Быстродействующий измеритель амплитуды квазисинусоидальных сигналов

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. Быстродействующий измеритель амплитуды квазисинусоидальных напряжений содержит двухполупериодный выпрямитель входного квазисинусоидального напряжения, однополярный аналого-цифровой преобразователь и устройство управления на базе микроконтроллера. Дополнительно введены пиковый детектор и разрядный ключ. В устройство управления записана программа выдачи сигналов чтения данных в аналого-цифровой преобразователь и сигнала управления разрядным ключом в моменты времени, определяемые заданными условиями. Технический результат - повышение точности измерения амплитуды квазисинусоидального сигнала за счет устранения апертурной погрешности. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. В каждом текущем периоде такой сигнал с достаточной точностью может быть описан синусоидальной функцией времени.

Известен измеритель амплитуды сигнала датчика положения вискозиметрического датчика в составе анализатора низкотемпературных свойств топлив. Измеритель квазисинусоидального сигнала датчика обеспечивает непрерывное измерение медленно изменяющихся частоты и амплитуды выходного сигнала датчика (Радиоэлектронная техника: межвузовский сборник научных трудов / Под ред. Сергеева В.А. - Ульяновск: УлГТУ. - 2015. - С. 81).

Схема измерения включает однополярный (двухполупериодный, на положительное напряжение) безынерционный выпрямитель, компаратор (на который поступает усиленный и отфильтрованный сигнал датчика положения вибровискозиметрического датчика). Однополярный сигнал от выпрямителя поступает на вход аналого-цифрового преобразователя (АЦП). Устройство управления выполнено на базе микроконтроллера. Тактовый генератор микроконтроллера непрерывно формирует высокочастотные тактовые импульсы с постоянным периодом Т (например, с частотой около 6 МГц). Микроконтроллер содержит счетчик-таймер тактовых импульсов, управляемый идеальным компаратором. Счетчик запускается и останавливается в моменты перехода квазисинусоидального сигнала датчика положения через нулевой уровень, что позволяет измерить период квазисинусоидального сигнала по числу сосчитанных тактовых импульсов, а также осуществить привязку моментов выборок сигналов к нулевой фазе сигнала датчика положения. Оцифрованный сигнал с выхода АЦП, соответствующий измеряемому параметру, подается в оперативную память микроконтроллера.

Недостатки известной схемы состоят в следующем.

Для сигнала с постоянной низкой частотой (500-1000 Гц) на входе АЦП апертурная погрешность измерения не превышает периода тактовых импульсов (6÷10 МГц) и может быть незначительной, но возрастает при повышении частоты входного сигнала. Если частота измеряемого сигнала меняется от времени, то измеренный предыдущий период сигнала, который определяет моменты выборок АЦП, приводит к дополнительной апертурной погрешности. Эта погрешность будет зависеть от скорости изменения периода сигнала. Таким образом в известном устройстве при измерении амплитуды квазисинусоидального сигнала всегда будет присутствовать апертурная погрешность измерения амплитуды сигнала.

Погрешность измерения при осуществлении указанного известного технического решения может быть уменьшена.

Технической задачей изобретения является повышение точности измерения амплитуды квазисинусоидального сигнала за счет устранения апертурной погрешности при сохранении быстродействия измерений.

Для решения поставленной задачи предлагается быстродействующий измеритель амплитуды квазисинусоидальных сигналов, содержащий двухполупериодный выпрямитель входного квазисинусоидального напряжения, однополярный аналого-цифровой преобразователь и устройство управления на базе микроконтроллера, включающий компаратор и счетчик-таймер. В отличие от прототипа измеритель амплитуды дополнительно содержит пиковый детектор и разрядный ключ, при этом вход пикового детектора подключен к выходу двухполупериодного выпрямителя, выход пикового детектора подключен к входу аналого-цифрового преобразователя, а вход управления разрядного ключа подключен к дополнительному выходу устройства управления. Также в устройство управления записана программа выдачи сигналов чтения данных в аналого-цифровой преобразователь и сигнала управления разрядным ключом в моменты времени, определяемые заданными условиями.

Структурная схема предлагаемого изобретения представлена на фиг. 1, на которой показаны: 1 - двухполупериодный выпрямитель входного квазисинусоидального напряжения; 2 - однополярный аналого-цифровой преобразователь (АЦП); 3 - устройство управления на базе микроконтроллера; 4 - пиковый детектор. Вход пикового детектора 4 подключен к выходу двухполупериодного выпрямителя 1, а выход пикового детектора подключен к входу АЦП 2. 5 - разрядный ключ пикового детектора. Вход управления разрядного ключа 5 подключен к дополнительному выходу устройства управления 3. Компаратор и счетчик-таймер также выполнены на базе микроконтроллера и на чертежах не показаны ввиду известности их функционирования. На фиг. 2 представлена временная диаграмма напряжения на входе АЦП 2:

Uвх(t) - входное измеряемое квазисинусоидальное напряжение,

U - напряжение на входе АЦП,

Ua - текущая амплитуда измеряемого напряжения,

S1 - сигнал разрешения чтения данных,

S2 - сигнал управления разрядным ключом,

t - текущее время,

Т - текущий период колебаний измеряемого

квазисинусоидального напряжения,

t2 и t2 - временные моменты разрешения чтения АЦП 2,

t3 и t4 - временные моменты подачи управляющих сигналов на разрядный ключ 5.

Предлагаемый измеритель амплитуды работает следующим образом.

Измеряемый сигнал поступает на вход пикового детектора 4 через двухполупериодный выпрямитель 1 и на вход устройства управления 3. На фиг. 2 пунктиром показано напряжение на входе пикового детектора 4 с выхода двухполупериодного выпрямителя 1. Устройство управления 3 с помощью внутреннего компаратора, имеющего нулевой порог срабатывания, преобразует входной измеряемый сигнал в меандр с периодом Т (фиг. 2). Текущая длительность периода меандра измеряется путем счета импульсов внутренним счетчиком-таймером устройства 3 путем заполнения временного интервала между периодами меандра импульсами высокочастотного кварцованного тактового генератора. Измеренное значение Т в текущем периоде используется для определения значений моментов времени разрешения чтения АЦП 2 t1 и t2 в последующем периоде. Это обеспечено тем, что в устройство управления записана программа выдачи сигналов чтения данных в аналого-цифровой преобразователь и сигнала управления разрядным ключом в моменты времени, определяемые заданными условиями. Задаваемые условия соответствуют амплитудным значениям измеряемого сигнала на входе АЦП 2. При этом используются условия Т/2>t1>Т/4, а Т>t2>3Т/4. Очевидно, что амплитудные значения измеряемого синусоидального сигнала присутствуют на выходном конденсаторе пикового детектора 4 с момента Т/4 положительной полуволны входного сигнала и с момента 3Т/4 отрицательной полуволны этого сигнала. Чтение этих значений при указанных временных ограничениях исключает апертурную погрешность и осуществляется по сигналу S1, подаваемому с выхода устройства 3 в моменты времени t1 и t2.

Для определения моментов времени t3 и t4 подачи сигнала управления S2 на разрядный ключ 5 используются условия 3Т/4>t3>t1, а 5Т/4>t4>t2. Указанные условия соответствуют завершению чтения амплитудных значений измеряемого сигнала на входе АЦП 2.

Далее, как и в прототипе, измеренные значения амплитуды в моменты времени t1 и t2 усредняются.

Данное устройство, как и прототип, обеспечивает максимальное быстродействие измерений, производя их в каждом полупериоде колебаний входного сигнала.

Процедура двукратного измерения и последующего усреднения результатов за период позволяет существенно уменьшить погрешности измерений при наличии некоторых видов помех во входном сигнале.

Таким образом, заявляемое изобретение превосходит прототип по точности измерений амплитудных значений измеряемого квазисинусоидального сигнала за счет полного устранения апертурных погрешностей при выполнении заданных временных условий подачи управляющих сигналов от элемента 3 на элементы 2 и 5.

1. Быстродействующий измеритель амплитуды квазисинусоидальных напряжений, включающий двухполупериодный выпрямитель входного квазисинусоидального напряжения, однополярный аналого-цифровой преобразователь и устройство управления на базе микроконтроллера, отличающийся тем, что дополнительно содержит пиковый детектор и разрядный ключ, при этом вход пикового детектора подключен к выходу двухполупериодного выпрямителя, выход пикового детектора подключен к входу аналого-цифрового преобразователя, а вход управления разрядного ключа подключен к дополнительному выходу устройства управления.

2. Быстродействующий измеритель амплитуды по п. 1, отличающийся тем, что в устройство управления на базе микроконтроллера записана программа выдачи сигналов чтения данных в аналого-цифровой преобразователь и сигнала управления разрядным ключом в моменты времени, определяемые заданными условиями.



 

Похожие патенты:

Изобретение относится к импульсной технике и может быть использовано в устройствах автоматики и силовой техники для детектирования, а также для определения канала с экстремальным напряжением и его полярности.

Изобретение относится к области электрорадиотехники и может быть использовано в качестве многофункционального пикового детектора. .

Изобретение относится к устройствам измерительной техники и может быть использовано для измерения напряжений в диапазонах крайне низких, сверхнизких, инфранизких и очень низких частот.

Изобретение относится к радиолокационной телевизионной и измерительной технике. .

Изобретение относится к способам работы датчиков тока с гальванической развязкой без дополнительного питания и может использоваться как способ работы датчика для измерения импульсного однополярного тока.

Изобретение относится к электроизмерительной технике, в частности к измерениям больших постоянных и переменных токов. .

Изобретение относится к области информационно-измерительной и вычислительной техники и предназначено для выявления и подсчета выбросов или провалов напряжения, длительность превышения которыми различных уровней анализа больше заданных критических значений, а также определения суммарного времени пребывания электрооборудования в нерабочем состоянии при нестационарном напряжении в электрической сети.

Изобретение относится к области измерительной техники, касается, в частности, преобразователей переменного напряжения в постоянное на основе термопреобразователей, и может быть использовано в радиотехнике, энергетике и в автоматике.

Изобретение относится к электротехнике, преимущественно к измерениям характеристик электрических машин, и может быть использовано для постоянного контроля качества работы щеточно-контактных аппаратов в электрических машинах.

Изобретение относится к электроизмерительной технике, в частности к измерениям переменных и импульсных токов в электроэнергетике. .

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование наблюдаемых величин в двумерные сигналы, обучение релейной защиты от первой имитационной модели трансформатора, воспроизводящей режимы короткого замыкания в его обмотках, от второй имитационной модели, воспроизводящей режимы насыщения магнитопровода трансформатора, и от третьей имитационной модели, воспроизводящей режимы внешней сети, раздельного отображения множеств режимов первой, второй и третьей имитационных моделей в виде соответственно первой, второй и третьей областей на плоскостях двумерных сигналов. Производят срабатывание прошедшей обучение защиты наблюдаемого трансформатора, если по меньшей мере один замер отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй или третьей области, и при формировании двумерных сигналов используют напряжения намагничивания обмоток, которые в свою очередь формируют в передающих моделях обмоток, где преобразуют ток и напряжение на зажимах каждой обмотки в соответствующее напряжение намагничивания. 1 з.п. ф-лы, 24 ил.

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов. Асинхронный пиковый детектор содержит аналоговый вход (1) и аналоговый выход (2), первый (3) прецизионный выпрямитель, первый (6) запоминающий конденсатор, второй (7) прецизионный выпрямитель, второй (10) запоминающий конденсатор, первый (11) электронный ключ, второй (12) электронный ключ, управляющий генератор импульсных сигналов (17), первый (18) согласующий каскад, второй (19) согласующий каскад, причем в качестве первого (18) и второго (19) согласующих каскадов используются соответствующие дополнительные прецизионные выпрямители (18) и (19), выходы которых (20) и (21) соединены с аналоговым выходом устройства (2), причем первый (11) и второй (12) электронные ключи обеспечивают выключение первого (3) и второго (7) прецизионных выпрямителей на время разряда первого (6) и второго (10) запоминающих конденсаторов. 2 з.п. ф-лы, 9 ил.
Наверх