Способ и система очистки выхлопного газа двигателя внутреннего сгорания

Настоящее изобретение относится к очистке выхлопных газов двигателя внутреннего сгорания. Способ очистки выхлопного газа двигателя внутреннего сгорания включает: уменьшение содержания сажи в выхлопном газе путем пропускания газа через фильтр; последующее снижение содержания оксидов азота в присутствии аммиака или его предшественника при контакте с катализатором, активным в NH3-СКВ; периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, причем катализатор состоит из гидротермически стабильного микропористого цеолита SSZ-39, активированного медью. Заявленный способ позволяет осуществить селективное каталитическое восстановление оксидов азота при высоких температурах и концентрации паров воды во время активной регенерации сажевого фильтра. 2 н.и 8 з.п. ф-лы, 4 ил.

 

СПОСОБ И СИСТЕМА ОЧИСТКИ ВЫХЛОПНОГО ГАЗА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Описание

Настоящее изобретение относится к предварительной обработке выхлопного газа двигателя внутреннего сгорания с целью удаления или уменьшения содержания вредных соединений. Точнее, настоящее изобретение относится к удалению твердых частиц и восстановлению оксидов азота в выхлопном газе двигателей внутреннего сгорания, работающих на бедных смесях, и, в частности, дизельных двигателей.

Известно, что двигатели, работающие на бедных смесях, являются энергоэффективными, но обладают тем недостатком, что образуются твердые частицы и оксиды азота, которые необходимо удалить или по меньшей мере уменьшить их содержание в выхлопном газе двигателя.

Для предотвращения загрязнения окружающей среды и для выполнения различных правительственных требований современные дизельные двигатели снабжены системой очистки выхлопного газа, в которой последовательно расположены окислительный нейтрализатор для удаления летучих органических соединений, фильтр твердых частиц для удаления твердых частиц и катализатор, активный для селективного восстановления оксидов азота (NOx).

Также известно объединение катализатора СКВ (селективное каталитическое восстановление) с фильтром твердых частиц.

Селективное каталитическое восстановление NOx в выхлопном газе обычно проводят по реакции с аммиаком, вводимом в виде самого соединения или в виде его предшественника, который вводят в выхлопной -2-

газ до катализатора СКВ селективного восстановления оксидов азота, в основном диоксида азота и монооксида азота (NOx), в азот.

Для этой цели в литературе раскрыты многочисленные композиции катализаторов.

Позднее приобрели большой интерес цеолиты, активированные медью или железом, в особенности для использования в автомобилях.

Содержащие медь цеолитные катализаторы, предназначенные для использования в NH3-СКВ, обнаружили высокую активность при низкой температуре. Однако в некоторых случаях применения на катализатор могут воздействовать выхлопной газ, обладающий высокой температурой. Кроме того выхлопной газ двигателя внутреннего сгорания обладает высокой концентрацией паров воды, что может вредно повлиять на рабочие характеристики цеолитного катализатора. Гидротермическая стабильность цеолитных катализаторов на основе Си часто является низкой, поскольку одним возможным механизмом дезактивации катализатора является разрушение цеолитного каркаса вследствие его нестабильности по отношению к гидротермическим воздействиям, которая дополнительно усиливается в присутствии меди.

Дезактивация содержащих медь цеолитных катализаторов при использовании в NH3-СКВ обычно вызвана разрушением цеолитного каркаса вследствие его нестабильности по отношению к гидротермическим воздействиям, которая дополнительно усиливается в присутствии меди. Однако стабильность особенно важна при использовании в автомобилях, когда на катализатор воздействует поток содержащего воду выхлопного газа, обладающего высокой температурой.

Дезактивация катализатора является значительным затруднением для систем очистки выхлопного газа, снабженных фильтром твердых частиц, которые необходим периодически активно регенерировать для -3-

предупреждения повышения перепада давления на покрытом сажей фильтре.

Активную регенерацию проводят путем выжигания накопившейся сажи. Регенерацию можно инициировать путем введения топлива в выхлопной газ до окислительного нейтрализатора или путем электрического нагревания фильтра твердых частиц.

Во время активной регенерации температура выхлопного газа на выходе из фильтра может превышать 850°С и содержание паров воды может составлять более 15% и вплоть до 100% в течение периодов времени, равных от 10 до 15 мин в зависимости от количества сажи, накопившейся на фильтре.

Общей задачей настоящего изобретения является разработка способа удаления вредных соединений из выхлопного газа двигателей внутреннего сгорания, работающих на бедных смесях, таких как твердые частицы, с помощью фильтра твердых частиц и оксидов азота с помощью селективного каталитического восстановления оксидов азота путем взаимодействия с катализатором, гидротермически стабильным при высоких температурах и концентрации паров воды во время активной регенерации фильтра твердых частиц.

Авторы настоящего изобретения установили, что задачу настоящего изобретения можно решить путем использования цеолита или цеотипа, обладающего гидротермически стабильным каркасом типа AEI, в котором структура сохраняется в условиях гидротермического старения, даже если в цеолите или цеотипе содержится медь.

В соответствии с приведенными выше данными настоящее изобретение относится к способу очистки выхлопного газа двигателя внутреннего сгорания, включающему

-4-

уменьшение содержания сажи в выхлопном газе путем пропускания газов через фильтр твердых частиц;

последующее восстановление оксидов азота в присутствии аммиака или его предшественника путем взаимодействия с катализатором, активным в NH3-СКВ;

периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; и

пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, где катализатор содержит гидротермически стабильный цеолит и/или цеотип, обладающий каркасом типа AEI, и медь, включенную в каркас.

"Гидротермически стабильный" означает, что цеолит и цеотипный катализатор обладает способностью сохранять по меньшей мере от 80 до 90% исходной площади поверхности и от 80 до 90% объема микропор после нагревания до температуры не ниже 600°С и содержания паров воды вплоть до 100 об. % в течение 13 ч и по меньшей мере от 30 до 40% исходной площади поверхности и объема микропор после нагревания до температуры не ниже 750°С и содержания паров воды вплоть до 100 об. % в течение 13 ч.

Предпочтительно, если гидротермически стабильный цеолит или цеотип, обладающий каркасом типа AEI, обладает атомным отношением кремний: алюминий, равным от 5 до 50 для цеолита или от 0,02 до 0,5 для цеотипа.

Наиболее предпочтительными цеолитными или цеотипными катализаторами для применения в настоящем изобретении являются цеолит SSZ-39 и цеотип SAPO-18, оба обладающие каркасными -5-

структурами "AEI", в которые медь вводят путем пропитки, жидкофазного ионного обмена или твердофазного ионного обмена.

Атомное отношение медь : алюминий предпочтительно равно от около 0,01 до около 1 для цеолита. Для цеотипа предпочтительное атомное отношение медь : кремний соответственно равно от 0,01 до около 1.

Для указанных выше катализаторов, использующихся в настоящем изобретении, сохраняется 80% начальной способности восстанавливать NOx при температуре, равной 250°С, после старения при 750°С, тогда как для катализатора Cu-СНА это значение составляет 20%.

Таким образом, в одном варианте осуществления настоящего изобретения сохраняется 80% начальной способности восстанавливать оксиды азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.

Настоящее изобретение также относится к системе очистки выхлопного газа, включающей активный регенерируемый фильтр твердых частиц и катализатор СКВ, содержащий гидротермически стабильный микропористый цеолит и/или цеотип, обладающий каркасом типа AEI и активированный медью.

В одном варианте осуществления системы очистки выхлопного газа, соответствующей настоящему изобретению, катализатор СКВ объединен с фильтром твердых частиц.

В другом варианте осуществления атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита и атомное отношение медь: кремний равно от 0,01 до около 1 для цеотипа.

-6-

В еще одном варианте осуществления атомное отношение кремний: алюминий в катализаторе СКВ равно от 5 до 50 для цеолита и от 0,02 до 0,5 для цеотипа.

В другом варианте осуществления катализатор СКВ сохраняет 80% начальной способности восстанавливать оксиды азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.

В другом варианте осуществления катализатор СКВ сохраняет от 80 до 90% исходной микропористости после старения при 600°С и от 30 до 40% исходной микропористости после старения при 750°С.

В еще одном варианте осуществления катализатором СКВ является алюмосиликатный цеолит SSZ-39 и/или силикоалюминий фосфат SAPO-18.

В указанных выше вариантах осуществления катализатор СКВ можно осадить на монолитную структуру подложки.

Показано, что каталитическая система Cu-SSZ-39 обладает улучшенными рабочими характеристиками по сравнению с типичным современным Си-SSZ-13, если сопоставлять сходные отношения Si/AI.

Пример 1: Получение катализатора Cu-SSZ-39

Цеолит SSZ-39, обладающий каркасом с кодом типа AEI, синтезировали аналогично тому, как это описано в патенте US 5958370, с использованием 1,1,3,5-тетраметилпиридиния в качестве органического шаблона. Гель следующего состава: 30 Si : 1,0 Al : 0,51 NaOH : 5,1 OSDA : 600 H2O выдерживали в автоклаве при 135°С в течение 7 дней, продукт -7-

фильтровали, промывали водой, сушили и прокаливали на воздухе. Конечный SSZ-39 по данным ИСП-АЭС (атомная эмиссионная спектроскопия с индуктивно связанной плазмой) обладал Si/Al=9,1.

Для получения Cu-SSZ-39 прокаленный цеолит подвергали ионному обмену с Cu(СН3СОО)2 и получали конечный катализатор, после прокаливания обладающий Cu/Al=0,52.

Порошковая рентгенограмма (ПРРГ) Cu-SSZ-39 после прокаливания приведена на фиг. 1.

Пример 2: Исследование катализа

Активность образцов для селективного каталитического восстановления NOx исследовали в реакторе с неподвижным слоем для имитации потока выхлопного газа двигателя при полной скорости потока, равной 300 мл/мин, который содержал 500 част./млн NO, 533 част./млн NH3, 7% O2, 5% H2O в N2, в котором исследовали 40 мг катализатора.

Содержание NOx, находящегося в газах, выходящих из реактора, определяли непрерывно, и степень превращения приведена на фиг. 2.

Пример 3: Исследование гидротермической стабильности

Для исследования гидротермической стабильности цеолитов, образцы обрабатывали паром. На них воздействовали путем загрузки воды (2,2 мл/мин) при температуре, равной 600 или 750°С, в течение 13 ч в обычной печи и затем исследовали аналогично тому, как это проведено в примере 2.

Результаты исследования катализа также представлены на фиг. 2. Образцы, которые подвергали гидротермической обработке, отмечены -8-

надписями 600 или 700°С в соответствии с температурой, при которой проводили гидротермическую обработку.

Также проводили дополнительное исследование характеристик всех обработанных образцов. ПРРГ после гидротермической обработки приведены на фиг. 1 и площади поверхности БЭТ (определенные по изотерме Брунауэра - Эметта - Теллера), площади микропор и объемы микропор обработанных образцов приведены ниже в таблице 1.

Пример 4: Сравнительный пример, сопоставление с Cu-CHA (Cu-SSZ-13)

Цеолит Cu-CHA получали из геля, обладающего следующим молярным составом: SiO2 : 0,033 Al2O3 : 0,50 OSDA : 0,50 HF : 3 H2O, где OSDA означает N,N,N-триметил-1-адамантаммонийгидроксид.

Гель выдерживали во вращающемся автоклаве при 150°С в течение 3 дней и получали конечный цеолитный продукт, после промывки, сушки и прокаливания обладающий Si/Al=12,7.

Для получения Cu-CHA прокаленный цеолит подвергали ионному обмену с Cu(СН3СОО)2 и получали конечный катализатор, обладающий Cu/Al=0,54.

Порошковая рентгенограмма (ПРРГ) Cu-CHA после прокаливания приведена на фиг. 1.

Этот катализатор также исследовали в соответствии с примером 2, и гидротермическую долговечность оценивали аналогично тому, как это проведено в примере 3. Результаты исследования катализа представлены на фиг. 2. ПРРГ обработанных образцов СНА приведены на фиг. 1 и структурные характеристики (площадь поверхности БЭТ, объем микропор и площадь микропор) приведены в таблице 1.

-9-

Пример 5: Cu-SAPO-18

Силикоалюминий фосфат SAPO-18, обладающий каркасом с кодом типа AEI, синтезировали в соответствии с публикацией [J. Chen, J.М. Thomas, P.A. Wright, R.P. Townsend, Catal. Lett. 28 (1994) [241-248] и пропитывали с помощью 2 мас. % Cu. Конечный катализатор Cu-SAPO-18 подвергали гидротермической обработке в 10% H2O и 10% O2 при 750°С и -10-

исследовали при таких же условиях, как приведенные в примере 2. Результаты приведены на фиг. 2.

1. Способ очистки выхлопного газа двигателя внутреннего сгорания, включающий

уменьшение содержания сажи в выхлопном газе путем пропускания газа через фильтр;

последующее снижение содержания оксидов азота в присутствии аммиака или его предшественника при контакте с катализатором, активным в NH3-СКВ;

периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; и

пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, причем катализатор состоит из гидротермически стабильного микропористого цеолита SSZ-39, активированного медью.

2. Способ по п. 1, в котором атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита SSZ-39.

3. Способ по п. 1, причем 80% начального снижения оксидов азота при температуре, равной 250°С, сохраняется после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.

4. Способ по п. 1, в котором по меньшей мере от 80 до 90% начальной микропористости сохраняется после старения при 600°С и по меньшей мере от 30 до 40% сохраняется после старения при 750°С.

5. Система очистки выхлопного газа, включающая активный регенерируемый фильтр твердых частиц и катализатор СКВ, содержащий гидротермически стабильный микропористый цеолит SSZ-39, активированный медью.

6. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ интегрирован в фильтр твердых частиц.

7. Система очистки выхлопного газа по п. 5, в которой атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита SSZ-39.

8. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ сохраняет 80% начального снижения оксидов азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.

9. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ сохраняет по меньшей мере от 80 до 90% начальной микропористости после старения при 600°С и по меньшей мере от 30 до 40% начальной микропористости после старения при 750°С.

10. Система очистки выхлопного газа по одному из пп. 5-9, в которой катализатор СКВ осажден на монолитную структуру подложки.



 

Похожие патенты:

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. В устройстве диагностирования неисправности для прибора контроля выхлопных газов согласно изобретению, снабженном прибором контроля выхлопных газов, включающим в себя катализатор ИКН, устройством подачи, подающим аммиак в прибор контроля выхлопных газов, устройством РВГ, предоставляющим возможность некоторой части выхлопного газа течь назад во впускной патрубок из выпускного патрубка ниже по потоку, чем устройство подачи, средством получения для получения поступающего количества NOx как количества NOx, текущего в прибор контроля выхлопных газов, и средством диагностики для диагностирования неисправности прибора контроля выхлопных газов, используя поступающее количество NOx, полученное получающим средством в качестве параметра, диагностирование неисправности в приборе контроля выхлопных газов средством диагностики запрещается в случае, когда количество аммиака, которому предоставляется возможность течь назад вместе с выхлопными газами посредством устройства РВГ, превышает верхнее предельное значение.

Изобретение относится к системе доочистки выхлопа для двигателя внутреннего сгорания. Система доочистки выхлопа для двигателя внутреннего сгорания,содержит по меньшей мере один окислительный нейтрализатор дизельных выхлопных газов (DOC) и/или по меньшей мере один фильтр твердых частиц дизельных выхлопных газов (DPF), по меньшей мере один катализатор избирательного восстановления (SCR-катализатор), устройство подачи восстанавливающего агента, первый ΝΟx-датчик (12), расположенный выше по потоку от упомянутого DOC и/или DPF, второй ΝΟx-датчик (14), расположенный ниже по потоку от упомянутого SCR-катализатора, и по меньшей мер, один температурный датчик (16), выполненный с возможностью измерения температуры потока выхлопных газов и формирования на ее основе по меньшей мере первого температурного сигнала (Τ1).

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Способ и устройство для проверки работоспособности катализатора окисления NO.

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Устройство (1) для подачи жидкой присадки (38) имеет резервуар (2) для хранения жидкой присадки (38), точку (3) всасывания, в которой жидкая присадка (38) может быть отсосана из резервуара (2) насосом (4) устройства (1), фильтр (5), который закрывает точку (3) всасывания, по меньшей мере частично разграничивает промежуточное пространство (6) между фильтром (5) и точкой (3) всасывания и отделяет промежуточное пространство (6) от внутреннего пространства (7) резервуара (2).

Изобретение относится к системам для очистки отработавших газов. Выхлопная система (10) для автомобильного двигателя внутреннего сгорания, работающего на бедных смесях, включает: (а) первую монолитную подложку (6), содержащую катализатор SCR; (b) по меньшей мере, одну вторую монолитную подложку (4), содержащую каталитическое грунтовочное покрытие, содержащее, по меньшей мере, один металл платиновой группы (PGM), расположенную по потоку до первой монолитной подложки; и (с) третью монолитную подложку (2), расположенную между первой монолитной подложкой и (каждой) второй монолитной подложкой, при этом, по меньшей мере, один PGM на (каждой) второй монолитной подложке (4) подвержен испарению, когда (каждая) вторая монолитная подложка (4) оказывается в относительно жестких условиях, включая относительно высокие температуры, и при этом третья монолитная подложка (2) включает грунтовку, содержащую, по меньшей мере, один материал для улавливания испарившегося PGM.

Изобретение относится к выхлопной системе двигателя внутреннего сгорания. Выхлопная система содержит первый катализированный цельный массив носителя, содержащий первое тонкослойное покрытие, расположенное в первой тонкослойной зоне цельного массива носителя, где первое тонкослойное покрытие содержит каталитическую композицию, содержащую, по меньшей мере, один металл платиновой группы и, по меньшей мере, один материал носителя, где, по меньшей мере, один металл платиновой группы в первом тонкослойном покрытии подвержен улетучиванию, когда первое тонкослойное покрытие выдерживается в условиях температуры ≥700°C, и второе тонкослойное покрытие, расположенное во второй тонкослойной зоне цельного массива носителя, где второе тонкослойное покрытие содержит, по меньшей мере, один материал, несущий медь для улавливания улетучившегося металла платиновой группы, где по меньшей мере один материал носителя представляет собой по меньшей мере один оксид металла, молекулярное сито или смесь любых двух или более из них, и когда по меньшей мере один материал носителя представляет собой по меньшей мере один оксид металла, то по меньшей мере один металл-оксидный носитель выбран из группы, состоящей из необязательно стабилизированного оксида алюминия, аморфного диоксида кремния-оксида алюминия, необязательно стабилизированного оксида циркония, оксида титана, необязательно стабилизированного смешанного оксида церия-оксида циркония и смесей двух или более из них, и где второе тонкослойное покрытие ориентировано для контактирования с выхлопным газом, который контактировал с первым тонкослойным покрытием, и второй катализированный цельный массив носителя, содержащий катализатор для селективного катализирования восстановления оксидов азота до молекулярного азота с азотным восстановителем, расположенный ниже по потоку от первого катализированного цельного массива носителя.

Изобретение относится к обработке отработавших газов. Устройство (1) для подачи жидкой добавки в поток (4) отработавших газов, имеющее трубопроводный участок (2) для потока (4) отработавших газов с входным концом (3), выходным концом (5), прямым участком (30) и выступом (17) с отверстием (31) для монтажа подающего устройства (7) для подачи жидкой добавки на прямом участке (30), причем выступ (17) имеет высоту (32) и протяженность (33), и протяженность (33) по меньшей мере в два раза больше, чем высота (32), на входном конце (3) и на выходном конце (5) расположено соответственно по меньшей мере одно дискообразное сотовое тело (6), центральная ось (34) отверстия (31) направлена на одно из дискообразных сотовых тел (6), по меньшей мере одно из двух дискообразных сотовых тел (6) на входном конце (3) или на выходном конце (5) выполнено конусообразным, трубопроводный участок (2) между дискообразным сотовым телом (6), расположенным на выходном конце (5), и выходным концом (5) имеет участок (47) выравнивания потока, на котором поперечное сечение (53) трубопроводного участка (2) по меньшей мере частично смещено, а дискообразное сотовое тело (6), на которое направлена центральная ось (34), расположено под углом (36) наклона к оси (26) трубопроводного участка (2).

Изобретение относится к области обработки отработавших газов. Дозирующий модуль (10) для дозирования восстановителя в выпускной тракт двигателя внутреннего сгорания имеет, по меньшей мере, один охладитель (22, 24), который выполнен с возможностью прохождения по нему охлаждающей жидкости, служащей для охлаждения двигателя внутреннего сгорания.

Изобретение может быть использовано в двигателях внутреннего сгорания. Устройство очистки отработавших газов содержит форсунку (3) впрыска реагента перед катализатором (1) селективного восстановления оксидов азота.

Изобретение может быть использовано в выхлопных системах двигателей внутреннего сгорания. Выхлопная система двигателя содержит выхлопную трубу (18) с изгибом, направляющим поток выхлопных газов по криволинейной траектории, инжектор (12), экранирующий элемент (4) и направляющую лопатку (6).

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Устройство диагностики неисправности включает в себя: устройство очистки выхлопного газа, расположенное в выхлопном канале двигателя внутреннего сгорания и включающее в себя катализатор селективного каталитического восстановления; устройство подачи, подающее добавку, такую как аммиак, устройству очистки выхлопного газа; устройство EGR, обеспечивающее рециркуляцию части выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки во впускной канал; средство вычисления для вычисления количества притока NOx в устройство очистки выхлопного газа с использованием параметра, указывающего рабочее состояние двигателя внутреннего сгорания; средство диагностики для диагностики неисправности в устройстве очистки выхлопного газа с использованием вычисленного количества притока NOx в качестве параметра; и средство корректировки для корректировки в сторону увеличения вычисленного количества притока NOx в соответствии с количеством добавки, рециркулирующей вместе с выхлопным газом, когда часть выхлопного газа рециркулирует. При использовании изобретения предотвращается снижение точности диагностики неисправностей. 3 з.п. ф-лы, 6 ил.

Изобретение относится к очистке отработавших газов двигателя внутреннего сгорания. В двигателе внутреннего сгорания в выхлопном канале двигателя размещены клапан (15) подачи углеводородов и каталитический нейтрализатор (13) для очистки выхлопных газов. Используются первый способ удаления NOx, который восстанавливает содержащийся в выхлопном газе NOx восстанавливающим промежуточным соединением, которое образуется при впрыске углеводородов из клапана (15) подачи углеводородов в заданном диапазоне периода, и второй способ удаления NOx, в котором соотношение воздух-топливо выхлопного газа, втекающего в каталитический нейтрализатор (13) для очистки выхлопных газов, делается богатым в течение периода, который продолжительнее этого заданного диапазона. Температуры ST и ST0 переключения каталитического нейтрализатора (13) для очистки выхлопных газов, при которых способ удаления NOx переключается со второго способа удаления NOx на первый способ удаления NOx, задаются более низкими, если количество NOx в выхлопном газе, втекающем в каталитический нейтрализатор (13) для очистки выхлопных газов, увеличивается. При использовании изобретения обеспечивается эффективная очистка отработавших газов при уменьшении количества используемого восстановителя. 9 з.п. ф-лы, 38 ил.

Настоящее изобретение относится к машиностроению, а именно к способу работы двигателя. Способ работы двигателя (10) содержит регулировку количества EGR, подаваемого в двигатель (10), в ответ на количество NH3, накопленного внутри каталитического нейтрализатора (70) SCR, и количество мочевины, хранимой в баке (91). Также раскрыты варианты способа работы двигателя. Технический результат заключается в снижении выбросов двигателя и улучшении экономии топлива. 3 н. и 17 н.п. ф-лы, 6 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Устройство для контроля за выхлопными газами для двигателя (1) внутреннего сгорания содержит добавляющий механизм (200), катализатор (41) и электронный блок (80) управления. Добавляющий механизм (200) выполнен с возможностью добавления водного раствора мочевины в выхлопные газы двигателя внутреннего сгорания. Катализатор (41) выполнен с возможностью адсорбции аммиака, вырабатываемого из водного раствора мочевины, и с возможностью удаления окислов азота путем использования аммиака, адсорбированного на катализаторе (41). Электронный блок (80) управления выполнен с возможностью установки целевого значения адсорбции аммиака для аммиака, адсорбированного на катализаторе (41). Электронный блок (80) управления управляет механизмом (200) введения добавки так, что количество водного раствора мочевины, добавляемой в выхлопные газы, становится добавляемым количеством, вычисленным на основе целевого значения адсорбции. Электронный блок (80) управления выполнен с возможностью выполнения процесса приведения в исходное состояние для уменьшения количества аммиака, адсорбированного на катализаторе (41), до «0» в случае, когда суммарное количество NS окислов азота, поступающих в катализатор, равно или больше заданной величины. Технический результат заключается в устранении ошибки между фактической величиной адсорбции аммиака и целевым значением адсорбции. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Усовершенствованный каталитический носитель, предназначенный для применения с глушителем в автомобильной системе выпуска, содержит: изолирующий материал, термически разделяющий носитель на центральную зону и трубчатую внешнюю зону, окружающую центральную зону. Изолирующий материал, центральная зона и внешняя зона все вместе определяют модифицированный носитель. Изолирующий материал адаптирован таким образом, чтобы в эксплуатационном режиме перепад температур поперек изолирующего материала составлял по меньшей мере 25°C. Использование изобретения позволит создать каталитический носитель с уменьшенным сопротивлением газовому потоку. 3 н. и 19 з.п. ф-лы, 23 ил., 6 табл.

Данное изобретение относится к последующей обработке отработанного газа в выхлопной системе двигателя внутреннего сгорания. Смешивающее устройство (2) включает в себя корпус (4) с имеющим входное поперечное сечение входным отверстием (24) и расположенную внутри корпуса (4) внутреннюю трубку (6) с образованной внутри внутренней трубки (6) областью (8) смешения. На торце корпуса (4) расположено дозирующее устройство (10) для подачи жидкости и/или смеси (14) жидкость-газ. Внутренняя трубка (6) на боковой поверхности (16) имеет проходные отверстия (18), через которые отработанный газ может поступать в область (8) смешения. При этом корпус (4) имеет спиральный участок (22) корпуса, причем данный спиральный участок (22) корпуса проходит по меньшей мере вдоль всех проходных отверстий (18) внутренней трубки (6). Далее данное изобретение относится к способу смешивания отработанного газа с жидкостью и/или смесью газ-жидкость с применением упомянутого смешивающего устройства (2). 2 н. и и 13 з.п. ф-лы, 11 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ управления температурой предназначен для системы дополнительной обработки (ATS) двигателя внутреннего сгорания, содержащей средство выполнения процедуры (4) прогрева для дополнительной обработки. Способ заключается в том, что прерывают/запрещают работу такого средства прогрева через некоторый период времени после запуска процедуры (4) прогрева. При запуске процедуры прогрева запускают процедуру (5) обратного отсчета для определения момента прерывания/запрещения после упомянутого периода времени. Раскрыты устройство управления температурой системы дополнительной обработки (ATS) двигателя внутреннего сгорания, двигатель внутреннего сгорания с таким устройством и машиночитаемый носитель данных. Технический результат заключается в повышении температуры ATS. 4 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к очистке отработавших газов двигателя внутреннего сгорания. Устройство очистки отработавшего газа включает в себя клапан подачи, устанавливаемый в выхлопном канале двигателя для подачи аммиака в отработавший газ. Блок избирательной каталитической нейтрализации восстанавливает оксиды азота в отработавшем газе с помощью аммиака. Блок каталитического окисления окисляет аммиак, выходящий из блока селективной каталитической нейтрализации. Блок контроля объема добавки регулирует объем добавки раствора через клапан подачи. Если количество NOx на выходе из блока каталитического окисления превышает количество NOx на входе в блок селективной каталитической нейтрализации, блок контроля объема добавки увеличивает объем добавки раствора. При использовании изобретения создается устройство, позволяющее более точно ограничить объем выбросов NOx. 6 з.п. ф-лы, 6 ил.

Изобретение относится к области обработки отработавших газов двигателя внктреннего сгорания. Смесительное устройство (1) содержит имеющий входное сечение (3) корпус (4) и расположенную внутри корпуса (4), проходящую по существу параллельно основному направлению (5) впрыска дозирующего устройства (6) и предназначенную для подвода жидкости и/или смеси жидкость - газ внутреннюю трубу (7) с выполненной во внутреннем пространстве (8) внутренней трубы (7) областью (10) предварительного смешивания. Корпус (4) имеет спиралевидный участок (13) корпуса и на торцевой стороне (11) корпуса (4) расположено дозирующее устройство (6). Основной поток (12) отработавших газов направляется между корпусом (4) и внешней боковой поверхностью (14) внутренней трубы (7) и подводится к основной области (16) смешивания, а частичный поток (17) отработавших газов через проход (18) внутренней трубы подводится к расположенной около дозирующего устройства области (10) предварительного смешивания. Частичный поток (17) отработавших газов через область (10) предварительного смешивания попадает в основную область (16) смешивания и основной поток (12) отработавших газов содержит большую долю объема отработавших газов в виде частичного потока (17) отработавших газов. 13 з.п. ф-лы, 6 ил.

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Устройство для каталитической очистки отработавших газов двигателя внутреннего сгорания содержит каталитический нейтрализатор, состоящий из корпуса с входным и выходным конусами, входным и выходным патрубками и расположенных внутри корпуса перфорированного блока катализатора и распределителя потока отработавших газов. Распределитель потока отработавших газов выполнен в виде пластины, расположенной у выхода из блока катализатора с возможностью перемещения вдоль оси каталитического нейтрализатора. Пластина кинематически соединена с выходным конусом и/или выходным патрубком корпуса каталитического нейтрализатора при помощи механизма подвижного крепления. При использовании изобретения обеспечивается повышение эффективности очистки отработавших газов двигателя внутреннего сгорания от токсичных веществ до уровней, удовлетворяющих перспективным экологическим нормативам, за счет уменьшения габаритов и повышения ресурса устройств снижения токсичности. 3 з.п. ф-лы, 9 ил.

Настоящее изобретение относится к очистке выхлопных газов двигателя внутреннего сгорания. Способ очистки выхлопного газа двигателя внутреннего сгорания включает: уменьшение содержания сажи в выхлопном газе путем пропускания газа через фильтр; последующее снижение содержания оксидов азота в присутствии аммиака или его предшественника при контакте с катализатором, активным в NH3-СКВ; периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. ; пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, причем катализатор состоит из гидротермически стабильного микропористого цеолита SSZ-39, активированного медью. Заявленный способ позволяет осуществить селективное каталитическое восстановление оксидов азота при высоких температурах и концентрации паров воды во время активной регенерации сажевого фильтра. 2 н.и 8 з.п. ф-лы, 4 ил.

Наверх