Способ подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды и устройство для его осуществления


 


Владельцы патента RU 2621325:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)

Изобретение относится к электрохимической размерной обработке деталей из металлических материалов. Предложен способ, включающий пропускание рабочей среды на входе в зону обработки через магнитное поле с вектором перемещения наночастиц в сторону, противоположную гравитационным силам, при этом на выходе из зоны обработки рабочую среду с продуктами обработки, образовавшимися в процессе электрохимической размерной обработки, пропускают через магнитное поле с вектором перемещения наночастиц в противоположном направлении. После рабочую среду разделяют на потоки, из которых первый, состоящий из токопроводящей жидкости с продуктами обработки, направляют в устройство для очистки жидкости от продуктов обработки, а второй, содержащий преимущественно наночастицы, направляют в смеситель для получения рабочей среды на базе очищенной жидкости с заданной вязкостью. Также предложено устройство для осуществления данного способа. Изобретение обеспечивает стабилизацию состава и свойств рабочей среды при электрохимической размерной обработке деталей из металлических материалов. 2 н.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к области машиностроения и может быть использовано при электрохимической размерной обработке деталей из металлических материалов.

Известен способ по патенту 2216437 РФ, МПК7 В23Н 3/08 (Смоленцев В.П., Газизуллин К.М.); заявл. 27.12.2001; опубл. 20.11.2003, бюл. №32, [1] для электрохимической обработки, в котором в качестве рабочей среды для повышения качества поверхностного слоя и точности обработки используют реологическую токопроводящую жидкость с металлическими наночастицами, где длительность импульса тока регулируют вязкостью рабочей среды.

К недостаткам способа относится невозможность стабилизации состава и свойств рабочей среды средствами, применяемыми при электрохимической размерной и комбинированной обработке, что нарушает стабильность процесса обработки и ухудшает показатели по точности и качеству поверхностного слоя металлических деталей.

Известно устройство по книге [2], Либова, Л.Я. Установки подачи электролита при электрохимической обработке (Л.Я. Либов, Е.И. Влазнев, В.И. Сомонов). – М.: Машиностроение, 1981 г., стр. 38, для очистки рабочей среды, выполненное в виде шнековой осадительной центрифуги непрерывного действия. Недостатком устройства является отсутствие средств поддержания состава рабочей среды, содержащей металлические наночастицы, что нарушает процесс электрохимической размерной обработки и технические характеристики процесса.

Изобретение направлено на стабилизацию состава и свойств рабочей среды при электрохимической размерной обработке деталей из металлических материалов.

В способе подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды, состоящей из токопроводящей жидкости с металлическими наночастицами, это достигается тем, что пропускают рабочую среду на входе в зону обработки через магнитное поле с вектором перемещения наночастиц в сторону, противоположную гравитационным силам, при этом на выходе из зоны обработки рабочую среду с продуктами обработки, образовавшимися в процессе электрохимической размерной обработки, пропускают через магнитное поле с вектором перемещения наночастиц в противоположном направлении, после чего рабочую среду разделяют на потоки, из которых первый, состоящий из токопроводящей жидкости с продуктами обработки, направляют в устройство для очистки жидкости от продуктов обработки, а второй, содержащий преимущественно наночастицы, направляют в смеситель для получения рабочей среды на базе очищенной жидкости с заданной вязкостью. Устройство для подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды содержит магнитный гравитатор и магнитный разделитель, соединенные диэлектрическими уплотнителями с зоной обработки, устройство для очистки рабочей среды от продуктов обработки, образовавшихся в процессе электрохимической размерной обработки, соединенное с баком для хранения очищенной токопроводящей жидкости, при этом на выходе из бака в канале установлен регулятор расхода жидкости, соединенный с измерителем вязкости рабочей среды в смесителе, находящемся на стыке упомянутого канала с каналом поступления наночастиц из магнитного разделителя, причем смеситель и магнитный гравитатор соединены каналом с образованием замкнутого гидравлического контура.

На фиг. 1 приведены способ и схема устройства для подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды.

Рабочая среда, состоящая из токопроводящей жидкости 1 с металлическими наночастицами 2, поступает в магнитный гравитатор 3 с действием магнитного поля в направлении стрелки 4. Магнитный гравитатор 3 через диэлектрический уплотнитель 5 соединен с зоной 6 электрохимической размерной обработки, в которой в рабочую среду добавляются продукты обработки 7. Зона 6 соединена диэлектрическим уплотнителем 8 с магнитным разделителем 9 с направлением 10 действия магнитного поля в разделителе 9. Разделитель 9 соединен каналом 11 с устройством 12 очистки рабочей среды от продуктов обработки 7. Для перемещения жидкости 1 в бак 13 служит канал 14. На выходе жидкости 1 из бака 13 в канале 15 установлен регулятор 16 расхода жидкости 1, соединенный с измерителем 17 вязкости рабочей среды в смесителе 18, в который через канал 19 поступает из разделителя 9 рабочая среда с наночастицами 2. По каналу 20 рабочая среда в направлении 21 поступает на вход 22 гравитатора 3, перемещается по нему в направлении 23 и далее вместе с продуктами обработки 7 перемещается через зону 6 в направлении 24, образуя связанный гидравлический контур. В разделителе 9 рабочая среда движется в направлении 25 и в конце разделителя 9 разделяется на потоки 26 и 27. Далее жидкость 1 перемещается в направлениях 28, 29 в бак 13, затем в направлении 30 в смеситель 18.

Способ осуществляют следующим образом. Токоподводящую жидкость 1 из бака 13 через канал 15 подают к регулятору 16 расхода жидкости 1. По сигналу из смесителя 18 на измеритель 17 вязкости рабочей среды регулятор 16 подает в направлении 10 количество жидкости 1 по направлению 30 в смеситель 18, необходимое для поддержания заданной вязкости рабочей среды. Далее в направлении 21 по каналу 20 жидкость прокачивается на вход 22 гравитатора 3, где в магнитном поле, направленном по 4, происходит перемещение наночастиц 2 в сторону 4 действия магнитного поля, где требуется обеспечить преодоление действия на наночастицы 2 гравитационного поля земли. После чего рабочая среда перемещается в направлении 23 мимо уплотнителя 5 и поступает в зону 6 электрохимической размерной обработки и движется в направлении 24, образуя связанный гидравлический контур. Образующиеся в процессе электрохимической размерной обработки продукты обработки 7 поступают в рабочую среду и через уплотнитель 8 по направлению 25 перемещаются с рабочей средой в разделитель 9, где под действием магнитного поля в направлении 10 разделяют рабочую среду на поток из жидкости 1 с продуктами обработки 7, который в направлении 26 по каналу 11 поступает в устройство 12 для очистки рабочей среды от продуктов обработки 7, а вторая часть потока, содержащая преимущественно наночастицы 2, перемещается по направлению 27 и каналу 19 в смеситель 18, где формируется рабочая среда, включающая жидкость 1 после очистки в устройстве 12 при перемещении в направлениях 28, 29 через канал 14 в бак 13.

Пример осуществления способа.

Необходимо обработать в рабочей среде реологической жидкости, включающей 10% водный раствор хлористого натрия и 6% (по массе) металлических наночастиц с размерами 9 нанометров, сопрягаемые детали запорного устройства из стали 12Х18Н10Т и получить шероховатость не более Ra=0,16 мкм. Вязкость среды 1,3. Скорость прокачки среды 0,5 м/с. Напряженность магнитного поля в гравитаторе 100 А/м, в разделителе 1000 А/м. При обработке сопрягаемых деталей в течение 6,5 минут вязкость среды была практически без изменений, позволяла поддерживать стабильными параметры процесса электрохимической размерной обработки и получить шероховатость Ra менее 0,16 мкм.

1. Способ подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды, состоящей из токопроводящей жидкости с металлическими наночастицами, включающий пропускание рабочей среды на входе в зону обработки через магнитное поле с вектором перемещения наночастиц в сторону, противоположную гравитационным силам, при этом на выходе из зоны обработки рабочую среду с продуктами обработки, образовавшимися в процессе электрохимической размерной обработки, пропускают через магнитное поле с вектором перемещения наночастиц в противоположном направлении, после чего упомянутую рабочую среду разделяют на потоки, из которых первый, состоящий из токопроводящей жидкости с продуктами обработки, направляют в устройство для очистки жидкости от продуктов обработки, а второй, содержащий наночастицы, направляют в смеситель для получения рабочей среды на базе очищенной жидкости с заданной вязкостью.

2. Устройство для подготовки прокачиваемой через зону обработки при электрохимической размерной обработке рабочей среды, состоящей из токопроводящей жидкости с металлическими наночастицами, содержащее магнитный гравитатор и магнитный разделитель, соединенные диэлектрическими уплотнителями с зоной обработки, устройство для очистки рабочей среды от продуктов обработки, образовавшихся в процессе электрохимической размерной обработки, соединенное с баком для хранения очищенной токопроводящей жидкости, при этом на выходе из бака в канале установлен регулятор расхода жидкости, соединенный с измерителем вязкости рабочей среды в смесителе, находящемся на стыке упомянутого канала с каналом поступления наночастиц из магнитного разделителя, причем смеситель и магнитный гравитатор соединены каналом с образованием замкнутого гидравлического контура.



 

Похожие патенты:

Изобретение относится к конструкциям станков для размерной электрохимической обработки. .

Изобретение относится к машиностроению и может найти применение при прошивке крупногабаритных круглых обечаек, цилиндров, труб в различных отраслях промышленности.

Изобретение относится к технологии машиностроения и может быть использовано при электроэрозионной обработке, а также для создания завес в гальванических и химических производственных процессах.

Изобретение относится к технологическому оборудованию для электрохимической обработки (ЭХО). .

Изобретение относится к области электрофизических методов обработки, более конкретно, к электроэрозионному разрезанию труб, преимущественно с использованием дугового разряда.

Изобретение относится к электрохимическому глубокому маркированию металлических деталей. В способе используют шаблон из диэлектрической водопроницаемой основы с нанесенным на нее контуром маркируемых знаков из токопроводящего материала, при этом шаблон диэлектрической основой устанавливают на поверхность детали, а к контурам маркируемых знаков шаблона прижимают катод.

Изобретение относится к электрохимической обработке. Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя, содержащей корпус с пилонами и каналами для подачи компонентов топлива, включает доводку геометрических размеров каналов форсунки электрохимической обработкой, при которой осуществляют подачу токопроводящей жидкости в обрабатываемые каналы при помощи инструмента-катода.

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов, преимущественно, для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов преимущественно для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей.

Изобретение относится к электрохимической размерной обработке металлических деталей в рабочей среде с переменной проводимостью. Вначале межэлектродный зазор заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога проводимости, после чего включают прокачку рабочей среды в межэлектродном зазоре и продолжают подавать на электрод-инструмент и деталь импульсы тока с частотой обратно пропорциональной положительному градиенту между рабочей температурой и температурой порога проводимости рабочей среды.

Изобретение относится к очистке электролита и может быть использовано для подачи, регенерации и регулирования параметров электролита. .

Изобретение относится к области машиностроения и может быть использовано при электрохимической размерной обработке металлических деталей. .

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок жидкостных ракетных двигателей из токопроводящих материалов.

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред. В способе безабразивной доводки металлических сопрягаемых поверхностей в начале обработки между сопрягаемыми поверхностями, служащими электродами, устанавливают минимальный зазор по границе начала его пробоя низковольтным током в слабопроводящем электролите с незначительным содержанием металлического наполнителя с размером частиц 8 нм, а далее увеличивают объемное содержание упомянутого металлического наполнителя с одновременным повышением межэлектродного зазора и поддержанием его величины на границе начала пробоя между электродами до стабилизации величины тока, проходящего через электроды.
Наверх