Способ измерения составляющих полного сопротивления и устройство для его осуществления



Способ измерения составляющих полного сопротивления и устройство для его осуществления
Способ измерения составляющих полного сопротивления и устройство для его осуществления

 


Владельцы патента RU 2608970:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "АЛЕКТО-АВТОМАТИКА" (RU)

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе. Способ осуществляется с помощью устройства, содержащего микроконтроллер (1), генератор (2), фильтр нижних частот (элемент защиты от помех) (3), управляемый источник тока (4), первый умножитель (5), фильтр нижних частот (элемент защиты от помех) (6), измерительную схему (7), второй умножитель (8), фильтр нижних частот (9), измеритель тока (10), анализируемый ЭХИП (11). Генератор (2) имеет два выхода, первый из которых является выходом первого синусоидального напряжения, измерительную схему (7), подключенную к анализируемому ЭХИП (11). К выходу измерительной схемы подключен фильтр (6), выход которого подключен к первому входу первого умножителя (5). Ко второму выходу генератора (2) подключен третий вход первого (5) и второго (8) умножителей, выходы которых подключены к измерительным входам микроконтроллера (1). Кроме того, ко второму выходу генератора (2) подключен фильтр (3), выход которого подключен к управляемому источнику тока (4), который задает величину тока, протекающего через анализируемый ЭХИП (11). Второй выход анализируемого ЭХИП (11) подключен к измерителю тока (10) выход которого через фильтр (9), подключен ко второму умножителю (8). С помощью данного устройства определяют активную и реактивную составляющие сигнала, подают их на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП. Технический результат заключается в повышении точности измерения составляющих полного сопротивления ЭХИП, что повышает достоверность определения дефектов ЭХИП. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области электроизмерительной техники, а именно к измерению и контролю составляющих полного сопротивления, и может быть использовано, в частности, для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления электрохимических источников питания (ЭХИП) с номинальным напряжением не более 30 В, а именно, гальванических элементов, аккумуляторов различных типов и батарей на их основе.

Известен способ измерения составляющих полного сопротивления и устройство для его осуществления (Патент РФ N 2092861, МПК G01R 27/02, опубликован 10.10.97 г., Бюл. N 28). Известный способ включает синхронное формирование первого синусоидального и первого прямоугольного напряжения таким образом, что они имеют одинаковые периоды, а фронт первого прямоугольного напряжения совпадает с моментом перехода первого синусоидального напряжения через нуль, подачу первого синусоидального напряжения на анализируемое полное сопротивление с получением на входе второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, и обработку полученного сигнала в виде второго синусоидального напряжения с участием в ней первого прямоугольного напряжения. Обработку производят путем управляемого интегрирования второго синусоидального напряжения, причем знак интегрирования задается номером полупериода прямоугольного напряжения, а начало интегрирования привязывают либо к моменту перехода через нуль первого синусоидального напряжения, либо к моменту максимума его абсолютной величины. По результатам первого интегрирования судят о величине активной составляющей анализируемого полного сопротивления, а по результатам второго - о величине реактивной.

Устройство для осуществления данного способа включает генератор с двумя выходами, первый из которых является выходом первого синусоидального напряжения, а второй - выходом первого прямоугольного напряжения с периодом, равным периоду первого синусоидального напряжения, и с фронтом, совпадающим с моментом перехода первого синусоидального напряжения через нуль, измерительную схему, содержащую анализируемое полное сопротивление, вход которой подключен к первому выходу генератора, а выход является выходом второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и со сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, элемент защиты от помех и элементы обработки сигналов, соединенные с выходом измерительной схемы через элемент защиты от помех. Элемент защиты от помех выполнен в виде фильтра. В качестве элементов обработки сигналов используют управляемый интегратор и элементы памяти.

Наиболее близким к изобретению по совокупности существенных признаков является способ измерения составляющих полного сопротивления и устройство для его осуществления [Патент РФ №2154834, МПК G01R 27/02, опубл. 27.04.2012, Бюл. №12]. В соответствии с данным способом, включающем синхронное формирование первого синусоидального и первого прямоугольного напряжения таким образом, что они имеют одинаковые периоды, а фронт первого прямоугольного напряжения совпадает с моментом перехода первого синусоидального напряжения через нуль, подачу первого синусоидального напряжения на анализируемое полное сопротивление с получением на выходе второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, и обработку полученного сигнала в виде второго синусоидального напряжения с участием в ней первого прямоугольного напряжения, по результатам которой судят о величинах составляющих анализируемого полного сопротивления, согласно изобретению синхронно с первым синусоидальным напряжением дополнительно формируют второе прямоугольное напряжение таким образом, чтобы его период был равен периоду первого синусоидального напряжения, а его фронт был смещен на четверть периода относительно момента перехода первого синусоидального напряжения через нуль. Обработку полученного сигнала в виде второго синусоидального напряжения производят с одновременным участием первого и второго прямоугольных напряжений, путем раздельного перемножения каждого из указанных напряжений на второе синусоидальное напряжение с последующей фильтрацией результирующих сигналов. При этом по отфильтрованному результирующему сигналу от перемножения второго синусоидального напряжения на первое прямоугольное судят о величине активной составляющей анализируемого полного сопротивления, а по отфильтрованному результирующему сигналу от перемножения второго синусоидального напряжения на второе прямоугольное судят о величине его реактивной составляющей.

Функциональная схема устройства, реализующего указанный способ-прототип, включает генератор с двумя выходами, первый из которых является выходом первого синусоидального напряжения, а второй - выходом первого прямоугольного напряжения с периодом, равным периоду первого синусоидального напряжения, и с фронтом, совпадающим с моментом перехода первого синусоидального напряжения через нуль, измерительную схему, содержащую анализируемое полное сопротивление, вход которой подключен к первому выходу генератора, а выход является выходом второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и со сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, элемент защиты от помех и элементы обработки сигналов, соединенные с выходом измерительной схемы через элемент защиты от помех. Кроме того, генератор дополнительно содержит третий выход, который является выходом второго прямоугольного напряжения с периодом, равным периоду первого синусоидального напряжения и фронтом, смещенным на четверть периода относительно момента перехода первого синусоидального напряжения через нуль, а в качестве элементов обработки сигналов используют два умножителя и два фильтра. Измерительная схема непосредственно подсоединена к элементам обработки сигналов таким образом, что выход измерительной схемы соединен с одним из входов первого и одним из входов второго умножителя, второй вход первого умножителя подключен к второму выходу генератора, второй вход второго умножителя подключен к третьему выходу генератора, выход первого умножителя соединен с входом первого фильтра, выход второго умножителя соединен с входом второго фильтра, а выходы первого и второго фильтров являются выходами устройства.

Недостатком аналога, прототипа и устройств для их осуществления является измерение составляющих полного сопротивления не стабилизированным по току синусоидальным сигналом, на одной фиксированной частоте, без возможности изменения ее значения, что приводит к недостаточной точности измерения и снижению достоверности определения дефектных электрохимических источников питания.

Техническим результатом изобретения является обеспечение возможности проведения многочастотного анализа электрохимических источников тока и, как следствие, повышение точности измерения составляющих полного сопротивления ЭХИП.

Указанный технический результат достигается тем, что в способе измерения составляющих полного сопротивления, включающем формирование первого синусоидального напряжения, подачу первого синусоидального напряжения на анализируемое полное сопротивление с получением на выходе второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, и обработку полученного сигнала в виде второго синусоидального напряжения, пропускание второго синусоидального напряжения через фильтр, согласно заявляемому изобретению второе синусоидальное напряжение формируют таким образом, чтобы его период был равен периоду первого синусоидального напряжения, а фаза второго синусоидального напряжения сдвинута по отношению к первому синусоидальному напряжению на 90 градусов, преобразуют первое синусоидальное напряжение в однополярный импульсный ток, пропускают через анализируемую аккумуляторную батарею и измеритель тока и выходной сигнал подают через фильтр на первый вход второго умножителя, на второй вход которого подают первое синусоидальное, а на третий - второе синусоидальное напряжение, перемножают сигналы с первого входа и второго входа, в результате чего получают активную составляющую сигнала, затем перемножают сигналы с первого входа и третьего входа, в результате чего получают реактивную составляющую сигнала, затем активную и реактивную составляющие сигнала подают на измерительные входы микроконтроллера, с анализируемой аккумуляторной батареи выделяют переменную составляющую напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, сигнал подают через измерительную схему и фильтр на первый вход первого умножителя, на второй вход которого подают первое синусоидальное напряжение, а на третий - второе синусоидальное напряжение, перемножают сигналы с первого входа и второго входа, получают активную составляющую сигнала, а затем перемножают сигналы с первого входа и третьего входа, получая реактивную составляющую сигнала, активную и реактивную составляющие сигнала подают на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющих полного сопротивления анализируемой аккумуляторной батареи.

Технический результат достигается также тем, что в устройстве для измерения составляющих полного сопротивления, включающем генератор с двумя выходами, первый из которых является выходом первого синусоидального напряжения, измерительную схему, подключенную к анализируемому ЭХИП, выход которой является выходом третьего синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, к выходу которой подключен фильтр (элемент защиты от помех), выход которого подключен к первому входу первого умножителя, согласно заявляемому изобретению второй выход генератора является выходом второго синусоидального напряжения с периодом, равным периоду первого синусоидального напряжения, но сдвинутым по отношению к нему на 90 градусов, ко второму выходу генератора подключен третий вход первого и второго умножителей, выходы которых подключены к измерительным входам микроконтроллера.

Сущность технического решения поясняется чертежом, на котором изображена блок-схема устройства для измерения составляющих полного сопротивления.

Устройство для осуществления способа содержит микроконтроллер 1, генератор 2, фильтр нижних частот (элемент защиты от помех) 3, управляемый источник тока 4, первый умножитель 5, фильтр нижних частот (элемент защиты от помех) 6, измерительную схему 7, второй умножитель 8, фильтр нижних частот (элемент защиты от помех) 9, измеритель тока 10, анализируемый ЭХИП 11. Генератор 2 имеет два выхода, первый из которых является выходом первого синусоидального напряжения, измерительную схему 7, подключенную к анализируемому ЭХИП 11. К выходу измерительной схемы подключен фильтр 6, выход которого подключен к первому входу первого умножителя 5. Ко второму выходу генератора 2 подключен третий вход первого 5 и второго 8 умножителей, выходы которых подключены к измерительным входам микроконтроллера 1. Кроме того, ко второму выходу генератора 2 подключен фильтр 3, выход которого подключен к управляемому источнику тока 4, который задает величину тока, протекающего через анализируемый ЭХИП 11. Второй выход анализируемого ЭХИП 11 подключен к измерителю тока 10, выход которого через фильтр 9 подключен ко второму умножителю 8.

Сущность предлагаемого способа состоит в формировании первого синусоидального напряжения генератором (2), подаче первого синусоидального напряжения на анализируемый ЭХИП 11, с получением на его выходе второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, и обработке полученного сигнала в виде второго синусоидального напряжения фильтром 9. Второе синусоидальное напряжение формируется таким образом, чтобы его период был равен периоду первого синусоидального напряжения, а фаза второго синусоидального напряжения сдвинута по отношению к первому синусоидальному напряжению на 90 градусов. Первое синусоидальное напряжение преобразуется в однополярный импульсный ток, пропускается через анализируемый ЭХИП 11 и измеритель тока 10. Выходной сигнал измерителя 10 подается через фильтр 9 на первый вход второго умножителя 8, на второй вход которого подают первое синусоидальное напряжение от генератора 2, а на третий - второе синусоидальное напряжение от генератора 2. Далее сигналы с первого и второго входа второго умножителя 8 перемножаются, в результате чего получается активная составляющая сигнала. Затем сигналы с первого и третьего входа второго умножителя 8 перемножаются, в результате чего получается реактивная составляющая сигнала. Затем активная и реактивная составляющие сигнала подаются на измерительные входы микроконтроллера. С анализируемого ЭХИП 11 выделяется переменная составляющая напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления ЭХИП 11, и сдвигом фазы относительно первого синусоидального напряжения генератора 2, равным фазовому сдвигу анализируемого полного сопротивления ЭХИП 11. Сигнал подается через измерительную схему 7 и фильтр 6 на первый вход первого умножителя 5, на второй вход которого подается первое синусоидальное напряжение от генератора 2, а на третий - второе синусоидальное напряжение от генератора 2. Сигналы с первого и второго входа генератора 2 перемножаются первым умножителем 5, в результате чего получается активная составляющая сигнала. Затем сигналы с первого и третьего выхода генератора 2 перемножаются первым умножителем 5, в результате чего получается реактивная составляющая сигнала. Активная и реактивная составляющие сигнала подаются на измерительные входы микроконтроллера 1, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП 11.

Заявляемое техническое решение позволяет проводить многочастотный анализ полного сопротивления анализируемого ЭХИП, что в свою очередь значительно увеличивает число диагностических параметров ЭХИП при оценке его текущего состояния. Следствием реализации предлагаемых технических решений также является повышение точности измерения составляющих полного сопротивления ЭХИП. В совокупности это приводит к повышению достоверности определения дефектов ЭХИП.

1. Способ измерения составляющих полного сопротивления, включающий формирование первого синусоидального напряжения, подачу первого синусоидального напряжения на анализируемое полное сопротивление с получением на выходе второго синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, и обработку полученного сигнала в виде второго синусоидального напряжения, второе синусоидальное напряжение пропускают через фильтр, отличающийся тем, что второе синусоидальное напряжение формируют таким образом, чтобы его период был равен периоду первого синусоидального напряжения, а фаза второго синусоидального напряжения сдвинута по отношению к первому синусоидальному напряжению на 90 градусов, преобразуют первое синусоидальное напряжение в однополярный импульсный ток, пропускают через анализируемый ЭХИП (электрохимический источник питания) и измеритель тока и выходной сигнал подают через фильтр на первый вход второго умножителя, на второй вход которого подают первое синусоидальное, а на третий - второе синусоидальное напряжение, перемножают сигналы с первого входа и второго входа, в результате чего получают активную составляющую сигнала, затем перемножают сигналы с первого входа и третьего входа, в результате чего получают реактивную составляющую сигнала, затем активную и реактивную составляющие сигнала подают на измерительные входы микроконтроллера, с анализируемой аккумуляторной батареи выделяют переменную составляющую напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, сигнал подают через измерительную схему и фильтр на первый вход первого умножителя, на второй вход которого подают первое синусоидальное напряжение, а на третий - второе синусоидальное напряжение, перемножают сигналы с первого входа и второго входа, получают активную составляющую сигнала, а затем перемножают сигналы с первого входа и третьего входа, получая реактивную составляющую сигнала, активную и реактивную составляющие сигнала подают на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП.

2. Устройство для измерения составляющих полного сопротивления, включающее генератор с двумя выходами, первый из которых является выходом первого синусоидального напряжения, измерительную схему, подключенную к анализируемому ЭХИП, выход которой является выходом третьего синусоидального напряжения с амплитудой, пропорциональной модулю анализируемого полного сопротивления, и сдвигом фазы относительно первого синусоидального напряжения, равным фазовому сдвигу анализируемого полного сопротивления, к выходу которой подключен фильтр, выход которого подключен к первому входу первого умножителя, отличающееся тем, что второй выход генератора является выходом второго синусоидального напряжения с периодом, равным периоду первого синусоидального напряжения, но сдвинутым по отношению к нему на 90 градусов, ко второму выходу генератора подключен третий вход первого и второго умножителей, выходы которых подключены к измерительным входам микроконтроллера.



 

Похожие патенты:

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества.

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду.
Наверх