Микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что устройство поглощения оптического излучения микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения состоит из четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая балка выполнена из пьезоматериала со светопоглощающим покрытием, содержит электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, чувствительный элемент содержит четырнадцать дополнительных устройств ориентации оптического излучения, при этом каждое из шестнадцати устройств ориентации оптического излучения расположено симметрично относительно геометрического центра скрещивающихся балок, параллельно длинным граням свободных концов четырех балок, прикреплено одной малой боковой гранью к центральной прокладке, а другой малой боковой гранью опирается на боковую прокладку, обеспечивающую зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения, микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения дополнительно содержит четырнадцать каналов приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из четырнадцати дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами скрещивающихся балок. Технический результат – расширение функциональных возможностей волоконно-оптического преобразователя линейного ускорения на основе оптического туннельного эффекта для обеспечения измерения угловой скорости и линейного ускорения относительно трех осей инерциальной системы координат. 5 ил.

 

Изобретение относится к области приборостроения и предназначено для измерения угловой скорости вращения вокруг трех осей и линейных ускорений вдоль трех осей инерциальной системы отсчета, связанной с центром масс летательных аппаратов аэрокосмической техники.

Известен волоконно-оптический преобразователь линейного ускорения на основе оптического туннельного эффекта, состоящий из блока обработки информации, двух каналов приемо-передачи оптического излучения, включающих волоконно-оптический ответвитель, связанный световодами с источником оптического излучения, приемником оптического излучения и чувствительным элементом, соединенного с блоком обработки информации и чувствительным элементом, чувствительного элемента, включающего в себя устройство поглощения оптического излучения и два устройства ориентации оптического излучения, покрытые зеркальным напылением, за исключением области, расположенной напротив устройства поглощения оптического излучения, и прокладку, расположенную между устройством поглощения оптического излучения и устройствами ориентации оптического излучения, причем устройство поглощения оптического излучения выполнено в виде консольно закрепленной пластины (прототип) (Бусурин В.И., Жеглов М.А., Казарьян А.В., Коробков В.В. Волоконно-оптический преобразователь линейного ускорения на основе оптического туннельного эффекта. Патент на изобретение №2539681 от 26 июля 2013 г.). Прототип измеряет только линейное ускорение, направленное вдоль одной оси.

Технический результат, создаваемый изобретением, - расширение функциональных возможностей волоконно-оптического преобразователя линейного ускорения на основе оптического туннельного эффекта для обеспечения измерения угловой скорости и линейного ускорения относительно трех осей инерциальной системы координат.

Для достижения указанного результата предлагается волоконно-оптический преобразователь на основе оптического туннельного эффекта, состоящий из блока обработки информации, двух каналов приемо-передачи оптического излучения, включающих волоконно-оптический ответвитель, связанный световодами с источником оптического излучения, приемником оптического излучения и чувствительным элементом, соединенных с блоком обработки информации и чувствительным элементом, чувствительного элемента, включающего в себя устройство поглощения оптического излучения и два устройства ориентации оптического излучения, покрытые зеркальным напылением, за исключением области, расположенной напротив устройства поглощения оптического излучения, отличается тем, что устройство поглощения излучения оптического излучения состоит из четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая из которых выполнена из пьезоматериала со светопоглощающим покрытием, содержит электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, чувствительный элемент содержит четырнадцать дополнительных устройств ориентации оптического излучения, при этом каждое из шестнадцати устройств ориентации оптического излучения расположено симметрично относительно геометрического центра скрещивающихся балок, параллельно длинным граням свободных концов четырех балок, прикреплено одной малой боковой гранью к центральной прокладке, а другой малой боковой гранью опирается на боковую прокладку, обеспечивающую зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения, микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения дополнительно содержит четырнадцать каналов приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из четырнадцати дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами скрещивающихся балок.

Применение в качестве устройства поглощения оптического излучения четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая из которых выполнена из пьезоматериала со светопоглощающим покрытием, содержащих электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, четырнадцати дополнительных устройств ориентации оптического излучения, четырнадцати дополнительных каналов приемо-передачи оптического излучения и устройства управления, позволит обеспечить чувствительность микро-опто-электромеханического преобразователя к воздействию угловой скорости и линейного ускорения относительно трех осей инерциальной системы координат, связанной с центром масс объекта.

На фиг. 1 представлена структурная схема микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения.

На фиг. 2-5 представлена конструкция чувствительного элемента микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения (основной вид, виды А, Б, В).

Микро-опто-электромеханический трехосевой датчик угловой скорости содержит шестнадцать каналов приемо-передачи оптического излучения А1-А16, включающих источник оптического излучения 1, световод 2, передающий оптическое излучение от источника 1 к волоконно-оптическому ответвителю 3, световод 4, осуществляющий передачу оптического излучения от волоконно-оптического ответвителя 3 к чувствительному элементу 5 и обратно, световод 6, передающий оптическое излучение от волоконно-оптического ответвителя 3 к приемнику оптического излучения 7, блок обработки информации 8, предназначенный для расчета измеренного значения угловых скоростей Ω_X-изм, Ω_Y-изм, Ω_Z-изм и линейных ускорений а_X-изм, а_Y-изм, а_Z-изм, соответствующих значению угловых скоростей объекта Ω_X-вх, Ω_Y-вх, Ω_Z-вх и линейных ускорений а_X-вх, a_Y-вх, a_Z-вх объекта в инерциальной системе координат, блок управления 14, предназначенный для формирования управляющих импульсов, по командам от блока обработки информации 8, подающихся на четыре устройства поглощения оптического излучения чувствительного элемента.

Чувствительный элемент 5 микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения состоит из шестнадцати устройств ориентации оптического излучения 9, выполненных в виде прямоугольных параллелепипедов из кварцевого стекла, покрытых зеркальным напылением, исключая области, расположенные напротив консольно закрепленных балок 10, четырех консольно закрепленных балок 10, выполненных из пьезоматериала со светопоглощающим покрытием, с грузом, закрепленным на ее конце 11, центральной прокладки 12, обеспечивающей крепление четырех консольно закрепленных балок 10 и одной из малых граней всех шестнадцати устройств ориентации оптического излучения, боковых прокладок 13, обеспечивающих зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения.

Микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения работает следующим образом. Источник оптического излучения 1 генерирует оптическое излучение заданной мощности и подает его в световод 2, который передает оптическое излучение к волоконно-оптическому ответвителю 3. Волоконно-оптический ответвитель 3 обеспечивает передачу оптического излучения из световода 2 в световод 4. По световоду 4 оптическое излучение вводится в устройство ориентации оптического излучения 9. В зависимости от зазора между устройством ориентации оптического излучения 9 и горизонтальной плоскостью консольно закрепленной балки 10, граничащей с данным устройством ориентации оптического излучения, за счет оптического туннельного эффекта, часть оптического излучения покинет устройство ориентации оптического излучения через области, где отсутствует зеркальное напыление. Зазор между плоскостями свободных концов консольно закрепленной балки 10 и устройствами ориентации оптического излучения 9 может меняться под действием сил Кориолиса, возникающих из-за продольных колебаний балки 10, выполненной из пьезоматериала, возбуждаемых электрическим сигналом блока управления 14, по командам от блока обработки информации 8, и вращения свободных концов балки с угловой скоростью Ω_X-вх, Ω_Y-вх, Ω_Z-вх, вокруг осей X, Y и Z, вызывающих деформацию свободных концов балки в трех плоскостях вращения, что приводит к изменению во времени потока оптического излучения, распространяющегося в каждом из устройств ориентации оптического излучения, причем световой поток будет меняться по гармоническому закону с частотой, определяемой частотой колебаний пьезоэлементов центрально закрепленных балок, и амплитудой, пропорциональной угловой скорости, воздействующей на объект. При этом воздействие линейного ускорения а_X-вх, a_Y-вх, a_Z-вх, направленного вдоль осей X, Y и Z, приведет к возникновению постоянного светового потока, не зависящего от колебаний пьезоэлемента. Оптическое излучение, которое останется в устройстве ориентации оптического излучения, отразившись от грани, расположенной напротив световода 4, вернется обратно в световод 4 и через волоконно-оптический ответвитель 3 попадет в световод 6, а затем на приемник оптического излучения 7, где преобразуется в электрический сигнал. Блок обработки информации 8 преобразует электрический сигнал с шестнадцати каналов в измеренные значения угловой скорости Ω_X-вх, Ω_Y-вх, Ω_Z-вх, вокруг осей X, Y и Z, и линейного ускорения а_X-вх, a_Y-вх, a_Z-вх, направленного вдоль осей X, Y и Z в инерциальной системе координат, связанной с объектом.

Изобретение может быть использовано для измерения угловых скоростей и линейных ускорений подвижных объектов.

Микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения, состоящий из блока обработки информации, двух каналов приемо-передачи оптического излучения, включающих волоконно-оптический ответвитель, связанный световодами с источником оптического излучения, приемником оптического излучения и чувствительным элементом, соединенных с блоком обработки информации и чувствительным элементом, чувствительного элемента, включающего в себя устройство поглощения оптического излучения и два устройства ориентации оптического излучения, покрытые зеркальным напылением, за исключением области, расположенной напротив устройства поглощения оптического излучения, отличающийся тем, что устройство поглощения оптического излучения состоит из четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая балка выполнена из пьезоматериала со светопоглощающим покрытием, содержит электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, чувствительный элемент содержит четырнадцать дополнительных устройств ориентации оптического излучения, при этом каждое из шестнадцати устройств ориентации оптического излучения расположено симметрично относительно геометрического центра скрещивающихся балок, параллельно длинным граням свободных концов четырех балок, прикреплено одной малой боковой гранью к центральной прокладке, а другой малой боковой гранью опирается на боковую прокладку, обеспечивающую зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения, микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения дополнительно содержит четырнадцать каналов приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из четырнадцати дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами скрещивающихся балок.



 

Похожие патенты:

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента инициирования детонирующим устройством заряда ВВ относительно момента подачи задействующего импульса.

Изобретение относится к лазерной технике, в частности к гироскопии, и может быть использовано для прецизионного измерения угловых перемещений лазерного гироскопа.

Изобретение относится к области оптических средств измерения угловой скорости и ускорения вращающихся объектов. Интерференционный измеритель угловой скорости и ускорения включает в себя источник излучения, кольцевой интерферометр, светоприемное устройство.

Изобретение относится к измерителям смещений длины волны электромагнитного излучения интерферометрическим методом по допплеровскому смещению длины волны света, переданного по волокну, с использованием интерферометра Фабри-Перо и касается способа компенсации световых потерь.

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости вращения объектов, как гироскопы.

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения. Баллистический гравиметр содержит вакуумную камеру, устройство сбрасывания пробного тела, источник излучения, фотоприёмник, устройство синхронизации и обработки сигнала.

Изобретение относится к области оптических измерений и касается способа многоканального измерения смещения длины волны света. Измерения осуществляются с использованием интерферометра Фабри-Перо.

Изобретение относится к области измерительной техники и касается способа измерения угловой скорости. Для определения угловой скорости формируют два пучка когерентного оптического излучения.

Изобретение относится к области приборостроения и касается датчика угловой скорости. Датчик включает в себя волоконно-оптический ответвитель, связанный световодами с источником и приемником оптического излучения.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании измерителей вектора угловой скорости на основе волоконно-оптических гироскопов с использованием одномодовых световодов.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, согласно изобретению применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн. При этом используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА. Технический результат - обеспечение возможности измерения одновременно трех компонент вектора скорости (полного вектора скорости) в одной и той же точке гидропотока. 1 ил.

Голограммный баллистический гравиметр, содержащий вакуумную камеру, устройство сбрасывания пробного тела, первую голограмму, закрепленную на пробном теле, источник монохроматического излучения, систему коллимации, фотоприемник, электронное устройство синхронизации и обработки сигналов. На пути луча света, прошедшего первую голограмму, установлена вторая голограмма, геометрически тождественная первой. Фотоприемное устройство установлено в области наложения пучков света, дифрагирующих на обеих голограммах. Технический результат заключается в уменьшении габаритов гравиметра. 2 ил.

Группа изобретений относится к медицинской технике, а именно к средствам определения характеристик потока крови. Устройство содержит светоизлучающий блок, выполненный с возможностью излучения света в направлении элемента, блок регистрации света, выполненный с возможностью регистрации света, рассеянного обратно на элементе, оптический блок, выполненный с возможностью пространственного разделения участка элемента падения света элемента и участка элемента регистрации света элемента друг от друга, при этом оптический блок содержит элемент разделения светового пути, выполненный с возможностью разделения пути излучаемого света и пути обратно рассеянного света, и блок определения, выполненный с возможностью определения характеристики потока объекта на основе света, указывающего на излучаемый свет, и регистрируемого обратно рассеянного света. Способ осуществляется посредством работы устройства. Использование изобретений позволяет повысить чувствительность при измерении за счет улучшения отношения сигнал/шум. 2 н. и 11 з.п. ф-лы, 4 ил.

Лазерный доплеровский измеритель скорости содержит источник излучения двух пространственно совмещенных лазерных пучков, первый объектив, брэгговский акустооптический модулятор бегущей волны, второй объектив, первую призму Волластона, оптический формирователь зондирующего поля, первый фотоприемник, ахроматическая полуволновая фазовая пластинка, первая и вторая дисперсионные полуволновые фазовые пластинки, первая и вторая полуволновые фазовые пластинки, коллиматор, аксикон, вторая и третья призмы Волластона, конфокальная линзовая система, хроматический фильтр, дихроичное зеркало, второй фотоприемник. Повышение точности измерений достигается за счет использования бесселевых пучков, обеспечивающих однородность пространственно-частотной структуры зондирующего поля и уменьшение измерительного объема. 7 ил.

Лазерный доплеровский измеритель скорости делит при помощи призм Волластона излучение на три канала. В каждом канале установлены фотоприёмники, которые регистрируют доплеровский сдвиг, что обеспечивает измерение трёх проекций вектора скорости. За счет одновременного измерения трех проекций вектора скорости при минимальном числе лазерных пучков, формирующих зондирующее поле, и использования только одного акустооптического модулятора обеспечивается повышение точности измерения скорости. 5 ил.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства. Датчик угла выполнен в виде многозначных голографических мер угла, формирующих каждая под воздействием внешнего оптического излучения стабильный плоский веер дифрагированных лучей с известными углами между лучами. Отсчетное устройство выполнено на основе ПЗС-линеек, снабжено шкалой времени и подключено к внешнему компьютеру. Технический результат заключается в повышении точности измерений. 3 табл., 2 ил.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства. Датчик угла выполнен в виде многозначных голографических мер угла, формирующих каждая под воздействием внешнего оптического излучения стабильный плоский веер дифрагированных лучей с известными углами между лучами. Отсчетное устройство выполнено на основе ПЗС-линеек, снабжено шкалой времени и подключено к внешнему компьютеру. Технический результат заключается в повышении точности измерений. 3 табл., 2 ил.

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что устройство поглощения оптического излучения микро-опто-электромеханического трехосевого датчика угловой скорости и линейного ускорения состоит из четырех скрещивающихся под прямым углом балок с квадратной боковой стороной, консольно закрепленных малыми гранями к центральной прокладке в зоне пересечения, каждая балка выполнена из пьезоматериала со светопоглощающим покрытием, содержит электрические контакты, расположенные с обоих торцов балки, и груз, закрепленный на ее свободном конце, чувствительный элемент содержит четырнадцать дополнительных устройств ориентации оптического излучения, при этом каждое из шестнадцати устройств ориентации оптического излучения расположено симметрично относительно геометрического центра скрещивающихся балок, параллельно длинным граням свободных концов четырех балок, прикреплено одной малой боковой гранью к центральной прокладке, а другой малой боковой гранью опирается на боковую прокладку, обеспечивающую зазор между четырьмя устройствами ориентации оптического излучения и консольно закрепленной балкой устройства поглощения оптического излучения, микро-опто-электромеханический трехосевой датчик угловой скорости и линейного ускорения дополнительно содержит четырнадцать каналов приемо-передачи оптического излучения, каждый из которых соединен оптически, через световод, с одним из четырнадцати дополнительных устройств ориентации оптического излучения и электрически с блоком обработки информации, устройство управления, соединенное с блоком обработки информации и электрическими контактами скрещивающихся балок. Технический результат – расширение функциональных возможностей волоконно-оптического преобразователя линейного ускорения на основе оптического туннельного эффекта для обеспечения измерения угловой скорости и линейного ускорения относительно трех осей инерциальной системы координат. 5 ил.

Наверх