Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий, и может быть использовано, в частности, для получения покрытий на деталях. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой. Дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали. Обеспечивается повышение эксплуатационных свойств и надежности многофункциональных покрытий на деталях, обеспечивающих повышенную адгезионную прочность, износостойкость, прочность. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий и может быть использовано в частности для получения покрытий на деталях.

В настоящее время существуют следующие установки, для получения покрытий:

Известна установка для напыления покрытий, характеризующаяся тем, что содержит вакуумную камеру, распылители мишеней-катодов с анодными блоками, устройства для эвакуации и регулирования подачи газа, приспособление, на котором крепят держатели, и устройство для вращения приспособления. Держатели для подложек вращаются в одном направлении, а приспособление вращается в другом направлении. Распылители мишеней-катодов расположены таким образом, что их осевые линии образуют угол не более 90° и смещены по высоте друг относительно друга. Внутренняя поверхность камеры снабжена ложными стенками. Держатели подложек выполнены в виде призм. Каждая грань призм прозрачна не менее чем на 75%. Подложки и анодные блоки распылителей гальванически связаны между собой и с положительным электродом. Мишени-катоды и ложные стенки гальванически связаны с отрицательным электродом. Между приспособлением для крепления держателей и устройством для его вращения установлен экран, гальванически изолированный от камеры. Устройство формирует упрочненные покрытия во всей поверхности подложек, включая и тыльную сторону (патент №2214477).

Недостатком этой установки является невозможность получения массивных покрытий (толщиной более 100 мкм), а также сложность получения покрытий нужного для проявления эффекта памяти формы (ЭПФ) химического состава и, как следствие, небольшая величина обратимой деформации, менее 3%.

Также известна установка для комплексной ионно-плазменной обработки и нанесения покрытий, содержащая цилиндрическую вакуумную камеру с загрузочной дверью, оснащенную фланцевыми соединениями для установки технологических модулей, вакуум-провода, вакуумных насосов и вакуумных вводов, поворотное приспособление для размещения обрабатываемых изделий, технологические модули, систему подачи газов, откачную систему, источники питания и блок управления, источники ускоренных ионов металлов и газов, протяженный вакуумно-дуговой генератор металлической плазмы, протяженный дуальный магнетрон, протяженный генератор газовой плазмы, причем вакуумная камера выполнена из немагнитной нержавеющей стали размерами: диаметр от 900 мм до 1000 мм, высота от 1300 мм до 1400 мм, а поворотное приспособление для размещения обрабатываемых изделий выполнено с возможностью размещения длинномерных изделий (патент №97730). Недостатком этой установки является невозможность получения объемных покрытий (толщиной более 10 мкм) и сложность получения покрытий нужного для проявления ЭПФ химического состава.

Наиболее близкой является установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на цилиндрической поверхности деталей, содержащая раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, и плазмотроном с механизмом его продольного перемещения, механизм подачи порошкового материала с эффектом памяти формы, первый пирометр для измерения температуры детали перед фронтом плазменной дуги, управляющее устройство, связанное с механизмами подачи порошкового материала и продольного перемещения плазмотрона и первым пирометром, приспособление для поверхностного пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения плазмотрона, второй пирометр, установленный в зоне поверхностного пластического деформирования и связанный с управляющим устройством, соединенный с приспособлением для поверхностного пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, связанное с устройством продольного перемещения плазмотрона, при этом плазмотрон установлен на механизме продольного перемещения под углом 46-50° к поверхности детали. Установка, дополнительно содержит вакуумную камеру, соединенную с вакуумным насосом, газопламенную горелку для газопламенного напыления и технологический модуль для ионной очистки обрабатываемой детали с источником питания, при этом вакуумная камера установлена на раме, газопламенная горелка размещена на механизме продольного перемещения плазмотрона и установлена под углом 45° или 90° к поверхности детали, «плюс» источника питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры, а его «минус» соединен с задней бабкой механизма закрепления детали. Вакуумная камера выполнена с водяной рубашкой охлаждения (Патент РФ №2475567).

Недостатком этой установки является невозможность получения композитных покрытий в едином технологическом цикле.

Задачей изобретения является получение на поверхности деталей многофункциональных композитных покрытий в едином технологическом цикле.

Техническим результатом является повышение эксплуатационных свойств и надежности многофункциональных покрытий на деталях, обеспечивающих повышенную адгезионную прочность, износостойкость, прочность.

Технический результат достигается тем, что установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, в корпусе которой выполнены два смотровых окна и которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, причем «плюс» источника питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры, а его «минус» соединен с задней бабкой механизма закрепления детали, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования и связанный с управляющим устройством, соединенный с трехроликовым приспособлением для поверхностно-пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой, при этом дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали.

Аттритор представляет собой герметичную цилиндрическую емкость, которая после создания вакуума заполнена аргоном и металлическими шарами диаметром 8 мм, при этом упомянутая емкость оснащена мешалкой, приводимой в движение посредством электродвигателя, и ситом для пересыпки молотых металлических порошков в порошковый дозатор.

В процессе высокоскоростного газопламенного напыления механически активированных порошков происходит выделение энергии, накопленной в процессе механической активации, что обеспечивает более надежную адгезию с основой и между слоями и повышенные прочностных свойств многослойного композитного покрытия, а высокая скорость напыления обеспечивает формирование наноразмерной структуры. Принятая последовательность нанесения слоев «адгезионный слой - функциональный слой из материала с эффектом памяти формы - функциональный упрочняющий износостойкий слой» обеспечивает повышение прочностных характеристик и износостойкости композита. Наличие промежуточного слоя из материала с эффектом памяти формы, помимо характерных для этих материалов свойств памяти, сверхупругости или сверхэластичности (в зависимости от термообработки), тормозят, а иногда блокируют распространение дефектов типа трещин, возникающих в прочном, но хрупком поверхностном слое и, как следствие, способствует повышению прочности и долговечности. Предложенный способ обеспечивает получение многослойного наноструктурированного композитного покрытия с эффектом памяти формы на стальных образцах с размером зерен 15-120 нм.

На фиг. 1 представлена установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали и фиг. 2 - газопламенная горелка установки для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали.

Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали состоит из следующих конструктивных элементов: блока управления 1, источника питания 2, понижающего трансформатора 3, патрона 4 для закрепления детали 16 с цилиндрической поверхностью, трехроликового приспособления 5 для поверхностно-пластического деформирования детали с получением наноструктурированного слоя, вакуумной камеры 6, в корпусе которой выполнены два смотровых окна 17 и сообщенной с вакуумным насосом 9, газопламенной горелки 18 для высокоскоростного газопламенного напыления, устройства для перемещения 7 газопламенной горелки 18, устройства 8 для охлаждения цилиндрической детали, выполненного в виде двух емкостей, заполненных жидким азотом, пирометров 10 для измерения температуры, баллонов 11 для создания высокоскоростной газопламенной струи и транспортировки порошков, задней бабки 12, электродвигателя 13, шкивов 14 для передачи крутящего момента от электродвигателя 13 на патрон 4, рамы 15 и упрочняемой стальной цилиндрической детали 16, ионную очистку поверхности детали 16 осуществляют в технологическом модуле 2 для ионной очистки поверхностей деталей с источником питания. Механизм подачи порошкового материала с ЭПФ, сообщенный с вакуумной камерой, состоит из порошкового дозатора 19 с аттритором 20, который представляет собой герметичную цилиндрическую емкость для создания вакуума и защитной среды (аргона), заполненную металлическими шарами 24 диаметром 8 мм для механической активации порошка 25 (порошок Ni), оснащенную мешалкой 22, приводимой во вращательное движение при помощи электродвигателя 23, и ситом 21 для пересыпки молотого металлического порошка в порошковый дозатор 19, порошкового дозатора 26 связанного с аттритором 27 при помощи сита 28, аттритор 27 включает мешалку 29 которая приводится во вращательное движение с помощью электродвигателя 30, также он включает металлические шары 31 для механической активации порошка 32 (порошок на основе TiNi), порошкового дозатора 33 связанного с аттритором 34 при помощи сита 35, аттритор 34 включает мешалку 36 которая приводится во вращательное движение с помощью электродвигателя 37, также он включает металлические шары 38 для механической активации порошка 39 (порошок износостойкий WC-Co-Mo, cNB-Co-Mo). При этом аттриторы 20, 27, 34 сообщаются с вакуумной камерой 6. Каждый атритор представляет собой герметичную цилиндрическую емкость, которую после создания вакуума заполняют аргоном из баллона 40 для подачи аргона в аттриторы. Газопламенная горелка 18, закреплена на механизме продольного перемещения под углом 70-85°С к поверхности стальной цилиндрической детали и выполнена трехканальной, при этом первый канал 40 для ввода порошка Ni, второй канал 41 для ввода порошка на основе TiNi, третий канал 42 для ввода износостойкого порошка Wc-Co-Mo, cNb-Co-Mo. Установка работает следующим образом:

Упрочняемая цилиндрическая деталь 16 устанавливается в патроне 4 и в задней бабки 12, закрепленных на раме 15. С помощью вакуумного насоса 9 производится откачка вакуумной камеры 6 до давления 6,5⋅10-3÷6,8⋅10-3 Па. Далее осуществляется заполнение вакуумной камеры 6 аргоном до давления 0,07÷0,6 Па, при помощи технологического модуля 2 для ионной очистки поверхностей деталей с источником питания производится ионная очистка упрочняемой цилиндрической детали 16. Посредством электродвигателя 13 шкивов 14 системе придается вращательное движение. При помощи технологического модуля 2 для ионной очистки поверхностей деталей с источником питания и блока управления 1 производится включение устройства для перемещения газопламенной горелки 18 и поджиг высокоскоростной газопламенной струи. В аттритор 20 с мешалкой 22 и с металлическими шарами 24 засыпается порошок Ni, в аттритор 27 с мешалкой 29 и с металлическими шарами 31 засыпается порошок на основе TiNi, в аттритор 34 с мешалкой 36 и с металлическими шарами 38 засыпается износостойкий порошок на основе WC-Со-Мо, cNB-Co-Mo далее происходит создание вакуума в аттриторах 20, 27, 34 с помощью вакуумного насоса 9 с последующим созданием защитной среды аргона с помощью баллона 40, включение электродвигателей 23, 30, 37 в процессе измельчения порошок Ni, порошок на основе TiNi, износостойкий порошок на основе WC-Co-Mo, cNB-Co-Mo через соответствующие сита 21, 28, 35 просыпаются в соответствующие порошковые дозаторы 19, 26, 33, далее производится включение порошкового дозатора 19 содержащего механически активированный порошок Ni, с подачей порошка Ni в первый канал 40 для ввода порошка Ni газопламенной горелки 18 с высокоскоростной газопламенной струей. Далее спустя 2-4 минуты включается порошковый дозатор 26 содержащий механически активированный порошок на основе TiNi, с подачей механически активированного порошка TiNi во второй канал 41 для порошка на основе TiNi газопламенной горелки 18 с высокоскоростной газопламенной струей. Далее производится пластическое деформирование полученного слоя с эффектом памяти формы на основе TiNi, пластическое деформирование осуществляется трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали, закрепленным на устройстве для перемещения 7. Далее спустя 4-8 минут включается порошковый дозатор 33 содержащий механически активированный износостойкий порошок на основе WC-Co-Mo, cNB-Co-Mo, с подачей этого порошка в третий канал 42 для ввода износостойкого порошка WC-Co-Mo, cNB-Co-Mo газопламенной горелки 18 с высокоскоростной газопламенной струей. Измерение температуры упрочняемой детали 16 перед фронтом высокоскоростного газопламенного напыления и в зоне поверхностно-пластического деформирования производится пирометрами 10. Напыление покрытия производится газопламенной горелкой 18 расположенной под углом 70-85° размещенной на устройстве для перемещения 7. На устройстве для перемещения 7 устанавливается устройство 8 для охлаждения детали с целью ее охлаждения, в случае отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали. Поверхностное пластическое деформирование трехроликовым приспособлением 5 для поверхностно-пластического деформирования детали сразу же после высокоскоростного газопламенного напыления осуществляется в три этапа, на первом этапе оно производится в интервале температур 500-700°С, на втором этапе оно производится в интервале температур 800-1000°С, на третьем в интервале температур мартенситных превращений (Ms-Mf) слоя с эффектом памяти формы на основе TiNi. В случае охлаждения детали с покрытием с эффектом памяти формы после высокоскоростного газопламенного напыления до температуры менее 500°С, при этом дополнительно имеется понижающий трансформатор 3 для разогрева детали до данной температуры.

1. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали, характеризующаяся тем, что она содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, в корпусе которой выполнены два смотровых окна и которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, причем источник питания технологического модуля ионной очистки соединен с корпусом вакуумной камеры «плюсом», а «минусом» соединен с задней бабкой механизма закрепления детали, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования и связанный с управляющим устройством, соединенный с трехроликовым приспособлением для поверхностно-пластического деформирования детали, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой, при этом дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали.

2. Установка по п. 1, отличающаяся тем, что аттритор представляет собой герметичную цилиндрическую емкость, которая после создания вакуума заполнена аргоном и металлическими шарами диаметром 8 мм, при этом упомянутая емкость оснащена мешалкой, приводимой в движение посредством электродвигателя, и ситом для пересыпки молотых металлических порошков в порошковый дозатор.



 

Похожие патенты:

Изобретение относится к способу высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие.

Изобретение относится к изготовлению узлов турбины, работающей в условиях высоких температур. Способ изготовления узла (10, 10а) турбины в виде расположенных между двумя платформами (46, 46΄) по меньшей мере двух аэродинамических профилей (12, 14), который формируют монолитным, включает создание первой защиты путем нанесения теплозащитного покрытия на по меньшей мере два соседних аэродинамических профиля (12, 14), при этом в процессе нанесения по меньшей мере одна область (16) одного аэродинамического профиля (14), находящегося в теневой зоне другого аэродинамического профиля (12, 14), остается необработанной, создание второй защиты в по меньшей мере одной необработанной области (16) одного аэродинамического профиля (14), находящегося в теневой зоне другого аэродинамического профиля (12, 14), путем модификации поверхности до нанесения теплозащитного покрытия или после его нанесения, причем первая и вторая технологии защиты отличаются одна от другой и вторая технология защиты приводит к модификации поверхности по меньшей мере одной области (16) одного аэродинамического профиля (14) из двух соседних аэродинамических профилей (12, 14), которая останется необработанной или которая осталась необработанной, путем нанесения покрытия, или травления, или придания шероховатости, или путем химического преобразования поверхности.

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования покрытия из алюминида титана, причем покрытие из алюминида титана включает тонкую гамма/альфа2 структуру, а алюминид титана, нанесенный на изделие холодным напылением, имеет состав, включающий 45 мас.

Изобретение относится к получению многослойной энерговыделяющей наноструктурированной фольги для соединения материалов. Способ включает приготовление исходной смеси металлических порошков планетарным перемешиванием, формование смеси порошков горячей прецизионной прокаткой через валки.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий титан-никель-гафний с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию наноструктурированных износостойких материалов конструкционного назначения и может быть использовано для повышения долговечности деталей машин в промышленности.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.

Изобретение относится к способам получения декоративных покрытий на изделиях из стекла, в частности на стеклокремнезите. Способ получения декоративного покрытия на стеклокремнезите включает измельчение и рассев цветных стекол, подачу стеклопорошка в плазменную горелку и плазменное напыление.

Изобретение относится к области металлургии, в частности к оправке для использования в прошивном стане для прошивной прокатки заготовки. Оправка содержит тело оправки, содержащее передний концевой участок и задний концевой участок, наплавленный слой, сформированный по меньшей мере на части поверхности переднего концевого участка тела оправки, и напыленное пленочное покрытие, содержащее железо и оксиды железа и покрывающее по меньшей мере поверхность, начинающуюся от заднего конца наплавленного слоя до конца заднего концевого участка тела оправки.

Изобретение относится к получению декоративного покрытия на изделиях из древесины. Поверхность древесины предварительно покрывают первым внутренним слоем из эпоксидной смолы и вторым внутренним слоем из эпоксидной смолы и порошка стекла в соотношении 1:1.

Изобретение относится к способу высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие.

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур.

Изобретение относится к способам металлизации различных изделий из стеклокремнезита, в том числе и строительных материалов.. Способ включает предварительное нанесение промежуточного слоя на лицевую поверхность изделия из стеклокремнезита, плазменное напыление покрытия из металлов или сплавов и контроль качества, причем промежуточный слой наносят из пасты, состоящей из смеси порошка металла, жидкого стекла и тонкомолотого стеклопорошка в массовом соотношении 2:1:2 соответственно, а плазменное напыление металла проводят при мощности работы плазмотрона 4,0 кВт и расходе плазмообразующего газа 0,6 м3/мин.

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по меньшей мере один элемент из скандия и/или редкоземельных элементов, в частности иттрий, 0,1-0,7, тантал 0,1-3, необязательно кремний 0,05-0,6, никель - остальное.
Изобретение относится к металлургии, в частности к формированию на деталях из безуглеродистых жаропрочных никелевых сплавов химико-термической обработкой комбинированных покрытий для защиты от газовой коррозии в условиях высоких температур (выше 900°С), и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности.

Изобретение относится к формированию на медных электрических контактах покрытий на основе молибдена и меди, которые могут быть использованы в электротехнике в качестве электроэрозионностойких покрытий с высокой адгезией с основой на уровне когезии.
Изобретение относится к области металлургии, а именно нанесению покрытий с эффектом памяти формы. Способ получения наноструктурированных покрытий с эффектом памяти формы на стальной поверхности включает нанесение порошка с эффектом памяти формы на основе Ni на стальную поверхность, закалку с нагревом до 1000°C и последующим охлаждением в жидком азоте, пластическую деформацию полученного покрытия в три этапа при нагреве.

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам для газотермического напыления. Может использоваться в машиностроении при производстве, модернизации и ремонте подшипников скольжения.

Изобретение относится к способу получения магнитотвердого покрытия из сплава самария с кобальтом и может использоваться при изготовлении постоянных магнитов, используемых в конструкциях малогабаритных двигателей постоянного тока, бортовой измерительной аппаратуре, а также различных устройствах, предназначенных для исследования космического пространства.

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины.

Изобретение относится к способу высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие.

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий, и может быть использовано, в частности, для получения покрытий на деталях. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали содержит раму с размещенными на ней механизмом закрепления детали с патроном и задней бабкой, механизмом вращения детали, вакуумной камерой, которая соединена с вакуумным насосом и газопламенной горелкой для высокоскоростного газопламенного напыления, размещенной на механизме продольного перемещения, технологический модуль для ионной очистки обрабатываемой детали с источником питания, первый пирометр для измерения температуры детали, размещенный перед фронтом высокоскоростного газопламенного напыления, управляющее устройство, связанное с механизмом подачи порошкового материала с эффектом памяти формы, механизмом продольного перемещения газопламенной горелки и первым пирометром, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, установленное на механизме продольного перемещения газопламенной горелки, второй пирометр, установленный в зоне поверхностно-пластического деформирования, понижающий трансформатор, обеспечивающий дополнительный нагрев поверхности детали, и устройство для охлаждения поверхности детали, установленное на механизме продольного перемещения газопламенной горелки, механизм подачи порошкового материала с эффектом памяти формы, выполненный в виде трех порошковых дозаторов с аттриторами для механической активации порошков, сообщенными с вакуумной камерой. Дозаторы выполнены с возможностью подачи механически активированного порошка в каналы газопламенной горелки, выполненной трехканальной и закрепленной на механизме продольного перемещения под углом 70-85° к поверхности детали. Обеспечивается повышение эксплуатационных свойств и надежности многофункциональных покрытий на деталях, обеспечивающих повышенную адгезионную прочность, износостойкость, прочность. 1 з.п. ф-лы, 2 ил.

Наверх