Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала, низкотемпературную газификацию на рабочей поверхности расположенного в плазмохимическом реакторе газового нагревателя с пористой крупнозернистой теплопроводной средой внутри, высокотемпературную газификацию на поверхности расплавленного шлака с помощью свободногорящей дуги генератора дуговой плазмы, струйного плазмотрона и струйно-плавильного плазмотрона, очистку и закалку синтез-газа и слив жидкого шлака. Устройство содержит загрузочное устройство, газовый нагреватель с пористой теплопроводной средой внутри, плазмохимический реактор с генератором дуговой плазмы, устройство закалки и очистки синтез-газа, приемник шлака, при этом газовый нагреватель расположен в плазмохимическом реакторе и содержит пористую крупнозернистую среду. Изобретение обеспечивает уменьшение затрат электрической энергии. 2 н. и 2 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив (уголь, сланец, торф, бытовые и промышленные отходы, биоорганические отходы и т.п.), а именно, в электрическом плазменном газификаторе и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии.

Известен способ термической переработки отходов [RU 2104445, 10.02.1998, F23G 5/027], в котором отходы поступают непосредственно в шлаковую ванну расплава, полученную электрическим нагревом минеральной части отходов путем пропускания через него тока силой 3-5 кА. Авторы отмечают высокую степень разложения высокомолекулярных соединений за счет высокой температуры, 1400-1600°C, в шлаковой ванне расплава и, следовательно, значительного увеличения скоростей химических реакций и эффективности газификации.

Существенным недостатком указанного способа является то, что нагрев шлака осуществляют исключительно за счет использования дорогостоящей электрической энергии с высоким удельным расходом, до 3-4 кВт⋅ч/кг.

Известен способ и устройство [US 6021723, 8.02.2000, B01D 53/70, С10В 53/00, F23G 5/027], в котором авторы, используя струйные плазмотроны, при обработке опасных хлорорганических отходов получили синтез-газ с высоким содержанием Н2 и СО, а также товарную соляную кислоту.

Недостатком указанного изобретения является то, что используют исключительно дорогостоящую электрическую энергию с удельным расходом 2-3 кВт⋅ч/кг.

Известен плазменный газификатор для переработки углеродсодержащих материалов [Аньшаков А.С., Фалеев В.А., Даниленко А.А. и др. Исследования плазменной газификации углеродсодержащих техногенных отходов // Теплофизика и аэромеханика, 2007. Т 14, №4. С 639-650], представляющий собой футерованную печь с системой загрузки отходов, графитовыми электродами с источником питания, системой очистки и закалки синтез-газа, шлакоприемником. Отходы подаются через узел загрузки на поверхность расплавленного металла, находящегося в графитовом тигле. Выполненные исследования показали, что в составе полученного синтез-газа содержится более 90% объемных СО и Н2 для режимов без подачи воздуха в реакционную зону. Такой горючий газ пригоден для использования в энергетике для розжига пылеугольных потоков и в химической промышленности для синтеза моторных топлив. При этом удельные затраты электрической энергии составляют от 0,6 кВт⋅ч/кг до 1,2 кВт⋅ч/кг углеродсодержащего материала в зависимости от морфологического состава и его влажности.

Существенным недостатком указанного способа и устройства является то, что электродуговой нагрев осуществляют исключительно за счет использования дорогостоящей электрической энергии.

Известен способ и устройство [RU 2424468, 29.06.2006, F23G 5/027], в котором углеродсодержащий материал предварительно нагревают в отдельном газификаторе с рабочей температурой ниже температуры плавления золы (650-950)°C, затем все продукты низкотемпературной газификации (газообразные, парообразные, золу и угольный остаток) подают через специальный канал в электрический плазменный реактор, имеющий среднемассовую температуру (1200-1500)°C.

К недостаткам указанного изобретения следует отнести следующее:

1 - для осуществления указанного изобретения требуется изготовление дополнительного автономного низкотемпературного газификатора;

2 - при температурах ниже 800°C возможно отложение смолистых высокомолекулярных соединений на стенках этого газификатора и на стенках переходного канала, которые будут нарушать режим нагрева и режим перемещения продуктов, что может существенно увеличить расход тепла на газификацию;

3 - при температурах выше температуры плавления золы будет происходить зашлаковывание газификатора и увеличение расхода тепловой энергии;

4 - при обработке смеси различных материалов (например, бытовые отходы) возможна ситуация, когда локальная рабочая температура низкотемпературного газификатора будет выше температуры плавления золы для одного компонента смеси, а у другого компонента при этой температуре будут интенсивно выделяться смолистые высокомолекулярные соединения, что может привести к проблемам транспортировки из низкотемпературного газификатора в плазменный реактор и увеличению тепловых затрат;

5 - высокие удельные энергозатраты на переработку единицы массы отходов, составляющие 2-5 кВт⋅ч/кг.

Целью изобретения является уменьшение удельных затрат электрической энергии на переработку единицы углеродсодержащих материалов за счет уменьшения мощности дугового разряда.

Поставленная цель в предложенном способе и устройстве достигается тем, что в плазмохимическом реакторе располагают газовый нагреватель, содержащий пористую крупнозернистую среду.

Согласно изобретению в способе газификации твердого углеродсодержащего материала и получения синтез-газа, включающем шлюзовую загрузку обрабатываемого материала, низкотемпературную газификацию на рабочей поверхности газового нагревателя с пористой теплопроводной средой внутри, высокотемпературную газификацию на поверхности расплавленного шлака с помощью генератора дуговой плазмы, очистку и закалку синтез-газа, слив жидкого шлака, низкотемпературную газификацию выполняют на рабочей поверхности расположенного в плазмохимическом реакторе газового нагревателя с пористой крупнозернистой средой внутри, высокотемпературную газификацию на поверхности расплавленного шлака выполняют с помощью свободногорящей дуги, струйного плазмотрона и струйно-плавильного плазмотрона. В качестве рабочего газа для газового нагревателя используют получаемый синтез-газ.

Согласно изобретению в устройстве для газификации твердого углеродсодержащего материала, содержащем загрузочное устройство, газовый нагреватель с пористой теплопроводной средой внутри, плазмохимический реактор с генератором дуговой плазмы, устройство закалки и очистки синтез-газа, приемник шлака, газовый нагреватель расположен в плазмохимическом реакторе и содержит пористую крупнозернистую среду. В качестве генератора дуговой плазмы используют свободногорящую дугу, струйный плазмотрон или струйно-плавильный плазмотрон.

Уменьшение мощности дугового разряда достигается за счет использования газового нагревателя. Газовый нагреватель, предназначенный для низкотемпературной газификации, расположен в плазмохимическом реакторе и содержит пористую крупнозернистую среду, которая при прохождении через нее пламени горящего газа, нагревается и передает тепло рабочей поверхности нагревателя, при этом теплоотдача к обрабатываемому материалу и КПД устройства значительно увеличиваются.

В качестве рабочего газа для нагревателя может частично использоваться получаемый синтез-газ.

Способ газификации твердого углеродсодержащего материала и получения синтез-газа включает:

1) стадию шлюзовой загрузки, при которой углеродсодержащие материалы подают через загрузочное устройство на рабочую поверхность газового нагревателя;

2) стадию низкотемпературной газификации, происходящей при температуре 500-600°C на металлической рабочей поверхности газового нагревателя, имеющего слой пористой крупнозернистой среды.

На обрабатываемый материал действуют снизу основной тепловой поток от продуктов горения газа, а сверху и с боков потоки тепла от нагретого до среднемассовой температуры 1200°C газа и от излучения дугового разряда или плазменной струи. В результате материал нагревается, из него испаряется влага и выходят газообразные и парообразные летучие вещества, а на поверхности нагревателя остается минеральный и угольный остаток, который толкателем перемещают в зону действия электродуговой плазмы.

3) стадию перемещения с помощью толкателя твердых продуктов остатка процесса низкотемпературной газификации на поверхность расплавленного шлака в плазмохимическом реакторе;

4) стадию высокотемпературной газификации на поверхности расплавленного шлака с температурой (1300-1500)°C с помощью генератора дуговой плазмы, в качестве которого используют:

- графитовые электроды, стержневой и подовый,

- струйный плазмотрон,

- струйно-плавильный плазмотрон, например, выполненный по патенту RU 2464748.

Смолистые высокомолекулярные соединения под действием излучения дуги и конвективного нагрева от газовой среды газифицируются до Н2 и СО, а в случае локального превышения температуры плавления золы жидкий шлак стекает в зону действия плазмы дугового разряда самотеком.

5) стадию закалки и очистки синтез-газа, включающую подачу продуктов газификации через канал подачи синтез-газа в устройство закалки и очистки.

6) стадию слива избыточного слоя расплавленного шлака в шлакоприемник.

Способ осуществляют в устройстве плазменной газификации твердого углеродсодержащего материала и получения синтез-газа. На фиг. 1 приведена схема устройства. Где: 1 - плазмохимический реактор; 2 - загрузочное устройство; 3 - задвижки загрузочного устройства; 4 - газовый нагреватель; 5 - рабочая поверхность нагревателя; 6 - газовая горелка; 7 - слой пористой крупнозернистой среды; 8 - штуцер; 9 - толкатель; 10 - ванна расплава шлака; 11 - ванна металлического расплава; 12 - генератор дуговой плазмы (свободногорящая дуга, струйный плазмотрон или струйно-плавильный плазмотрон); 13 - источник питания; 14 - устройство закалки и очистки синтез-газа, 15 - приемник шлака; 16 - канал для подачи синтез-газа в устройство закалки и очистки.

Устройство представляет собой плазмохимический реактор 1 и включает загрузочное устройство 2 с двумя герметично закрывающимися задвижками 3; газовый нагреватель 4 с газовой горелкой 6, со слоем пористой крупнозернистой среды 7 внутри и штуцером 8 для отвода продуктов горения газа; толкатель 9 для перемещения продуктов низкотемпературной газификации в ванну шлакового расплава 10; графитовые электроды, струйный плазмотрон или струйно-плавильный плазмотрон 12, соединенный с источником питания 13; канал 16 для подачи синтез-газа в устройство закалки и очистки 14; ванну расплава шлака 10 с леткой для слива в приемник шлака 15; ванну металлического расплава 11, соединенную с источником питания 13.

Газовый нагреватель с пористой крупнозернистой средой, установленный в рабочем объеме устройства, служит для предварительного нагрева и низкотемпературной газификации углеродсодержащего материала при температуре (500-600)°C и последующей подачей минерального и угольного остатков в область действия электрической дуги с температурой на расплаве шлаковой ванны (1400-1600)°C для полной газификации углерода с получением высококалорийного синтез-газа, содержащего большое количество Н2 и СО.

Пример

Испытания газификатора проведены при раздельной и совместной работе газового нагревателя с фильтрующим пористым крупнозернистым слоем внутри и дугового разряда, создаваемого генератором дуговой плазмы. Мощность газового нагревателя составляла (2-4) кВт, внутри газового нагревателя происходило сгорание пропано-воздушной стехиометрической смеси, и продукты горения нагревали фильтрующий слой и через него рабочую поверхность нагревателя. При мощности газового нагревателя 2 кВт среднемассовая температура на поверхности нагревателя достигла величины 500°C через 40 минут после включения. При мощности дугового разряда 4,5 кВт среднемассовая температура в реакторе достигла 400°C через 30 минут после включения. Стационарный рабочий режим в рабочем пространстве (среднемассовая температура газа - 1200°C) достигался при мощности дуги 8 кВт и мощности газового нагревателя 2-3 кВт. При этом затраты электрической энергии снижались на 20-30% по сравнению с газификацией в плазмохимическом реакторе без газового нагревателя, а полученный синтез-газ при обработке древесных опилок имел состав: СО - 26,34%; Н2 - 60,7%; СН4 - 0,32%; N2 - 5,8%.

Таким образом, дополнительная теплота от газонагревателя приводит к снижению электрической мощности источника электродуговой плазмы на 20-30%, что способствует снижению удельных энергозатрат плазменной газификации топлив, а также увеличению ресурса работы плазмогенератора.

Также следует отметить, что получаемый синтез-газ отличается высокой калорийностью, 10-13 МДж/м3.

1. Способ газификации твердого углеродсодержащего материала и получения синтез-газа, включающий шлюзовую загрузку обрабатываемого материала, низкотемпературную газификацию на рабочей поверхности газового нагревателя с пористой теплопроводной средой внутри, высокотемпературную газификацию на поверхности расплавленного шлака с помощью генератора дуговой плазмы, очистку и закалку синтез-газа, слив жидкого шлака, отличающийся тем, что низкотемпературную газификацию выполняют на рабочей поверхности расположенного в плазмохимическом реакторе газового нагревателя с пористой крупнозернистой средой внутри, высокотемпературную газификацию на поверхности расплавленного шлака выполняют с помощью свободногорящей дуги, струйного плазмотрона и струйно-плавильного плазмотрона.

2. Способ по п. 1, отличающийся тем, что в качестве рабочего газа для газового нагревателя используют получаемый синтез-газ.

3. Устройство для газификации твердого углеродсодержащего материала, содержащее загрузочное устройство, газовый нагреватель с пористой теплопроводной средой внутри, плазмохимический реактор с генератором дуговой плазмы, устройство закалки и очистки синтез-газа, приемник шлака, отличающееся тем, что газовый нагреватель расположен в плазмохимическом реакторе и содержит пористую крупнозернистую среду.

4. Устройство по п. 4, отличающееся тем, что в качестве генератора дуговой плазмы используют свободногорящую дугу, струйный плазмотрон, струйно-плавильный плазмотрон.



 

Похожие патенты:

Изобретение относится к химической промышленности. Способ включает стадию газификации (1), в качестве агента газификации используют диоксид углерода.

Изобретение относится к устройствам для газификации рисовой лузги с целью получения газа, пригодного для использования в газопоршневых генераторах. Установка для газификации рисовой лузги содержит реактор для газификации, сообщенный с узлом подготовки сырья, узлом подачи воздуха и узлом очистки газовоздушной смеси.

Изобретение относится к области получения синтез-газа. В силосе 4 рисовую лузгу подвергают подсушиванию путем активного вентилирования посредством подачи теплого воздуха из калорифера 2, нагнетаемого вентилятором 3.

Изобретение может быть использовано в химической промышленности. Способ извлечения фторида водорода из его водных растворов включает восстановление воды углеродом при повышенной температуре.

Изобретение относится к теплоэнергетике, кроме того, изобретение может быть использовано на предприятиях химической промышленности для получения синтез-газа, метана, аммония, жидких моторных топлив и других ценных химических продуктов и соединений.

Изобретение относится к области переработки углеродсодержащих материалов. Проводят газификацию биомассы.

Изобретение относится к энергетике, в частности к устройствам для получения горючих газов, жидкого топлива и твердого остатка из пластмассы, полимеров, шин, автомобильных скрабов, кабелей.

Изобретение относится к улучшению в производстве жидких топлив из твердого сырья. Способ производства топлива из углеродистого сырьевого материала включает: (A) получение ископаемого углеводородного топливного исходного сырья, выбранного из группы, включающей природный газ, метан, нафту, жидкие нефтяные газы (LPG), (B) формирование из указанного углеводородного топливного исходного сырья потока газообразного продукта, включающего водород и моноксид углерода в мольном соотношении Н2:СО по меньшей мере в 2,0:1, (C) добавление потока газообразного продукта, сформированного на стадии (В), к потоку синтез-газа, содержащему водород и СО, который получают из углеродистого сырьевого материала, выбранного из биомассы, угля, кокса или битума путем газификации в достаточном количестве для образования смешанного потока синтез-газа, имеющего мольное соотношение Н2:СО, большее, чем у указанного потока синтез-газа, полученного из углеродистого сырьевого материала, (D) превращение указанного смешанного потока синтез-газа с образованием топлива-продукта и извлечения из указанного превращения потока побочных продуктов, включающего один или более из водорода, СО, водяного пара, метана и углеводородов, содержащих 2-8 атомов углерода и 0-2 атома кислорода, и включает стадию (E), где поток побочных продуктов делят-осуществляют реакцию до менее 100% указанного потока побочных продуктов в образовании указанного газообразного потока продукта на стадии (В) и также до менее 100% потока побочных продуктов, полученного на стадии (D), подают на стадию (В) и сжигают для производства тепла, которое потребляется в формировании указанного газообразного потока продукта на стадии (В), при этом далее способ включает испарение сырьевого потока воды при помощи тепла, полученного путем превращения указанного смешанного потока синтез-газа на стадии (D), с получением пара, введение этого потока пара в реакцию с углеводородным сырьем на основе ископаемого топлива на стадии (В) и в газификацию углеродистого сырьевого материала.

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации.

Изобретение относится к способу переработки биомассы в газообразные продукты, в частности к переработке гидролизного лигнина или целлюлозы в синтез-газ, и может быть использовано при утилизации отходов возобновляемого сырья растительного происхождения, в том числе деревообрабатывающей промышленности.

Изобретение относится к способу и структурной схеме экологически безопасной переработки отходов и биомассы для повышения эффективности производства электроэнергии и тепла. Техническим результатом является повышение эффективности переработки твердых бытовых и твердых промышленных отходов и биомассы при производстве электрической и тепловой энергии, а также повышение уровня экологической безопасности процесса переработки. В соответствии со структурной схемой изобретения твердые бытовые и промышленные отходы и биомассу загружают и измельчают, затем подвергают пиролизу и газификации. Полученный пиролизный газ охлаждают, очищают и из него извлекают углекислый газ, после чего очищенный пиролизный газ сжимают и накапливают вместе с синтез-газом, которые используют для производства электроэнергии и тепла, а выработанные электроэнергию и тепло поставляют для внешних потребителей. Из тепла, образующего при охлаждении пиролизного газа, в свою очередь, производят дополнительную электроэнергию. Во время пиролиза и газификации происходит плавление и образуется базальтоподобный шлак, который перерабатывают и из которого производят теплоизоляционные материалы или гранулированный шлак. Углекислый газ, выделенный из выхлопных газов, образующихся при производстве электроэнергии и тепла, сжимают, накапливают вместе с углекислым газом, выделенным из пиролизного газа, и после распределения и дозирования, с одной стороны, направляют как плазмообразующий газ в плазмотроны, с другой стороны, используют для производства товарной продукции из углекислого газа для внешних потребителей, с третьей стороны, подают в качестве питающего вещества для выращивания водорослей. При этом загружают семенной материал и выращивают водоросли с применением источников света и тепла и углекислого газа. Произведенный биодизель очищают, накапливают и одновременно с очищенным пиролизным газом используют для производства электроэнергии и тепла, а отжим биомассы возвращают в начало процесса. Полученные в процессе производства жидкого биотоплива биомасса и масло из водорослей, как товарные позиции, поставляют для внешних потребителей. Кроме того, с целью расширения ассортимента перерабатываемых отходов одновременно с началом процесса производят загрузку угольной пыли, затем с применением тепла генерируют синтез-газ, после чего осуществляют компримирование синтез-газа, который вместе с очищенным пиролизным газом накапливают и используют для производства электроэнергии и тепла. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к переработке отходов, включающих органические компоненты и радиоактивные агенты. Способ переработки отходов включает газифицирование отходов, включающих органические компоненты и радиоактивные агенты, которые представляют собой радиоактивные агенты с низким и/или средним уровнем активности, в реакторе с псевдоожиженным слоем при температуре от 600 до 950°С с помощью воздуха, так что коэффициент избытка воздуха составляет ниже 1, с получением газообразного материала, охлаждение газообразного материала путем быстрого охлаждения водой так, что температура после охлаждения составляет от 300 до 500°С, и удаление твердой фракции, включающей радиоактивные агенты, из газообразного материала на стадии очистки газа с получением переработанного газообразного материала. Изобретение обеспечивает эффективную в отношении затрат средств и энергии переработку загрязненных отходов. 4 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к области теплообменных процессов и предназначено для получения синтез-газа, горючих генераторных и топочных газов из низкокалорийных бурых углей, а также из горючих высокоуглеродистых сланцев. Исходное сырье подвергают дезинтеграции, сушке и газогенерации в поле циклонического вихря с наложением на вихревой поток высокотемпературного поля, где часть генерируемого синтез-газа подают совместно с высокотемпературным паром в реакционную камеру для активации разложения сырья и увеличения газообразования. Устройство содержит реакционную камеру 4 с приводным шнековым дозатором сырья 2, завихритель подаваемого перегретого пара 24. Полость камеры имеет патрубок подачи синтез-газа на его очистку 23, а также оснащена магистралью подачи части синтез-газа снова в реакционную зону. Технический результат – повышение энергоэффективности газификации низкокалорийных бурых углей, увеличение производительности, повышение качества синтез-газа, обеспечение надежности работы установки. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы путем газификации с получением горючего газа. Способ газификации топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося вокруг своей оси наклонного цилиндрического реактора, включает загрузку твердого измельченного биотоплива в реактор, подачу в реактор газифицирующего агента - воздуха со стороны реактора, где происходит накопление твердых отходов газификации - золы, перемещение загруженного топлива вдоль оси реактора, вывод золы и горючего топливного газа из реактора с фильтрацией газового потока через слой загруженной топливной биомассы. Подача воды в реактор осуществляется в виде перегретого водяного пара, получаемого в парогенераторном блоке 10 в зоне охлаждения 8 реактора и поступающего в активную зону окисления/восстановления 7 вместе с центральным воздушным дутьем через прилегающий слой твердых отходов газификации, принудительно разрыхляемый при вращении реактора относительно неподвижного парогенераторного блока. Корпус парогенераторного блока имеет форму усеченного конуса/пирамиды с резервуаром для воды, соединенным с центральным осевым каналом для воздушного дутья через дроссельный клапан для сброса перегретого пара, снабжен датчиком температуры воды/пара, буферным слоем 11 из частиц шарообразной формы из твердого износостойкого инертного жаропрочного материала, принудительно разрыхляемого и перемешиваемого при вращении реактора для размельчения и просеивания золы перед ее удалением через разгрузочное устройство. Технический результат - повышение энергоэффективности процесса газификации, улучшение качества газа, уменьшение потерь тепла, повышение надежности и упрощение конструкции реактора. 2 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы, включая утилизацию твердых органических углеродсодержащих отходов, путем газификации с получением горючего газа для последующего производства тепловой и электрической энергии. Способ предусматривает газификацию топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося цилиндрического реактора, включающий загрузку топлива в реактор, подачу в реактор газифицирующего агента, содержащего кислород, со стороны реактора, где происходит накопление твердых остатков горения, перемещение загруженной топливной биомассы вдоль оси реактора, вывод твердых остатков горения из реактора, вывод из реактора горючего топливного газа таким образом, что газификацию проводят посредством последовательного пребывания топливной биомассы в зоне нагревания и сушки 5, зоне пиролиза 6, активной зоне окисления/восстановления 7 и зоне охлаждения 8, а газовый поток фильтруют через слой загруженной топливной биомассы противотоком ее движению. Подача воды в реактор в активную зону окисления/восстановления осуществляется в виде пара, образование которого происходит в испарительных полостях 13, непосредственно примыкающих к стенке рабочей камеры 2 реактора, за счет теплового потока из активной зоны окисления/восстановления с инжекцией в нее перегретого пара сквозь перфорированную/пористую стенку рабочей камеры распределенно по периметру и по длине активной зоны. Реактор оснащен поясом пароводяной завесы, включающим кольцевой резервуар для воды 12 и соединенные с ним испарительные полости, непосредственно примыкающие к перфорированной либо пористой стенке рабочей камеры и образующие ячеистую структуру. Технический результат - повышение качества получаемого топливного газа, уменьшение потерь тепла, повышение компактности, экономичности, надежности и долговечности реактора, упрощение его конструкции. 2 н. и 3 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы путем газификации с получением горючего газа, содержащего оксид углерода и водород. Способ предусматривает газификацию топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося вокруг своей оси наклонного цилиндрического реактора, включая загрузку твердого измельченного биотоплива в реактор, подачу в реактор газифицирующего агента - воздуха со стороны реактора, где происходит накопление твердых остатков газификации - золы, перемещение загруженной топливной биомассы вдоль оси реактора, вывод твердых остатков газификации и горючего топливного газа из реактора с фильтрацией газового потока через слой загруженного топлива последовательным прохождением зон реактора противотоком движению топлива. Подача воды в реактор осуществляется посредством парообразования в испарительных полостях 13, непосредственно примыкающих к рабочей камере 2 реактора, за счет теплового потока из активной зоны окисления/восстановления 7 с инжекцией в нее пара через перфорированную/пористую стенку рабочей камеры. Удаление золы осуществляют через буферный слой 17 из твердых частиц, принудительно перемешиваемый при вращении реактора. Реактор оснащен поясом пароводяной завесы, включающим кольцевой резервуар для воды 12 и соединенные с ним испарительные полости 13, непосредственно примыкающие к перфорированной либо пористой стенке рабочей камеры и образующие ячеистую (сотовую) структуру, а также введение в разгрузочное устройство регулировочного блока 4 с каналом для воздушного дутья 22 и внутренним резервуаром для воды с датчиком температуры. Технический результат - повышение качества получаемого топливного газа, уменьшение потерь тепла, повышение компактности, экономичности, надежности и долговечности реактора, упрощение его конструкции. 2 н. и 5 з.п. ф-лы, 12 ил., 1 табл.

Изобретение относится к замкнутому способу и системе производства поливинилхлорида ПВХ. Способ включает получение карбида кальция, обогащенного кислородом, и монооксида углерода CO в высокотемпературной плавильной печи, где вступают в реакцию известняк и углеродные материалы, как каменный уголь. Далее ацетилен и дихлорэтан получаются из карбида кальция и CO (с этиленом и пр. через метанол или этанол). Оба из конечных продуктов комбинируются с формированием замкнутого контура. Ацетилен и дихлорэтан вступают в реакцию с получением мономера винилхлорида, который полимеризуется с получением ПВХ. Система включает устройство измельчения и перемешивания и транспортировки твердых сырьевых материалов, плавильную печи карбида кальция, насыщаемую кислородом, нагнетатель, кожухотрубный термостатический реактор, трубный реактор с неподвижным слоем, реактор с псевдоожиженным слоем, ацетиленовый генератор с теплообменником, реактор с неподвижным слоем и полимеризатор. Технический результат – эффект защиты окружающей среды, сбережения энергии и высокой эффективности. 2 н. и 8 з.п. ф-лы, 8 ил.

Изобретение относится к энерготехнологическому оборудованию, а именно к устройствам термической переработки твердого топлива в горючий газ, и может быть использовано для производства генераторного газа преимущественно из пеллет, бурого угля, щепы. Описан способ газификации твердых видов топлива, заключающийся в перемещении топлива для газификации в вертикально ориентированном полом реакторе, в направлении снизу вверх, формировании очага горения в реакторе за счет окислительной реакции соединения кислорода (О2) воздуха с углеродом (С) топлива, при котором выделяется двуокись углерода (СО2), проведения восстановительной реакции соединения двуокиси углерода (СO2) с углеродом (С) топлива по формуле CO2+С=2СО в слое топлива, при котором получают монооксид углерода (СО) - горючий газ, при этом что за очагом горения перемещают вверх, в вертикально ориентированном полом реакторе угли и золу, по ходу движения через угли и золу пропускают двуокись углерода (СО2) для проведения восстановительной реакции соединения двуокиси углерода (CO2) с углеродом (С) топлива и получения горючего газа - монооксида углерода (СО), горючий газ выводят вверх реактора за его пределы. Также описан реактор для газификации твердых видов топлива. Технический результат - разработан способ газификации твердых видов топлива, который имеет эффективные условия для протекания окислительно-восстановительных реакций. 2 н. и 1 з.п. ф-лы, 5 ил.
Наверх