Измеритель параметров многоэлементных rlc- двухполюсников

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й степени, дифференциальный преобразователь «ток-напряжение», (n + 1) регулируемый резистор, один из выводов первого регулируемого резистора соединен с выходом генератора импульсов, а другой – со вторым входом преобразователя «ток-напряжение», n аналоговых коммутаторов, входы которых подключены к выводам второго, третьего и т. д., …, (n+1)-го регулируемого резистора, выходы коммутаторов соединены с входами дифференциального преобразователя «ток-напряжение», n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого звена подключен к выходу преобразователя «ток-напряжение»; (n+1) нуль-индикатор, входы первого, второго и т. д.,… n-го нуль-индикатора соединены соответственно с выходами n-го, (n-1)-го, и т. д., …, первого RC-звена дифференциатора, вход (n+1)-го нуль-индикатора соединен с выходом дифференциального преобразователя «ток-напряжение»; дополнительно введен второй дифференциатор на n последовательно соединенных дифференцирующих RC-звеньях и n повторителей напряжения, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора, вход первого звена второго дифференциатора подключен к выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами RC-звеньев второго дифференциатора, а к выходам повторителей напряжения подключены свободные выводы второго, третьего и т.д., …, (n+1)-го регулируемого резистора. Технический результат заключается в повышении устойчивости работы устройства формирования образцовых сигналов и устранение погрешностей уравновешивания из-за задержек различных составляющих компенсационного тока. 2 ил.

 

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения.

Известен измеритель параметров многоэлементных пассивных двухполюсников (патент РФ №2466412, G01R 17/00), в котором на измеряемый многоэлементный двухполюсник (МДП) воздействуют импульсами напряжения, изменяющегося по закону n-й степени времени, и уравновешивают ток двухполюсника компенсирующим сигналом, синтезированным из импульсов тока, имеющих форму степенных функций времени с показателями степени от n до 0, и по найденным амплитудам составляющих импульсов компенсирующего тока вычисляют обобщенные параметры проводимости, а затем – электрические параметры элементов двухполюсника. Схема формирования образцовых импульсов тока n-й степени состоит из генератора прямоугольных импульсов напряжения и n последовательно включенных интеграторов, для формирования импульсов тока, имеющих вид степенных функций, используются выходные сигналы генератора прямоугольных импульсов и интеграторов, к выходам которых подключены регулируемые образцовые резисторы с дискретно перестраиваемым сопротивлением.

Недостатком этого устройства являются погрешности измерений, обусловленные, во-первых, искажением формы тестовых и образцовых импульсов тока, так как при конечном значении коэффициента усиления ОУ реакция интегратора на импульс n-й степени содержит не только составляющую (n+1)-й степени, но и импульс (n+2)-й степени, что создает препятствие для поэтапного раздельного уравновешивания, начиная от сигнала старшей степени, во-вторых, из-за большого диапазона амплитуд сигналов на выходах разных каскадов интеграторов, и во-вторых, большим диапазоном амплитуд составляющих сигнала измеряемого двухполюсника, а следовательно, и опорных сигналов (примерно декаду на одну ступень) и уже при n = 3 амплитуда исходного прямоугольного импульса на входе первого интегратора представляет величину порядка 10 мВ, что соизмеримо с напряжением смещения Uсм операционных усилителей (ОУ). Погрешность интегрирования, обусловленная этим параметром ОУ, передается по цепи гальванической связи от каскада к каскаду.

Наиболее близким по технической сущности к предлагаемому устройству является измеритель параметров многоэлементных RLC-двухполюсников (патент РФ №2556301, G01R 17/10, Бюл. № 19 от 10.07.2015). В состав измерителя входят генератор тестовых импульсов напряжения, изменяющегося по закону n-й степени, n последовательно включенных дифференциаторов на операционном усилителе каждый, дифференциальный преобразователь «ток-напряжение», (n+1) перестраиваемый резистор, n аналоговых коммутаторов и (n+1) индикатор равновесия. Совокупность выходных напряжений каждого из дифференциаторов используется в качестве набора опорных сигналов. Последовательно включенные дифференциаторы построены на операционных усилителях с частотной коррекцией с целью устранения неустойчивости дифференциаторов.

Недостатками устройства являются:

1) Противоречивые требования к выбору параметров частотной коррекции операционных усилителей, обеспечивающих, с одной стороны, устойчивость дифференциаторов и, с другой стороны, достаточную полосу пропускания для минимизации искажений формы импульсов.

2) Другой недостаток обусловлен конечным временем задержки сигнала в каскадах дифференциатора. Выходной сигнал реального дифференциатора с передаточной характеристикой вида H( p )= pτ/ ( 1+pτ ) содержит не только первую, но и вторую, третью и т. д. производные входного напряжения. Например, при кубической форме питающего импульса напряжение на выходе первого дифференциатора содержит и квадратичный, и линейный импульсы.

На выходе второго дифференциатора также формируется линейный импульс, который задержан относительно такого же сигнала первого дифференциатора, поэтому при регулировании линейной составляющей компенсирующего тока, в которую входят линейные компоненты напряжений обоих каскадов дифференциатора, возникает ошибка в определении соответствующего параметра.

Задача, на решение которой направлено изобретение, состоит в повышении устойчивости дифференциаторов и устранении влияния задержек в цепях формирования образцовых сигналов на точность уравновешивания.

Технический результат достигается тем, что в измеритель параметров многоэлементных RLC-двухполюсников, содержащий генератор тестовых импульсов напряжения, имеющих форму функции n-й степени времени, первый (сигнальный) выход которого соединен с первой клеммой для подключения измеряемого RLC-двухполюсника, дифференциальный преобразователь «ток-напряжение», в состав которого входят два последовательно включенных операционных усилителя, в цепи обратной связи каждого из них включены первый и второй резисторы соответственно, выход первого операционного усилителя подключен к инвертирующему входу второго операционного усилителя через третий резистор, инвертирующие входы первого и второго операционных усилителей образуют первый и второй токовые входы преобразователя «ток-напряжение», а выход второго операционного усилителя является выходом преобразователя, (n+1) регулируемый резистор, n аналоговых коммутаторов, (n+1) нуль-индикатор и n-каскадный дифференциатор на дифференцирующих RC-звеньях, первый вывод первого регулируемого резистора соединен с первым выходом генератора импульсов, первый вход дифференциального преобразователя «ток-напряжение» соединен с второй клеммой для подключения измеряемого двухполюсника, один из выводов первого регулируемого резистора подключен к первому выходу генератора тестовых импульсов, а второй вывод первого регулируемого резистора соединен с вторым входом преобразователя «ток-напряжение», один из выводов второго, третьего и т. д., …, (n+1)-го регулируемого резистора соединен с аналоговым входом соответственно первого, второго и т. д., …, n-го аналогового коммутатора, вход первого дифференцирующего RC-звена подключен к выходу преобразователя «ток-напряжение», сигнальный вход первого, второго и т. д., …, n-го нуль-индикатора соединен соответственно с выходом n-го, (n–1)-го и т. д., …, первого дифференцирующего RC-звена, а сигнальный вход (n+1)-го нуль-индикатора соединен с выходом преобразователя «ток-напряжение», первый выход каждого аналогового коммутатора подключен к первому входу преобразователя «ток-напряжение», а второй выход каждого аналогового коммутатора соединен с вторым входом преобразователя «ток-напряжение», выход сигнала коммутации второго, третьего и т. д., …, (n+1)-го нуль-индикатора соединен соответственно с входом сигнала коммутации первого, второго и т. д., …, n-го аналогового коммутатора, цифровой выход регулирования сопротивления первого, второго и т. д., …, (n+1)-го нуль-индикатора соединен с цифровым входом первого, второго и т. д., …, (n+1)-го регулируемого резистора, входы сигнала синхронизации всех нуль-индикаторов подключены к второму выходу генератора тестовых импульсов, в него дополнительно введены второй дифференциатор, содержащий n последовательно соединенных дифференцирующих RC-звеньев, и n повторителей напряжения, вход первого дифференцирующего RC-звена второго дифференциатора подключен к первому выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами соответствующих дифференцирующих RC-звеньев, к выходу первого, второго и т. д., …, n-го повторителя напряжения подключен свободный вывод второго, третьего и т. д., …, (n+1)-го регулируемого резистора, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора: сопротивление резистора в k-м RC-звене больше, чем в (k–1)-м RC-звене, а емкость конденсатора в k-м RC-звене во столько же раз меньше, чем в (k–1)-м RC-звене.

Сущность изобретения поясняется на примере измерителя параметров четырехэлементных двухполюсников.

Схема устройства приведена на фиг. 1.

Устройство содержит генератор 1 тестовых импульсов напряжения (ГТИ), с первым (сигнальным) выходом которого соединена первая клемма для подключения измеряемого двухполюсника, дифференциальный преобразователь «ток-напряжение», построенный на первом и втором операционных усилителях 2 и 3, в цепи обратной связи каждого из них включен резистор 4 и 5 соответственно, а между выходом усилителя 2 и входом усилителя 3 – резистор 6, с первым входом преобразователя «ток-напряжение» соединены вторая клемма для подключения измеряемого двухполюсника и первые выходы коммутаторов 7, 8 и 9, с вторым входом преобразователя «ток-напряжение» соединены вторые выходы коммутаторов, входы коммутаторов 7, 8 и 9 соединены с регулируемыми резисторами 10, 11, и 12. Четвертый регулируемый резистор 13 включен между первым выходом генератора 1 и вторым входом преобразователя «ток-напряжение». К выходу преобразователя «ток-напряжение» подключен вход трехкаскадного дифференциатора, построенного на дифференцирующих RC-звеньях: конденсатор 14, резистор 15, конденсатор 16, резистор 17, конденсатор 18, резистор 19. Выход третьего дифференцирующего RC-звена (конденсатор 18, резистор 19) соединен с входом первого нуль-индикатора 20, выход второго дифференцирующего RC-звена (конденсатор 16, резистор 17) соединен с входом второго нуль-индикатора 21, выход первого дифференцирующего RC-звена (конденсатор 14, резистор 15) соединен с входом третьего нуль-индикатора 22. Вход четвертого нуль-индикатора 23 подключен к выходу преобразователя «ток-напряжение». Входы сигнала синхронизации всех нуль-индикаторов соединены с вторым выходом (выходом синхронизации) генератора 1. Входы цифрового сигнала управления сопротивлением регулируемых резисторов 13, 10, 11 и 12 подключены к выходам цифрового сигнала нуль-индикатора 20, 21, 22 и 23 соответственно. Входы управления коммутацией аналоговых коммутаторов 7, 8 и 9 подключены к выходам сигнала коммутации второго, третьего и четвертого нуль-индикаторов 21, 22 и 23 соответственно.

В схему измерителя дополнительно введены второй трехкаскадный дифференциатор на последовательно включенных дифференцирующих RC-звеньях (конденсатор 24, резистор 25, конденсатор 26, резистор 27, конденсатор 28, резистор 29), вход первого дифференцирующего RC-звена соединен с первым выходом генератора 1, и три повторителя напряжения на операционных усилителях 30, 31 и 32, входы которых соединены с выходами первого, второго и третьего дифференцирующих RC-звеньев соответственно. К выходам первого, второго и третьего повторителей напряжения подключены свободные выводы регулируемых резисторов 10, 11 и 12 соответственно.

Устройство работает следующим образом. Генератор 1 вырабатывает импульсы напряжения кубичной формы u дп ( t )= U m t 3 / t и 3 . После переходного процесса в МДП устанавливается импульс тока, содержащий четыре составляющих – кубичную, квадратичную, линейную и прямоугольную:

i дп ( t )= Y 0 U m t 3 t и 3 + 3 Y 1 U m t 2 t и 3 + 6 Y 2 U m t t и 3 + 6 Y 3 U m t и 3 . (1)

Обобщенные параметры проводимости двухполюсника Y0, Y1, Y2, Y3 определяются выражениями [Иванов В. И., Титов В. С., Голубов Д. А. Применение обобщенных параметров измерительной цепи для идентификации многоэлементных двухполюсников //  Датчики и системы. 2010. № 8. С. 43–45.]:

Y 0 = b 0 a 0 ; Y 1 = b 1 a 1 Y 0 a 0 ; Y 2 = b 2 a 2 Y 0 a 1 Y 1 a 0 ; Y 3 = b 3 a 3 Y 0 a 2 Y 1 a 1 Y 2 a 0 . (2)

Величины a0, a1,…, b0,  b1, … – коэффициенты полиномов знаменателя и числителя операторного изображения функции проводимости двухполюсника:

Y( p )= b 0 +p b 1 + p 2 b 2 ... a 0 +p a 1 + p 2 a 2 ...

Для реализации метода компенсации тока МДП необходимо иметь набор образцовых сигналов, имеющих форму степенной функции: кубичной, квадратичной, линейной и прямоугольной. Найдем выражения для импульсов на выходах RC-звеньев второго дифференциатора. Благодаря повторителям напряжения, выполняющим роль буферных каскадов, передаточные функции по выходам первого, второго и третьего RC-звеньев не зависят от емкостей и сопротивлений шунтирующих цепей. В целях унификации формул введем автономные обозначения емкостей и сопротивлений: С1 – емкость конденсатора 24, С2 – емкость конденсатора 26, С3 – емкость конденсатора 28, R1 – сопротивление резистора 25, R2 – сопротивление резистора 27, R3 – сопротивление резистора 29. Выражения для передаточных характеристик по выходам первого, второго и третьего дифференцирующих звеньев соответственно имеют громоздкий вид:

H 1 = p R 1 C 1 × 1+p( R 1 C 1 + R 2 C 2 + R 3 C 3 + R 1 C 2 + R 2 C 3 )+ p 2 ( R 1 C 1 R 2 C 2 + R 1 C 1 R 3 C 3 + ... ×[ 1+p( R 2 C 2 + R 3 C 3 + R 2 C 3 )+ p 2 R 2 C 2 R 3 C 3 ] + R 2 C 2 R 3 C 3 + R 1 C 1 R 2 C 3 + R 1 C 2 R 2 C 3 + R 1 C 2 R 3 C 3 )+ p 3 R 1 C 1 R 2 C 2 R 3 C 3

H 2 = p 2 R 1 C 1 R 2 C 2 × 1+p( R 1 C 1 + R 2 C 2 + R 3 C 3 + R 1 C 2 + R 2 C 3 )+ p 2 ( R 1 C 1 R 2 C 2 + R 1 C 1 R 3 C 3 + ... ×( 1+p R 3 C 3 ) + R 2 C 2 R 3 C 3 + R 1 C 1 R 2 C 3 + R 1 C 2 R 2 C 3 + R 1 C 2 R 3 C 3 )+ p 3 R 1 C 1 R 2 C 2 R 3 C 3

H 3 = p 3 × 1+p( R 1 C 1 + R 2 C 2 + R 3 C 3 + R 1 C 2 + R 2 C 3 )+ p 2 ( R 1 C 1 R 2 C 2 + R 1 C 1 R 3 C 3 + ... × R 1 C 1 R 2 C 2 R 3 C 3 + R 2 C 2 R 3 C 3 + R 1 C 1 R 2 C 3 + R 1 C 2 R 2 C 3 + R 1 C 2 R 3 C 3 )+ p 3 R 1 C 1 R 2 C 2 R 3 C 3 Для упрощения анализа результатов измерений и вычислений целесообразно установить значения постоянных времени всех каскадов одинаковыми: R 1 C 1 = R 2 C 2 = R 3 C 3 =τ. Если принять равными сопротивления R1 = R2 = R3 и емкости С1 = С2 = С3, то в этом случае и величины R1C2, R1C3 и R2C3 будут также равны τ, что существенно увеличит длительность переходного процесса в измерительной схеме. Для устранения этого недостатка целесообразно использовать в каждом каскаде разные значения емкости и сопротивления. Например, приняв в первом звене R1C1 = RC = τ, во втором звене уменьшим емкость и во столько же раз увеличим сопротивление:

C 2 =mC; R 2 = R m ,

где m < 1. В третьем звене еще раз изменим емкость и сопротивление:

C 3 =m C 2 ; R 3 = R 2 m .

Тогда передаточная функция по выходу первого каскада (звена C1-R1) примет вид

H 1RC ( p )= pτ( 1+( 2+m )pτ+ p 2 τ 2 ) 1+( 3+2m )pτ+( 3+2m+ m 2 ) p 2 τ 2 + p 3 τ 3 . (3)

Обобщенные параметры функции H1RC(p) равны

H 10 =0 ; H 11 =τ; H 12 =( 1+m ) τ 2 ; H 13 =( 1+3m+ m 2 ) τ 3 ,

и напряжение на первом выходе дифференциатора содержит не только первую, но и вторую и третью производные тестового сигнала:

u 1RC ( t )= 3τ U m t 2 t и 3 6( 1+m ) τ 2 U m t t и 3 + 6( 1+3m+ m 2 ) τ 3 U m t и 3 . (4)

Передаточная функция по выходу второго каскада (звена C2-R2)

H 2RC ( p )= p 2 τ 2 ( 1+pτ ) 1+( 3+2m )pτ+( 3+2m+ m 2 ) p 2 τ 2 + p 3 τ 3 . (5)

Обобщенные параметры функции H2RC(p) равны

H 20 =0 ; H 21 =0; H 22 = τ 2 ; H 23 =2( 1+m ) τ 3

и напряжение на втором выходе дифференциатора

u 2RC ( t )= 6 τ 2 U m t t и 3 12( 1+m ) τ 3 U m t и 3 . (6)

Передаточная функция по выходу третьего каскада дифференциатора

H 3RC ( p )= p 3 τ 3 1+( 3+2m )pτ+( 3+2m+ m 2 ) p 2 τ 2 + p 3 τ 3 . (7)

Обобщенные параметры функции H3RC(p) равны

H 30 =0 ; H 31 =0; H 32 =0; H 33 = τ 3

и напряжение на третьем выходе дифференциатора (звене C3-R3) имеет вид

u 3RC ( t )= 6 τ 3 U m t и 3 . (8)

Из полученных формул следует, что ток двухполюсника можно скомпенсировать, используя выходные сигналы дифференциаторов на RC звеньях u1RC(t), u2RC(t) и u3RC(t). Уравновешивание токов осуществляется регулировкой проводимости прямой передачи G0, G1, G2, G3 преобразователей «напряжение-ток» (ПНТ), подключенных к выходам дифференциатора. Выходной ток ПНТ пропорционален произведению кода на цифровых входах и текущего значения напряжения на аналоговом входе. Схему ПНТ можно реализовать на дискретно регулируемых резисторах или перемножающих цифроаналоговых преобразователях с токовым выходом. В первом случае параметр Gk в каждом канале равен проводимости токозадающего резистора Gk = 1/Rk, во втором определяется зависимостью выходного тока от входных величин для конкретной схемы ЦАП. Далее рассматривается схема с регулируемыми резисторами.

На первом этапе уравновешивают кубичную составляющую iдп 3 тока двухполюсника (1)

Y 0 U m t 3 / t и 3 = U m t 3 / R 13 t и 3

и определяют обобщенный параметр проводимости Y0:

Y 0 = 1 R 13 . (9)

Затем компенсируют квадратичную составляющую тока двухполюсника iдп 2 квадратичной составляющей импульсов напряжения на выходе первого каскада дифференциатора u1RC(t), регулируя компенсирующий ток резистором R10. Из условия компенсации квадратичных токов

3 Y 1 U m t 2 / t и 3 = 3τ G 1 U m t 2 / t и 3

находят выражение для определения параметра проводимости Y1:

Y 1 = τ R 10 . (10)

Аналогично уравновешивают линейно изменяющуюся составляющую тока МДП iдп 1 и линейный компенсирующий ток, который формируется в цепи регулируемого резистора R11, подключенного к выходу второго каскада дифференциатора u2RC(t). Из условия компенсации линейной составляющей тока МДП

6 Y 2 U m t/ t и 3 = 6 τ 2 U m t/ R 11 t и 3 6( 1+m ) τ 2 U m t/ R 10 t и 3

определяют параметр проводимости Y2:

Y 2 = τ 2 R 11 ( 1+m ) τ 2 R 10 . (11)

Завершается процесс компенсации тока МДП уравновешиванием составляющей тока iдп 0 с плоской вершиной. Компенсирующий ток устанавливается резистором R12. Равновесие наступает при условии

6 Y 3 U m / t и 3 = 6 τ 3 U m / R 12 t и 3 12( 1+m ) τ 3 U m / R 11 t и 3 + 6( 1+3m+ m 2 ) τ 3 U m / R 10 t и 3 ,

из которого можно найти параметр проводимости Y3:

Y 3 = τ 3 R 12 2( 1+m ) τ 3 R 11 + ( 1+3m+ m 2 ) τ 3 R 10 . (12)

Как видно, в схеме обеспечивается раздельное зависимое уравновешивание. Очередность регулировок должна быть такой, как указано выше, а именно, следует начать с тестовых импульсов старшей степени и переходить к сигналам с меньшим показателем степени. Контроль уравновешивания всех составляющих тока МДП осуществляется с помощью другого трехкаскадного дифференциатора на RC-звеньях C14-R15 C16-R17 и C18-R19. Ток двухполюсника поступает на первый вход дифференциального преобразователя «ток-напряжение» (вход операционного усилителя 2), а компенсирующие токи коммутируются с помощью аналоговых ключей либо на второй вход (вход операционного усилителя 3), если соответствующая составляющая имеет знак плюс, либо на суммирующий вход преобразователя в ином случае. При равных сопротивлениях резисторов 4 и 6 напряжение преобразователя на выходе операционного усилителя 3 пропорционально разности входных токов. На первом этапе уравновешивания на выходе третьего RC-звена C18-R19 формируется прямоугольный импульс напряжения, амплитуда которого пропорциональна разности кубичных токов. Сигнал на входе первого нуль-индикатора 20 используется для управления процессом уравновешивания импульсов кубичной формы регулировкой сопротивления R13 резистора 13. После компенсации кубичных токов амплитуда прямоугольных импульсов на выходе третьего RC-звена принимает нулевое значение, а на выходе второго RC-звена (C16-R17) наблюдается прямоугольный импульс, амплитуда которого пропорциональна разности квадратичных составляющих тока МДП и компенсирующего тока. В процессе уравновешивания с помощью второго нуль-индикатора 21 выявляется «знак» сопротивления R10 и его номинальное значение. Аналогично осуществляется уравновешивание остальных компонентов тока МДП.

В предлагаемом устройстве дифференциаторы тестовых импульсов построены на пассивных цепях, и операционные усилители не входят в контуры с элементами обратных связей. Поэтому отсутствуют условия для неустойчивой работы. По этой же причине не накапливаются задержки образцовых сигналов одинаковой степени на выходах разных каскадов дифференциатора, что позволяет устранить один из источников погрешностей уравновешивания токов.

Рассмотрим пример преобразований параметров. На фиг. 2 изображена схема замещения четырехэлементного двухполюсника RLC-типа.

Операторное изображение проводимости двухполюсника имеет вид

Y( p )= 1+p( R 1 + R 2 ) C 1 + p 2 L 1 C 1 R 1 +p R 1 R 2 C 1 + p 2 L 1 C 1 .

Обобщенные параметры проводимости (Y-параметры) МДП, найденные в соответствие с формулами (2), равны

Y 0 = 1 R 1 ; Y 1 = C 1 ; Y 2 = R 2 C 1 2 ; Y 3 = C 1 2 ( R 2 2 C 1 L 1 ).

В процессе уравновешивания токов установлены значения сопротивлений регулируемых резисторов:

R13 = 1,6 кОм; R10 =  3,75 кОм; R11 = 6,6176 кОм; R12 =  32,767 кОм; постоянная времени RC-звеньев τ = 15 мкс. Параметр m = 0,1.

Определим Y-параметры:

Y 0 = 1 R 13 =0,625мСм Y 1 = τ R 10 = 15 3,75 =4мСммкс

Y 2 = τ 2 R 11 ( 1+m ) τ 2 R 10 = 225 6,6176 1,1225 3,75 =3466=32мСммк с 2

Y 3 = τ 3 R 12 2( 1+m ) τ 3 R 11 + ( 1+3m+ m 2 ) τ 3 R 10 = = 3375 32,767 21,13375 6,6176 + 1,313375 3,75 =160мСммк с 3

На завершающей стадии вычисляют электрические параметры элементов двухполюсника:

R 1 = 1 Y 0 = 1 0,625 =1,6кОм ; С 1 = Y 1 =4нФ; R 2 = Y 2 Y 1 2 = 32 16 =2кОм; L 1 = Y 2 2 Y 3 Y 1 Y 1 3 = 32 2 160 4 3 =6мГн.

Полученные результаты измерений совпадают с исходными данными.

Измеритель параметров многоэлементных RLC-двухполюсников, содержащий генератор тестовых импульсов напряжения, имеющих форму функции n-й степени времени, первый (сигнальный) выход которого соединен с первой клеммой для подключения измеряемого RLC-двухполюсника, дифференциальный преобразователь «ток-напряжение», в состав которого входят два последовательно включенных операционных усилителя, в цепи обратной связи каждого из них включены первый и второй резисторы соответственно, выход первого операционного усилителя подключен к инвертирующему входу второго операционного усилителя через третий резистор, инвертирующие входы первого и второго операционных усилителей образуют первый и второй токовые входы преобразователя «ток-напряжение», а выход второго операционного усилителя является выходом преобразователя, (n+1) регулируемый резистор, n аналоговых коммутаторов, (n+1) нуль-индикатор и n-каскадный дифференциатор на дифференцирующих RC-звеньях, первый вывод первого регулируемого резистора соединен с первым выходом генератора импульсов, первый вход дифференциального преобразователя «ток-напряжение» соединен с второй клеммой для подключения измеряемого двухполюсника, один из выводов первого регулируемого резистора подключен к первому выходу генератора тестовых импульсов, а второй вывод первого регулируемого резистора соединен с вторым входом преобразователя «ток-напряжение», один из выводов второго, третьего и т. д., …, (n+1)-го регулируемого резистора соединен с аналоговым входом соответственно первого, второго и т. д., …, n-го аналогового коммутатора, вход первого дифференцирующего RC-звена подключен к выходу преобразователя «ток-напряжение», сигнальный вход первого, второго и т. д., …, n-го нуль-индикатора соединен соответственно с выходом n-го, (n–1)-го и т. д., …, первого дифференцирующего RC-звена, а сигнальный вход (n+1)-го нуль-индикатора соединен с выходом преобразователя «ток-напряжение», первый выход каждого аналогового коммутатора подключен к первому входу преобразователя «ток-напряжение», а второй выход каждого аналогового коммутатора соединен с вторым входом преобразователя «ток-напряжение», выход сигнала коммутации второго, третьего и т. д., …, (n+1)-го нуль-индикатора соединен соответственно с входом сигнала коммутации первого, второго и т. д., …, n-го аналогового коммутатора, цифровой выход регулирования сопротивления первого, второго и т. д., …, (n+1)-го нуль-индикатора соединен с цифровым входом первого, второго, и т. д., …, (n+1)-го регулируемого резистора, входы сигнала синхронизации всех нуль-индикаторов подключены к второму выходу генератора тестовых импульсов, отличающийся тем, что в него дополнительно введены второй дифференциатор, содержащий n последовательно соединенных дифференцирующих RC-звеньев, и n повторителей напряжения, вход первого дифференцирующего RC-звена второго дифференциатора подключен к первому выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами соответствующих дифференцирующих RC-звеньев второго дифференциатора, к выходу первого, второго и т. д., …, n-го повторителя напряжения подключен свободный вывод второго, третьего и т. д., …, (n+1)-го регулируемого резистора, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора: сопротивление резистора в k-м RC-звене больше, чем в (k–1)-м RC-звене, а емкость конденсатора в k-м RC-звене во столько же раз меньше, чем в (k–1)-м RC-звене.



 

Похожие патенты:

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе.

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов. Передатчик (12) температуры включает в себя схему (26) измерения, выполненную с возможностью соединения по меньшей мере с одним датчиком (32) температуры для обеспечения индикации электрического параметра по меньшей мере одного датчика (32) температуры. Контроллер (30) соединен со схемой (26) измерения для получения индикации и подачи выходного сигнала температуры процесса. Источник (28) тока подает тестовый ток в множество проводов одновременно. Схема (70) диагностики измеряет отклик напряжения на каждом проводе для того, чтобы обеспечить диагностическую индикацию датчика температуры. Технический результат – повышение точности и достоверности диагностики датчиков температуры. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам измерительной техники, в частности к первичным преобразователям, и может быть использовано в калориметрии, тензометрии, датчиках силы и давления. Сущность его заключается в том, что преобразователь приращения сопротивления в напряжение содержит мост, состоящий из сопротивлений R1, R2, R3, R4 и сопротивления R5, два источника питания, два операционных усилителя, при этом инвертирующий вход первого операционного усилителя «заземлен», неинвертирующий вход подключен к точке соединения сопротивлений R3, R4, а его выход - к сопротивлению R5, другой конец сопротивления R5 вместе с точкой соединения сопротивлений R1, R2 подключены к инвертирующему входу второго операционного усилителя, неинвертирующий вход которого «заземлен» вместе с «заземлениями» обоих источников питания. Заявленное изобретение обеспечивает при реализации технический результат, заключенный в повышении точность преобразования приращения сопротивления в напряжение посредством обеспечения строгой линейной зависимости между ∆ R4 и UВых. 1 ил.

Изобретение относится к измерительной технике и заключается в получении численных значений модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника. Для достижения необходимого результата при относительно простом алгоритме решения задачи в способе по изобретению используют операцию деления мгновенных значений соответствующим образом формируемых двух одночастотных синусоидальных электрических величин с периодом повторении Т, при этом делимым является первый вспомогательный синусоидальный сигнал, у которого согласно способу амплитуда линейно связана с амплитудой приложенного к линейному пассивному двухполюснику синусоидального напряжения, в то время как в аргумент функции синуса первого вспомогательного синусоидального сигнала, как и в известном способе [RU №2534376], вводят изменяемый по величине фазовый угол θ, причем в качестве делителя используют синусоидальный сигнал с идентичными протекающему через линейный пассивный двухполюсник синусоидальному току параметрами, при этом в результате деления формируют второй вспомогательный сигнал, который является несинусоидальной периодической функций времени с разрывами в моменты времени, когда мгновенное значение сигнала делителя пересекает ось времени, причем во втором вспомогательном сигнале наблюдают двуполярные выбросы, форма которых в местах разрывов второго вспомогательного сигнала и при малой разности вводимого в вычислительный процесс фазового угла θ и фазового угла ϕ комплексного сопротивления приближается к форме «иглообразных» двуполярных импульсов малой длительностью, причем по мере стремления разности углов θ и ϕ к нулю их амплитуда начинает уменьшаться. При уменьшении амплитуд «иглообразных» двуполярных выбросов ниже предписанного значения или их исчезновении, что имеет место при равенстве текущего значения вводимого в вычислительный процесс изменяемого фазового угла θ и фазового угла ϕ комплексного сопротивления , изменение фазового угла θ прекращают и его численное значение принимают за фазовый угол ϕ комплексного сопротивления , причем после прекращения изменения значения фазового угла θ на интервале времени, равном периоду Т, для второго вспомогательного сигнала вычисляют среднее значение и результат это действия считают численным значением модуля z комплексного сопротивления линейного пассивного двухполюсника. Способ может быть использован как при создании измерительного прибора, обеспечивающего получение информации о величине модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника, так и при создании измерительного органа релейной защиты и автоматики с двумя подводимыми электрическими величинами, например с функцией определения места повреждения (ОМП) на линии электропередачи. Технический результат, который достигается при реализации заявленного технического решения , заключается в повышении технического уровня и возможностей измерительного устройства, его упрощении за счет того, что согласно заявленному способу в его программируемом измерительно-вычислительном блоке осуществляется деление двух одночастотных синусоидальных сигналов. 4 ил.

Изобретение относится к электроэнергетике и может быть применено для оперативного получения сведений о грозовой обстановке и интенсивности грозовой деятельности на трассах высоковольтных воздушных линий электропередач (ВЛ). Система мониторинга грозовых разрядов на воздушных линиях электропередачи, включающая минимум два регистратора грозовых перенапряжений, установленных с двух концов контролируемой линии, каждый из регистраторов снабжен приемником сигналов точного времени и выполнен с возможностью фиксации значений текущего времени и записи с преобразованием в цифровую форму выходного сигнала соответствующего датчика, каждый регистратор подключен первым входом к первому датчику грозовых перенапряжений, характеризуется тем, что минимум один регистратор содержит второй и последующий входы, соединенные со вторым и последующими датчиками грозовых перенапряжений, подключенными к соответствующим воздушным линиям. Датчики грозовых перенапряжений могут выполняться в виде трансформаторов тока в цепях подключения фильтров присоединения технологической ВЧ-связи к разделительным конденсаторам. Система может дополнительно содержать средство цифровой обработки, связанное информационными каналами с регистраторами. Изобретение может с успехом применяться при производстве систем мониторинга событий, в том числе грозовых разрядов на воздушных линиях электропередач. Технический результат - улучшение массогабаритных характеристик - достигается совмещением функционала нескольких устройств в одном без потери функциональных возможностей. Технический результат - повышение надежности системы - достигается тем, что снижается количество элементов, в частности регистраторов, каждый из которых обладает ненулевой вероятностью выхода из строя, необходимых для контроля нескольких объектов (ВЛ). Технический результат - повышение надежности передачи информации - достигается снижением количества информационных каналов (линий связи) с регистраторами. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Затем активные сопротивления лучей схемы замещения формируют по выражениям: индуктивные сопротивления схемы замещения формируют по выражениям: где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔPкВ-С, ΔPкВ-Н, ΔPкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔPкВ-Н, ΔPкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей среднего и низкого напряжения схемы замещения формируют по выражениям: Технический результат: исключение погрешностей при определении параметров трехлучевой схемы замещения трехобмоточных трансформаторов. 8 табл., 4 ил.

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Формируют схему замещения треугольник. Определяют активные сопротивления ветвей схемы замещения треугольник по выражениям: индуктивные сопротивления ветвей схемы замещения треугольник формируют по выражениям: где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔРкВ-С, ΔРкВ-Н, ΔРкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔРкВ-Н, ΔРкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей схемы замещения определяют по выражениям: Технический результат: исключение методологической погрешности. 3 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники. Техническим результатом является повышение надежности и достоверности определения уровня диэлектрического вещества за счет использования дублированного емкостного датчика уровня, исключения влияния паразитной электрической емкости длиной линии связи, защиты от сбойных процессов в устройствах вычислительной техники и отказов электронной компонентной базы в измерительном канале. В способе определения уровня диэлектрического вещества воздействуют синусоидальным напряжением на заданных частотах последовательно сначала на основной, затем на дублирующий емкостный датчик уровня и их эталоны, затем измеряют токи через дублирующий сухой датчик уровня и эталон на каждой из заданных частот, фиксируют результаты измерения, определяют и фиксируют значение электрической емкости дублирующего сухого емкостного датчика уровня, определяют и фиксируют значение приращения электрической емкости дублирующего емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Периодически и последовательно измеряют и фиксируют ток через заполняемый диэлектрическим веществом дублирующий емкостный датчик уровня и эталон на каждой из заданных частот, периодически определяют и фиксируют текущее значения электрической емкости дублирующего емкостного датчика уровня, заполняемого диэлектрическим веществом, определяют уровень, выраженный в виде разности текущего значения электрической емкости заполняемого дублирующего емкостного датчика уровня и электрической емкости дублирующего сухого емкостного датчика уровня, отнесенной к значению приращения электрической емкости полностью погруженного в диэлектрическое вещество дублирующего емкостного датчика уровня. Далее в каждом n-канале определяют значения уровней диэлектрического вещества, измеренные основным и дублирующим емкостным датчиком уровня, причем приоритетным значением уровня принимают значение, определяемое через основной емкостный датчик уровня, при этом значения уровней, измеренные основным и дублирующим емкостным датчиком в каждом канале сравнивают между собой, при превышении полученным результатом сравнения допустимого значения проводят анализ возможных причин, в результате которых возникло превышение, после чего измеренные через основной емкостный датчик уровня значения токов, значение электрической емкости и значение уровня в каждом из n-каналов сравнивают с заданными соответственно диапазонами допустимых значений, в случае выхода измеренных в каком-либо из n-каналов значений токов, электрической емкости или уровня за соответствующие пределы диапазона допустимых значений, измеренные в этом же канале через дублирующий емкостный датчик уровня значения токов, электрической емкости и уровня сравнивают с заданными соответственно диапазонами допустимых значений, определение уровня диэлектрического вещества происходит с учетом значений уровней, измеренных в каждом n-канале. 2 ил.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика. Средство обнаружения отключения содержит средство введения малого тока в набор, состоящий по меньшей мере из одного аналогового сейсмического датчика, для формирования сигнала смещения, частично зависящего от электрического сопротивления набора, состоящего по меньшей мере из одного аналогового сейсмического датчика, и добавляемого к полезному сейсмическому сигналу, причем сигнал смещения занимает только часть рабочего диапазона устройства сбора данных. Средство обнаружения отключения также содержит аналого-цифровой преобразователь и средство фильтрации для преобразования и фильтрации напряжения, измеренного на паре входных выводов, для получения измеренного значения сигнала смещения, и либо средство анализа изменения во времени измеренного значения сигнала смещения и включения сигнала тревоги при выполнении заданного условия, либо средство передачи измеренного значения сигнала смещения на удаленное устройство, выполненное с возможностью анализа изменения во времени измеренного значения сигнала смещения и включения тревоги при выполнении заданного условия. Технический результат – повышении точности получаемых данных. 2 н. и 7 з.п. ф -лы, 6 ил.

Изобретение относится к измерительной технике и может быть использовано для достоверного определения компонентного состава и концентраций примесей в жидких диэлектриках, применяемых в системе нефтепродуктообеспечения, медицине и научных исследованиях. Способ измерения состава и концентраций примесей в малополярных жидкостях содержит этапы, на которых после заполнения межэлектродного пространства измерительного датчика исследуемой жидкостью на его электроды подают переменное напряжение переменной частоты в диапазоне от 10 Гц до 1 мГц и измеряют его спектральную характеристику. Для этого определяют электрическую емкость измерительного датчика в исследуемой жидкости при шаговом изменении частоты. Шаг изменения частот определяется в зависимости от частотного диапазона. Определяют рабочую частоту, для чего измеряют базовую частоту сигнала преобразователя без его подключения к измерительному датчику и эталонному конденсатору, эталонную частоту сигнала преобразователя с подключенным к нему эталонным конденсатором и частоту сигнала преобразователя с подключенным к нему измерительным датчиком. На основании измеренных частот определяют емкость датчика в исследуемой жидкости. Технический результат – уменьшение времени и повышение точности определения диэлектрических параметров в измеряемой среде, упрощение аппаратурной составляющей. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для достоверного определения компонентного состава и концентраций примесей в жидких диэлектриках, применяемых в системе нефтепродуктообеспечения, медицине и научных исследованиях. Способ измерения состава и концентраций примесей в малополярных жидкостях содержит этапы, на которых после заполнения межэлектродного пространства измерительного датчика исследуемой жидкостью на его электроды подают переменное напряжение переменной частоты в диапазоне от 10 Гц до 1 мГц и измеряют его спектральную характеристику. Для этого определяют электрическую емкость измерительного датчика в исследуемой жидкости при шаговом изменении частоты. Шаг изменения частот определяется в зависимости от частотного диапазона. Определяют рабочую частоту, для чего измеряют базовую частоту сигнала преобразователя без его подключения к измерительному датчику и эталонному конденсатору, эталонную частоту сигнала преобразователя с подключенным к нему эталонным конденсатором и частоту сигнала преобразователя с подключенным к нему измерительным датчиком. На основании измеренных частот определяют емкость датчика в исследуемой жидкости. Технический результат – уменьшение времени и повышение точности определения диэлектрических параметров в измеряемой среде, упрощение аппаратурной составляющей. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й степени, дифференциальный преобразователь «ток-напряжение», регулируемый резистор, один из выводов первого регулируемого резистора соединен с выходом генератора импульсов, а другой – со вторым входом преобразователя «ток-напряжение», n аналоговых коммутаторов, входы которых подключены к выводам второго, третьего и т. д., …, -го регулируемого резистора, выходы коммутаторов соединены с входами дифференциального преобразователя «ток-напряжение», n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого звена подключен к выходу преобразователя «ток-напряжение»; нуль-индикатор, входы первого, второго и т. д.,… n-го нуль-индикатора соединены соответственно с выходами n-го, -го, и т. д., …, первого RC-звена дифференциатора, вход -го нуль-индикатора соединен с выходом дифференциального преобразователя «ток-напряжение»; дополнительно введен второй дифференциатор на n последовательно соединенных дифференцирующих RC-звеньях и n повторителей напряжения, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора, вход первого звена второго дифференциатора подключен к выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами RC-звеньев второго дифференциатора, а к выходам повторителей напряжения подключены свободные выводы второго, третьего и т.д., …, -го регулируемого резистора. Технический результат заключается в повышении устойчивости работы устройства формирования образцовых сигналов и устранение погрешностей уравновешивания из-за задержек различных составляющих компенсационного тока. 2 ил.

Наверх