с отверстиями задаваемой величины (диаметры 1; 1,5; 3 мм) уменьшило доступный измерению диапазон расхода газа и тем самым привело к существенному увеличению чувствительности по расходу - максимальная 36,4 и 28,8 В/(мг·с-1) у N2 и Ar соответственно; средняя по диапазону ~ 19 В/(мг·с-1) - и точности измерения расхода газа. При этом температурная автономность микрорасходомера сохранена. Способ измерения расхода газа состоит в помещении термисторов в потоки газа расходом G/2. Включение в качестве управляющего термостабилизационного термистора в схему стабилизации теплового режима теплоносителя на задаваемых температурных уровнях Тп обеспечивает температурную автономность расходомера независимо от величины расхода газа. Выходной сигнал формируется как разность падения напряжений на измерительном термисторе и резисторе: U(G)=Utr(G/2)-UR(G/2). Регистрируемые напряжения на элементах схемы изменяются в пределах (25÷85) В. В отсутствие расхода напряжения на элементах равны и составляют половину напряжения питания: Utr(0)=UR(0)=U0/2. Расходомер содержит: корпус 1; корпус теплообменника 2; газораспределительную камеру 3; канал 4 с измерительным термистором 5; канал 6 с термостабилизационным термистором 7; нагревательную спираль 8 теплообменника; дополнительные спирали 9 и 10 на поверхностях каналов; блок 11 управления мощностью (БУМ) спирали 8 теплообменника и дополнительных спиралей 9, 10; R(To) - сопротивление резистора. По своим показателям предлагаемый микрорасходомер газа не имеет отечественных и зарубежных аналогов. Технический результат - уменьшение доступного измерению диапазона расхода газа, повышение чувствительности по расходу и точности измерения расхода газа. 1 ил.

 

Изобретение относится к области измерительной техники, а именно к тепловым расходомерам для измерения расхода газа в диапазоне (0÷5,0) мг/с.

Известен тепловой, температурно-автономный четырехканальный микрорасходомер газа с неизменяемым доступным измерению диапазоном расхода газа (патент РФ №2476828, 2013, кл. G01F 1/68), содержащий теплообменник с нагреваемой спиралью, герметичный металлический корпус с расположенными в нем газораспределительной камерой для подачи поступающего в нее потока газа в два измерительные и в два термостабилизационные (термокомпенсационные) каналы, выполненные идентичными. В каналах размещены теплочувствительные элементы (ТЧЭ) в виде соединенных последовательно полупроводниковых сопротивлений (термисторов СТ1-18) без косвенного нагрева, а на внешних поверхностях каналов установлены дополнительные нагревательные спирали. ТЧЭ термостабилизационных каналов включены в качестве управляющих элементов в электронную схему блока управления мощностью спирали теплообменника и дополнительных нагревательных спиралей с целью автоматического поддержания температуры газового потока на задаваемом уровне, превышающем температуры входящего в расходомер газового потока и внешней среды. Выходным сигналом является разность напряжений, снимаемых с измерительных термисторов и резистора задаваемой величины. Неизменяемый доступный измерению диапазон расхода газа с помощью этого микрорасходомера (0÷60) мг/с. Этот микрорасходомер принят за прототип.

Общими недостатками прототипа и других промышленных тепловых расходомеров являются недостаточные воспроизводимость вследствие отсутствия системы термокомпенсации, точность измерений и чувствительность по расходу.

Задачей изобретения является предложение способа задания верхнего предела, доступного измерению диапазона расхода газа и тем самым чувствительности и точности расходомера без влияния на инерционность системы термостабилизации газового потока (СТРт).

Поставленная задача решается уменьшением количества каналов высокочувствительного микрорасходомера газа до двух - один измерительный и один - термостабилизационный, и диафрагмированием каналов так, чтобы исключить влияние на инерционность СТРт.

Сущность изобретения представлена на фиг. 1, где схематически изображено устройство теплового микрорасходомера газа, отличие которого от прототипа заключается в том, что он содержит два идентичных канала, на выходе которых могут вставляться диафрагмы с отверстиями разных диаметров с целью изменения верхнего значения доступного измерению диапазона расхода и тем самым чувствительности и точности расходомера. Так как диафрагмы расположены на выходе каналов, их диафрагмирование не приведет к увеличению скорости газового потока при его движении по каналу и, как следствие, увеличению инерционности (СТРт).

Заявляемый микрорасходомер (Фиг. 1) содержит:

корпус 1; корпус теплообменника 2; газораспределительную камеру 3; канал 4 с измерительным термистором 5; канал 6 с термостабилизационным термистором 7; нагревательную спираль 8 теплообменника; дополнительные спирали 9 и 10 на поверхностях каналов; блок 11 управления мощностью (БУМ) спирали 8 теплообменника и дополнительных спиралей 9, 10; R(To) - сопротивление резистора; Rtrп+θ) - сопротивление измерительного термистора, V - вольтметр.

Высокочувствительный микрорасходомер газа работает следующим образом.

Включается система термостабилизации СТРт и микрорасходомер продувается исследуемым газом, затем клапан на выходном штуцере его корпуса закрывается. Расположенный в канале 6 термистор 7 принимает температуру газа Тг, и его омическое сопротивление становится равным R(Тг). Если Тг≠Тп - заданному уровню температуры термостабилизации Тп, превосходящему температуры газа Тг и внешней среды Тср при данных условиях испытаний, то под действием сигнала рассогласования ΔRtr(Tпr) с блока управления мощностью 11, к которому электрически подключен термостабилизационный термистор 7, к спирали теплообменника и к последовательно соединенными с ней спиралям 9, 10 подводится мощность, сводящая ΔRtr к нулю. О достижении заданного уровня термостабилизации судят по величине сопротивления измерительного термистора Rtr(Tп), которое вычислено заранее по формуле Rtr(Tп)=Аехр(В/Тп) при известных A и B, найденных предварительно экспериментально. Затем клапан открывается и в расходомер вновь начинает поступать газовый поток. О поддержании температуры газового потока на заданном уровне Тп независимо от величины расхода судят по величине сопротивления измерительного термистора, которое может изменяться в пределах не более чем на ±100 кОм, что соответствует отклонению температуры потока от заданного уровня не более чем на 1,0 K . Этот режим работы СТРт поддерживается БУМ автоматически благодаря действующей в системе отрицательной обратной связи, так как dRtr(T)/dT<0. Так обеспечивается независимость показаний расходомера от значений температур Твх и Тср, т.е. его температурная автономность, как и у прототипа. Функция дополнительных спиралей 9, 10 на внешних поверхностях каналов та же, что и у прототипа.

После настройки СТРт выходной клапан вновь закрывается и на схему резистивного делителя напряжения, элементами которой являются измерительный термистор и резистор, подается напряжение питания U0, величина которого изменяется до тех пор, пока не будет достигнута точка равновесия, о чем судят по равенству падения напряжений на элементах схемы - Utr(0)=UR(0)=U0/2. В результате измерительный термистор 5 в измерительном канале 4 перегрет относительно газа в расходомере проходящим через него током на величину θ(0)≈(55÷25) K в зависимости от фиксированного температурного уровня Тп=(293÷323) K.

Затем клапан открывается и при подаче расхода термистор 5 охлаждается поступающим в канал 4 газовым потоком расходом G/2, и его температура уменьшается. Это вызывает увеличение его омического сопротивления, что при U0 = const приводит к уменьшению тока в цепи, и, как следствие, к перераспределению напряжений на элементах схемы резистивного делителя напряжения: напряжение на термисторе Utr(G/2) растет с ростом расхода, так как его сопротивление возросло, а на резисторе неизменного сопротивления напряжение UR(G/2) соответственно падает. При этом сумма напряжений Utr(G/2)+UR(G/2) = U0 = const. Выходной сигнал расходомера формируется как разностный: U(G)=Utr(G/2)-UR(G/2), как и у прототипа. Из каналов 4 и 6 газовые потоки расходом G/2 каждый поступают во внутренний объем герметичного корпуса 1 микрорасходомера, и газ расходом G уходит в газовую сеть через выходной штуцер (не показан).

Практика показала, что при использовании термисторов типа СТ1-18, в диапазоне расхода (0÷3) мг/с напряжения на измерительном термисторе и резисторе изменяются в пределах (25÷85) В. Максимальная и усредненная по диапазону чувствительность В/(мг·с-1) у азота составила 36,4 и 19,0 соответственно, у аргона - 28,8 и 18,7, что намного превышает чувствительность всех известных расходомеров, в том числе и прототипа. Большие по величине напряжения, снимаемые с элементов схемы резистивного делителя напряжения, позволяют не принимать меры для их помехозащищенности и отказаться от усилительных схем различной степени сложности. Кроме того, большая величина регистрируемых напряжений обеспечивает: повышение точности измерений; нелимитируемую длину разнесения собственно расходомера и его электронного блока, что позволяет использовать расходомер в изолированных объемах, в частности в вакуумной камере установок различного назначения; осуществление контроля качества работы стабилизированного источника питания для внесения необходимых поправок при нарушении равенства U0=Utr+UR = const; исключение дрейфа нуля в отсутствие расхода. Таким образом, созданный микрорасходомер является, как и прототип, универсальным.

Для каждого образца микрорасходомера строится расходная характеристика U(G) путем отнесения к известному расходу G исследуемого газа величины выходного сигнала U микрорасходомера. Эта процедура необходима и проводится она для каждого экземпляра, потому что, как показала практика, теоретические расходные характеристики существенно отличаются от экспериментальных, особенно сильно в области именно малых и сверхмалых расходов независимо от рода исследуемого газа.

Высокочувствительный микрорасходомер газа, содержащий теплообменник с нагревательной спиралью управляемой мощности, корпус с расположенными в нем газораспределительной камерой и герметично соединенными с ней измерительным и термостабилизационным каналами, в которых размещены соответствующие теплочувствительные элементы в виде идентичных термисторов, дополнительными спиралями, размещенными на внешних поверхностях измерительного и термостабилизационного каналов, блок управления мощностью, к которому подключен термистор термостабилизационного канала, а также последовательно соединенные спираль теплообменника и дополнительные спирали, отличающийся тем, что содержит один измерительный и один термостабилизационный каналы, на выходе которых размещены идентичные диафрагмы с задаваемыми диаметрами отверстий с целью уменьшения доступного измерению диапазона расхода газа, увеличения чувствительности по расходу и точности измерений расхода газа.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к тепловым расходомерам для измерения расхода газа в диапазоне 0÷20 мг/с. Расходомер содержит: цилиндрическую камеру 1; канал 2 подачи в камеру газового потока и канал 2′ для его вывода; диафрагму 3 с отверстием для прохода газа, вставляемую в канал (каналы) со стороны начала канала; нагреваемую электрическим током нихромовую проволочную спираль 4 (диаметр проволоки 0,2 мм); шесть каналов 5 для оптических окон-световодов 6, вклеиваемых в каналы высокотемпературным клеем К-500; шесть идентичных преобразователей оптического излучения.

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы.

Изобретение относится к области приборостроения, а именно к устройствам для измерения потоков жидкостей и газов с использованием микроэлектромеханических датчиков.

Изобретение относится к газовым счетчикам. Газовый счетчик содержит корпус счетчика с впускным отверстием для газа с относящимся к нему присоединительным штуцером для подводящего газопровода и выпускным отверстием для газа с относящимся к нему присоединительным штуцером для отводящего газопровода.

Изобретение относится к области теплоэнергетики, а именно к задаче энергосбережения в системах потребления пара и может быть использовано для контроля рационального использования пара в теплообменниках путем определения эффективности конденсатоотводчика.

Изобретение относится к области приборостроения и может быть использовано для учета тепловой энергии. Способ измерения тепловой энергии реализуется на измерении текущих значений температуры и переноса их значений на показатели расхода теплоносителя посредством деления потока на две составляющие и распределения теплоносителя в два выходных канала - Tmin канал начала отсчета и Tmax информационный канал, согласованные со шкалой термометра.

Изобретение относится к области микросенсоров, а именно к микроэлектромеханическим системам (МЭМС) для измерения потоков жидкостей и газов - МЭМС-термоанемометрам.

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки.

Изобретение касается датчика (102) и блока (602) управления для взаимодействия с датчиком. Датчик (102) служит для измерения скорости жидкости (308), протекающей через канал (306).

Изобретение относится к области приборостроения и предназначено для измерения тепловой энергии, подаваемой жидким теплоносителем от котлоагрегатов к отопительным системам и системам горячего водоснабжения зданий коммунального назначения, жилого фонда, школ, детских садов и иных сооружений промышленности.

Изобретение относится к лесному хозяйству, а именно к биофизике древесных растений. Способ основан на формировании теплового воздействия в ксилемной ткани и измерении температуры пасоки. Способ осуществляют с помощью двух игольчатых температурных датчиков, совмещенных с нагревательными элементами. Датчики-нагреватели размещают в ксилемной ткани один над другим на заданном расстоянии по высоте. Тепловые импульсы формируются в датчиках-нагревателях последовательно, через заданные промежутки времени. Определение скорости потока пасоки осуществляют анализом полученных температурных кривых. Достигается повышение точности измерения скорости пасоки при низких и высоких значениях скорости. При этом факт нулевой скорости потока выявляется без каких-либо дополнительных измерительных процедур и устройств. 3 ил.

Предлагаемое изобретение относится к средствам измерений количества теплоты, выделяемой нагретыми жидкими, газообразными и многофазными теплоносителями в системах отопления, без нарушения их целостности. Предложенный теплосчетчик на основе накладных датчиков содержит датчик теплового потока и датчики температуры поверхности, а также измеритель их сигналов. При этом датчик теплового потока установлен на контрольном участке трубопровода, а датчики температуры поверхности установлены на границах контрольного участка трубопровода и на трубопроводах у входа и выхода системы отопления. Согласно изобретению на поверхности датчика теплового потока, который полностью перекрывает поверхность контрольного участка трубопровода, установлен съемный теплообменник, состоящий из двух идентичных частей, каждая из которых содержит металлические теплопроводы, на внешней поверхности которых размещены термоэлектрические Пельтье-батареи, подключенные к источнику питания и снабженные радиаторами, охлаждаемыми электрическим вентилятором, также подключенным к источнику питания. Технический результат – повышение точности и оперативности измерения фактических значений количества теплоты, выделяемой в системах отопления любым теплоносителем. 2 ил.
Наверх